Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
Article Open Access

NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage

  • Authors:
    • Yu Hou
    • Lihan Zhang
    • Wenzhe Ma
    • Yong Jiang
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China, Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
    Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 67
    |
    Published online on: January 8, 2025
       https://doi.org/10.3892/mmr.2025.13432
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear. In the present study, C57BL/6J mice were subjected to the modified single‑clamp puncture method to produce an in vivo model of SAH. Treatment of these mice with notoginsenoside R1 (NGR1) prevented short‑term neurological deficits, reduced the expression levels of apoptosis‑associated proteins and mitigated brain edema. In addition, an in vitro model of SAH was established by treating HT22 mouse neuronal cells with oxyhemoglobin (OxyHb). Treatment of these cells with NGR1 resulted in attenuation of the OxyHb‑induced apoptosis. Furthermore, RNA sequencing analysis was used to examine NGR1 + OxyHb and OxyHb groups. Statistically significant changes in the expression levels of apoptosis‑associated genes in OxyHb‑stimulated HT22 cells upon administration of NGR1 were observed. The present study investigated the potential mechanism by which NGR1 mitigates neuronal apoptosis, presenting a novel therapeutic approach for treating SAH through the use of a single TCM component.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Thilak S, Brown P, Whitehouse T, Gautam N, Lawrence E, Ahmed Z and Veenith T: Diagnosis and management of subarachnoid haemorrhage. Nat Commun. 15:18502024. View Article : Google Scholar : PubMed/NCBI

2 

Peng L, Qin H, Liu J, Wu N, Wang X, Han L and Ding X: Neurosurgical clipping versus endovascular coiling for patients with ruptured anterior circulation aneurysms: A systematic review and meta-analysis. Neurosurg Rev. 47:682024. View Article : Google Scholar : PubMed/NCBI

3 

Chalet FX, Briasoulis O, Manalastas EJ, Talbot DA, Thompson JC and Macdonald RL: Clinical burden of angiographic vasospasm and its complications after aneurysmal subarachnoid hemorrhage: A systematic review. Neurol Ther. 12:371–390. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Cahill J and Zhang JH: Subarachnoid hemorrhage: Is it time for a new direction? Stroke. 40 (3 Suppl):S86–S87. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Schupper AJ, Hardigan TA, Mehta A, Yim B, Yaeger KA, De Leacy R, Fifi JT, Mocco J and Majidi S: Sex and racial disparity in outcome of aneurysmal subarachnoid hemorrhage in the United States: A 20-year analysis. Stroke. 54:1347–1356. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun JW, Chatterjee AR, Athiraman U, Dhar R and Zipfel GJ: Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms. Stroke. 54:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Huang H and Lai LT: Incidence and case-fatality of aneurysmal subarachnoid hemorrhage in Australia, 2008–2018. World Neurosurg. 144:e438–e446. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Xia C, Hoffman H, Anikpezie N, Philip K, Wee C, Choudhry R, Albright KC, Masoud H, Beutler T, Schmidt E, et al: Trends in the incidence of spontaneous subarachnoid hemorrhages in the United States, 2007–2017. Neurology. 100:e123–e132. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Qureshi AI, Bhatti IA, Gillani SA, Beall J, Cassarly CN, Gajewski B, Martin RH, Suarez JI and Kwok CS: Prevalence, trends, and outcomes of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage in the USA. J Neuroimaging. 34:790–798. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Vasconcellos de Oliveira Souza N, Rouanet C, Fontoura Solla DJ, Barroso de Lima CV, Trevizo J, Rezende F, Alves MM, de Oliveira Manuel AL, Righy C, Chaddad Neto F, et al: Impact of medical and neurologic complications on the outcome of patients with aneurysmal subarachnoid hemorrhage in a middle-income country. World Neurosurg. 183:e250–e260. 2024. View Article : Google Scholar : PubMed/NCBI

11 

Zhu W, Ling X, Petersen JD, Liu J, Xiao A and Huang J: Clipping versus coiling for aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis of prospective studies. Neurosurg Rev. 45:1291–1302. 2022. View Article : Google Scholar : PubMed/NCBI

12 

de Liyis BG, Surya SC and Tini K: Effectivity and safety of endovascular coiling versus microsurgical clipping for aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. Clin Neurol Neurosurg. 236:1080582024. View Article : Google Scholar : PubMed/NCBI

13 

Le VT, Nguyen AM and Nguyen PL: Risk factors for in-hospital seizure and new-onset epilepsy in coiling and clipping treatment of aneurysmal subarachnoid hemorrhage. World Neurosurg. 184:e460–e467. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Früh A, Wolf S, Wasilewski D, Vajkoczy P and Truckenmueller P; EARLYDRAIN study group, : Early complications and outcome after treatment of ruptured aneurysms in patients with subarachnoid hemorrhage-A post hoc analysis of the EARLYDRAIN trial. World Neurosurg. 184:e720–e730. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Li M, Tian Z, Ru X, Shen J, Chen G, Duan Z and Cui J: Comparison of endovascular interventional embolization and microsurgical clipping for ruptured cerebral aneurysms: Impact on patient outcomes. Int J Neurosci. 1–8. 2024. View Article : Google Scholar

16 

Hoh BL, Topcuoglu MA, Singhal AB, Pryor JC, Rabinov JD, Rordorf GA, Carter BS and Ogilvy CS: Effect of clipping, craniotomy, or intravascular coiling on cerebral vasospasm and patient outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery. 55:779–789. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Tawakul A, Alluqmani MM, Badawi AS, Alawfi AK, Alharbi EK, Aljohani SA, Mogharbel GH, Alahmadi HA and Khawaji ZY: Risk factors for cerebral vasospasm after subarachnoid hemorrhage: A systematic review of observational studies. Neurocrit Care. 41:1081–1099. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Lele AV, Fong CT, Walters AM and Souter MJ: External ventricular drain placement, critical care utilization, complications, and clinical outcomes after spontaneous subarachnoid hemorrhage: A single-center retrospective cohort study. J Clin Med. 13:10322024. View Article : Google Scholar : PubMed/NCBI

19 

Kamp MA, Lieshout JHV, Dibué-Adjei M, Weber JK, Schneider T, Restin T, Fischer I and Steiger HJ: A systematic and meta-analysis of mortality in experimental mouse models analyzing delayed cerebral ischemia after subarachnoid hemorrhage. Transl Stroke Res. 8:206–219. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Dayyani M, Sadeghirad B, Grotta JC, Zabihyan S, Ahmadvand S, Wang Y, Guyatt GH and Amin-Hanjani S: Prophylactic therapies for morbidity and mortality after aneurysmal subarachnoid hemorrhage: A systematic review and network meta-analysis of randomized trials. Stroke. 53:1993–2005. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Sun G: Death and survival from executioner caspase activation. Semin Cell Dev Biol. 156:66–73. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Tan W, Li Y, Ma L, Fu X, Long Q, Yan F, Li W, Liu X, Ding H, Wang Y and Zhang W: Exosomes of endothelial progenitor cells repair injured vascular endothelial cells through the Bcl2/Bax/caspase-3 pathway. Sci Rep. 14:44652024. View Article : Google Scholar : PubMed/NCBI

23 

Zhu C, Fan F, Li CY, Xiong Y and Liu X: Caspase-3 promotes oncogene-induced malignant transformation via EndoG-dependent Src-STAT3 phosphorylation. Cell Death Dis. 15:4862024. View Article : Google Scholar : PubMed/NCBI

24 

Hongmei Z: Extrinsic and intrinsic apoptosis signal pathway review. Ntuli T: Apoptosis and Medicine. IntechOpen; London, UK: 2012, View Article : Google Scholar

25 

Siddiqui WA, Ahad A and Ahsan H: The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch Toxicol. 89:289–317. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Pisani C, Ramella M, Boldorini R, Loi G, Billia M, Boccafoschi F, Volpe A and Krengli M: Apoptotic and predictive factors by bax, caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep. 10:70502020. View Article : Google Scholar : PubMed/NCBI

27 

Qian S, Wei Z, Yang W, Huang J, Yang Y and Wang J: The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 12:9853632022. View Article : Google Scholar : PubMed/NCBI

28 

Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ and Johnson EM Jr: Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol. 139:205–217. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Chen Q, Huang Z, Chen J, Tian X, Zhang R, Liang Q, Liu Z and Cheng Y: Notoginsenoside R1 attenuates ischemic heart failure by modulating MDM2/β arrestin2-mediated β2-adrenergic receptor ubiquitination. Biomed Pharmacother. 177:1170042024. View Article : Google Scholar : PubMed/NCBI

30 

Zhang S, Chen Q, Jin M, Ren J and Sun X, Zhang Z, Luo Y and Sun X: Notoginsenoside R1 alleviates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway through microbiota-gut-brain axis. Phytomedicine. 128:1555302024. View Article : Google Scholar : PubMed/NCBI

31 

Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, et al: Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother. 155:1136962022. View Article : Google Scholar : PubMed/NCBI

32 

Meng X, Sun G, Ye J, Xu H, Wang H and Sun X: Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: A novel mechanism of Nrf2/ARE signaling activation. Free Radic Res. 48:445–460. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Jiang N, Dai Q, Su X, Fu J, Feng X and Peng J: Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol Biol Rep. 47:4587–4629. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C and Liu Y: PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11:7972020. View Article : Google Scholar : PubMed/NCBI

35 

Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Vasan N and Cantley LC: At a crossroads: How to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol. 19:471–485. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T and Ghavami S: Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int J Mol Sci. 23:13532022. View Article : Google Scholar : PubMed/NCBI

38 

He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI

39 

Manning BD and Cantley LC: AKT/PKB signaling: Navigating downstream. Cell. 129:1261–1274. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Peng J, Wu Y, Pang J, Sun X, Chen L, Chen Y, Tang J, Zhang JH and Yong J: Single clip: An improvement of the filament-perforation mouse subarachnoid haemorrhage model. Brain Inj. 33:701–711. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Leary S, Underwood W, Anthony R, Cartner S, Grandin T, Greenacre C, Gwaltney-Brant S, McCrackin MA, Meyer R, Miller D, et al: AVMA guidelines for the euthanasia of animals: 2020 Edition*. American Veterinary Medical Association 1931; N. Meacham Road Schaumburg IL 60173: 2020

42 

Huang T, Xiao Y, Zhang Y, Wang C, Chen X, Li Y, Ge Y and Gao J: miR-223 ameliorates thalamus hemorrhage-induced central poststroke pain via targeting NLRP3 in a mouse model. Exp Ther Med. 23:3532022. View Article : Google Scholar : PubMed/NCBI

43 

Feng X, Ma W, Zhu J, Jiao W and Wang Y: Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol Med Rep. 24:6612021. View Article : Google Scholar : PubMed/NCBI

44 

Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, et al: LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol. 21:1011212019. View Article : Google Scholar : PubMed/NCBI

45 

Zhang CS, Han Q, Song ZW, Jia HY, Shao TP and Chen YP: Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoKATP signaling pathway. Exp Ther Med. 22:8362021. View Article : Google Scholar : PubMed/NCBI

46 

Chen S, Zhou Y, Chen Y and Gu J: fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34:i884–i890. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Kim D, Langmead B and Salzberg SL: HISAT: A fast spliced aligner with low memory requirements. Nat Methods. 12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Anders S, Pyl PT and Huber W: HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI

50 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Team R, . RStudio: Integrated development for R. Boston, MA: RStudio. Inc.; pp. 700pp. pp8792015

53 

Null RCTR, Team R, Null RCT, Core Writing T, Null R, Team R, Null RDCT, Core R, Team R and Team RDC: R: A language and environment for statistical computing. Computing. 1:12–21. 2011.

54 

Dinh DD, Wan H, Lidington D and Bolz SS: Female mice display sex-specific differences in cerebrovascular function and subarachnoid haemorrhage-induced injury. EBioMedicine. 102:1050582024. View Article : Google Scholar : PubMed/NCBI

55 

Kitaeva KV, Rutland CS, Rizvanov AA and Solovyeva VV: Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng Biotechnol. 8:3222020. View Article : Google Scholar : PubMed/NCBI

56 

Pinto B, Henriques AC, Silva PMA and Bousbaa H: Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics. 12:11862020. View Article : Google Scholar : PubMed/NCBI

57 

Wu Y, Xu Y, Sun JS, Dai K, Wang Z and Zhang J: Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage. Exp Neurol. 374:1147052024. View Article : Google Scholar : PubMed/NCBI

58 

Yuan B, Zhao XD, Shen JD, Chen SJ, Huang HY, Zhou XM, Han YL, Zhou LJ, Lu XJ and Wu Q: Activation of SIRT1 alleviates ferroptosis in the early brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev. 2022:90698252022. View Article : Google Scholar : PubMed/NCBI

59 

Tang J, Chen R, Wang L, Yu L, Zuo D, Cui G and Gong X: Melatonin attenuates thrombin-induced inflammation in BV2 cells and then protects HT22 cells from apoptosis. Inflammation. 43:1959–1970. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM and Trzeciak T: From donor to the lab: A fascinating journey of primary cell lines. Front Cell Dev Biol. 9:7113812021. View Article : Google Scholar : PubMed/NCBI

61 

Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, et al: In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 36:862–890. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Zhang J, Yang H, Wu J, Zhang D, Wang Y and Zhai J: Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol. 10:9530312022. View Article : Google Scholar : PubMed/NCBI

63 

Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B and Zheng H: Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight. 3:e1211092018. View Article : Google Scholar : PubMed/NCBI

64 

El Amki M, Dubois M, Lefevre-Scelles A, Magne N, Roussel M, Clavier T, Guichet PO, Gérardin E, Compère V and Castel H: Long-lasting cerebral vasospasm, microthrombosis, apoptosis and paravascular alterations associated with neurological deficits in a mouse model of subarachnoid hemorrhage. Mol Neurobiol. 55:2763–2779. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Fluri F, Schuhmann MK and Kleinschnitz C: Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 9:3445–3454. 2015.PubMed/NCBI

66 

Su C, Liu Y, Li R, Wu W, Fawcett JP and Gu J: Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev. 143:97–114. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Zhang R, Khan D and Muhammad S: Establishment of a novel protocol for assessing the severity of subarachnoid hemorrhage in circle Willis perforation mouse model. Sci Rep. 14:101472024. View Article : Google Scholar : PubMed/NCBI

68 

Marbacher S, Grüter B, Schöpf S, Croci D, Nevzati E, D'Alonzo D, Lattmann J, Roth T, Bircher B, Wolfert C, et al: Systematic review of in vivo animal models of subarachnoid hemorrhage: Species, standard parameters, and outcomes. Transl Stroke Res. September 12–2018.(Epub ahead of print). PubMed/NCBI

69 

Shi X, Yu W, Yang T, Liu W, Zhao Y, Sun Y, Chai L, Gao Y, Dong B and Zhu L: Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. J Ethnopharmacol. 190:301–312. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Pei X, Zhang L, Liu D, Wu Y, Li X, Cao Y and Du X: Notoginsenoside R1 attenuates brain injury in rats with traumatic brain injury: Possible mediation of apoptosis via ERK1/2 signaling pathway. PLoS One. 18:e02959032023. View Article : Google Scholar : PubMed/NCBI

71 

Wang D, Gao B, Yang T, Sun H, Ran X and Lin W: Protective effect of NGR1 against glutamate-induced cytotoxicity in HT22 hippocampal neuronal cells by upregulating the SIRT1/Wnt/β-catenin pathway. Evid Based Complement Alternat Med. 2021:43581632021. View Article : Google Scholar : PubMed/NCBI

72 

Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y and Wang S: Protective effects of notoginsenoside r1 via regulation of the PI3K-Akt-mTOR/JNK pathway in neonatal cerebral hypoxic-ischemic brain injury. Neurochem Res. 43:1210–1226. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Zhai Y, Meng X, Luo Y, Wu Y, Ye T, Zhou P, Ding S, Wang M, Lu SB, Zhu L, et al: Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget. 9:9344–9363. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Zhu T and Wan Q: Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol. 26:20–26. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Zhang HB, Tu XK, Chen Q and Shi SS: Propofol reduces inflammatory brain injury after subarachnoid hemorrhage: Involvement of PI3K/Akt pathway. J Stroke Cerebrovasc Dis. 28:1043752019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hou Y, Zhang L, Ma W and Jiang Y: NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage. Mol Med Rep 31: 67, 2025.
APA
Hou, Y., Zhang, L., Ma, W., & Jiang, Y. (2025). NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage. Molecular Medicine Reports, 31, 67. https://doi.org/10.3892/mmr.2025.13432
MLA
Hou, Y., Zhang, L., Ma, W., Jiang, Y."NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage". Molecular Medicine Reports 31.3 (2025): 67.
Chicago
Hou, Y., Zhang, L., Ma, W., Jiang, Y."NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage". Molecular Medicine Reports 31, no. 3 (2025): 67. https://doi.org/10.3892/mmr.2025.13432
Copy and paste a formatted citation
x
Spandidos Publications style
Hou Y, Zhang L, Ma W and Jiang Y: NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage. Mol Med Rep 31: 67, 2025.
APA
Hou, Y., Zhang, L., Ma, W., & Jiang, Y. (2025). NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage. Molecular Medicine Reports, 31, 67. https://doi.org/10.3892/mmr.2025.13432
MLA
Hou, Y., Zhang, L., Ma, W., Jiang, Y."NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage". Molecular Medicine Reports 31.3 (2025): 67.
Chicago
Hou, Y., Zhang, L., Ma, W., Jiang, Y."NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage". Molecular Medicine Reports 31, no. 3 (2025): 67. https://doi.org/10.3892/mmr.2025.13432
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team