Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Insulin receptor tyrosine kinase substrate in health and disease (Review)

  • Authors:
    • Xueyan Zhang
    • Zhewen Zhang
  • View Affiliations / Copyright

    Affiliations: Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 72
    |
    Published online on: January 23, 2025
       https://doi.org/10.3892/mmr.2025.13437
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Insulin receptor (IR) tyrosine kinase substrate (IRTKS) was first identified >20 years ago as a tyrosine‑phosphorylated IR substrate and subsequently characterized as a protein containing an inverse‑Bin‑amphiphysin‑Rvs domain. Subsequent research has shown that IRTKS functions as a scaffold protein with multiple domains, which results in diverse functions in a variety of cell activities. For example, IRTKS plays roles in regulating the formation of membrane protrusions; triggering pathogen‑driven actin assembly; modulating insulin signaling, antiviral immunity and embryonic development; and promoting tumor occurrence and progression. It is also a candidate forensic biomarker of hypothermia. Nevertheless, a systematic summary of the biological functions of IRTKS and its underlying molecular mechanism is lacking. Therefore, the present review provides a comprehensive summary of the latest advancements in IRTKS research, thereby establishing a framework for understanding the contribution of IRTKS to diverse cell processes.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Millard TH, Dawson J and Machesky LM: Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties. J Cell Sci. 120:1663–1672. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Saarikangas J, Zhao HX, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PK, Butcher SJ and Lappalainen P: Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol. 19:95–107. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Yamagishi A, Masuda M, Ohki T, Onishi H and Mochizuki N: A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem. 279:14929–14936. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, et al: Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci USA. 97:9543–9548. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR and McMahon HT: BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science. 303:495–499. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Zhao HX, Pykäläinen A and Lappalainen P: I-BAR domain proteins: Linking actin and plasma membrane dynamics. Curr Opin Cell Biol. 23:14–21. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Frost A, Unger VM and De Camilli P: The BAR domain superfamily: Membrane-molding macromolecules. Cell. 137:191–196. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Qualmann B, Koch D and Kessels MM: Let's go bananas: Revisiting the endocytic BAR code. EMBO J. 30:3501–3515. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Suetsugu S, Toyooka K and Senju Y: Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin Cell Dev Biol. 21:340–349. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Mullins RD, Heuser JA and Pollard TD: The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA. 95:6181–6186. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Bompard G and Caron E: Regulation of WASP/WAVE proteins: Making a long story short. J Cell Biol. 166:957–962. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Machesky LM and Insall RH: Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol. 8:1347–1356. 1998. View Article : Google Scholar : PubMed/NCBI

14 

Pollard TD and Borisy GG: Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG and Gertler FB: Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 109:509–521. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG and Gertler FB: Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron. 42:37–49. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Pellegrin S and Mellor H: The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol. 15:129–133. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Revenu C, Athman R, Robine S and Louvard D: The co-workers of actin filaments: From cell structures to signals. Nat Rev Mol Cell Biol. 5:635–646. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T and Borisy GG: Role of fascin in filopodial protrusion. J Cell Biol. 174:863–875. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J and Hall A: Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol. 11:1645–1655. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, Berhoerster K, Kreienkamp HJ, Milanesi F, Di Fiore PP, et al: Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8:1337–1347. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Suetsugu S, Kurisu S, Oikawa T, Yamazaki D, Oda A and Takenawa T: Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. J Cell Biol. 173:571–585. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM and Ahmed S: mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem. 287:4702–4714. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Miki H, Yamaguchi H, Suetsugu S and Takenawa T: IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 408:732–735. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Fujiwara T, Mammoto A, Kim Y and Takai Y: Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun. 271:626–629. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Chou AM, Sem KP, Wright GD, Sudhaharan T and Ahmed S: Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J Biol Chem. 289:24383–24396. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Sudhaharan T, Sem KP, Liew HF, Yu YH, Goh WI, Chou AM and Ahmed S: The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci. 129:2829–2840. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Crepin VF, Girard F, Schüller S, Phillips AD, Mousnier A and Frankel G: Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol Microbiol. 75:308–323. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Li T, Cheng Z, Wang K, Chen F, Han Z and Zhang X: Cloning and expressing of IRTKS and its effect on cell morphology. J Med Mol Biol. 6:214–218. 2009.

30 

Fox S, Tran A, Trinkle-Mulcahy L and Copeland JW: Cooperative assembly of filopodia by the formin FMNL2 and I-BAR domain protein IRTKS. J Biol Chem. 298:1025122022. View Article : Google Scholar : PubMed/NCBI

31 

Tapon N and Hall A: Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol. 9:86–92. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Hall A: Ras-related GTPases and the cytoskeleton. Mol Biol Cell. 3:475–479. 1992. View Article : Google Scholar : PubMed/NCBI

33 

Campellone KG, Brady MJ, Alamares JG, Rowe DC, Skehan BM, Tipper DJ and Leong JM: Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol. 8:1488–1503. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Kühn S, Erdmann C, Kage F, Block J, Schwenkmezger L, Steffen A, Rottner K and Geyer M: The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat Commun. 6:70882015. View Article : Google Scholar : PubMed/NCBI

35 

Young LE, Heimsath EG and Higgs HN: Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol Biol Cell. 26:4646–4659. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Veltman DM, Auciello G, Spence HJ, Machesky LM, Rappoport JZ and Insall RH: Functional analysis of Dictyostelium IBARa reveals a conserved role of the I-BAR domain in endocytosis. Biochem J. 436:45–52. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Li LS, Baxter SS, Zhao P, Gu N and Zhan X: Differential interactions of missing in metastasis and insulin receptor tyrosine kinase substrate with RAB proteins in the endocytosis of CXCR4. J Biol Chem. 294:6494–6505. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Postema MM, Grega-Larson NE, Neininger AC and Tyska MJ: IRTKS (BAIAP2L1) elongates epithelial microvilli using EPS8-dependent and independent mechanisms. Curr Biol. 28:2876–2888.e4. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Meenderink LM, Gaeta IM, Postema MM, Cencer CS, Chinowsky CR, Krystofiak ES, Millis BA and Tyska MJ: Actin dynamics drive microvillar motility and clustering during brush border assembly. Dev Cell. 50:545–556.e4. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Gaeta IM, Meenderink LM, Postema MM, Cencer CS and Tyska MJ: Direct visualization of epithelial microvilli biogenesis. Curr Biol. 31:2561–2575.e6. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Shifrin DA Jr, McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ and Tyska MJ: Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol. 22:627–631. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Vallance BA, Chan C, Robertson ML and Finlay BB: Enteropathogenic and enterohemorrhagic Escherichia coli infections: Emerging themes in pathogenesis and prevention. Can J Gastroenterol. 16:771–778. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Kaper JB, Nataro JP and Mobley HL: Pathogenic Escherichia coli. Nat Rev Microbiol. 2:123–140. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Campellone KG and Leong JM: Tails of two Tirs: Actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr Opin Microbiol. 6:82–90. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Allen-Vercoe E, Waddell B, Toh MC and DeVinney R: Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation. Infect Immun. 74:6196–6205. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Brady MJ, Campellone KG, Ghildiyal M and Leong JM: Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol. 9:2242–2253. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Coburn B, Sekirov I and Finlay BB: Type III secretion systems and disease. Clin Microbiol Rev. 20:535–549. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S and Lange A: Atomic model of the type III secretion system needle. Nature. 486:276–279. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Campellone KG: Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277:2390–2402. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Vingadassalom D, Kazlauskas A, Skehan B, Cheng HC, Magoun L, Robbins D, Rosen MK, Saksela K and Leong JM: Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA. 106:6754–6759. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K and Permi P: Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Proc Natl Acad Sci USA. 107:21743–21748. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K and Permi P: Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly. Structure. 20:1692–1703. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Huang LY, Wang YP, Wei BF, Yang J, Wang JQ, Wu BH, Zhang ZZ, Hou YY, Sun WM, Hu RM, et al: Deficiency of IRTKS as an adaptor of insulin receptor leads to insulin resistance. Cell Res. 23:1310–1321. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Wu CC, Cui XF, Huang LY, Shang X, Wu B, Wang N, He K and Han Z: IRTKS promotes insulin signaling transduction through inhibiting SHIP2 phosphatase activity. Int J Mol Sci. 20:28342019. View Article : Google Scholar : PubMed/NCBI

55 

Wang S, Liu Z, Ma YM, Guan X, Jiang Z, Sun P, Liu ER, Zhang YK, Wang HY and Wang XS: Upregulated insulin receptor tyrosine kinase substrate promotes the proliferation of colorectal cancer cells via the bFGF/AKT signaling pathway. Gastroenterol Rep (Oxf). 9:166–175. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Chao A, Tsai CL, Jung SM, Chuang WC, Kao C, Hsu A, Chen SH, Lin CY, Lee YC, Lee YS, et al: BAI1-associated protein 2-like 1 (BAIAP2L1) is a potential biomarker in ovarian cancer. PLoS One. 10:e01330812015. View Article : Google Scholar : PubMed/NCBI

57 

Huang LY, Wang XF, Cui XF, Li H, Zhao J, Wu CC, Min L, Zhou Z, Wan L, Wang YP, et al: IRTKS is correlated with progression and survival time of patients with gastric cancer. Gut. 67:1400–1409. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Wang YP, Huang LY, Sun WM, Zhang ZZ, Fang JZ, Wei BF, Wu BH and Han ZG: Insulin receptor tyrosine kinase substrate activates EGFR/ERK signalling pathway and promotes cell proliferation of hepatocellular carcinoma. Cancer Lett. 337:96–106. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Lu Y, Zhou XY, Zhou CL, Liu J, Yong T, Fan Y and Wang C: Insulin receptor tyrosine kinase substrate (IRTKS) promotes the tumorigenesis of pancreatic cancer via PI3K/AKT signaling. Hum Cell. 35:1885–1899. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M and Zhang S: Cell fusion-related proteins and signaling pathways, and their roles in the development and progression of cancer. Front Cell Dev Biol. 9:8096682022. View Article : Google Scholar : PubMed/NCBI

61 

Oikawa T and Matsuo K: Possible role of IRTKS in Tks5-driven osteoclast fusion. Commun Integr Biol. 5:511–515. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Li M, Brooks CL, Wu-Baer F, Chen D, Baer R and Gu W: Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science. 302:1972–1975. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Li LS, Liu HY, Baxter SS, Gu N, Ji M and Zhan X: The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum. Biochem Biophys Res Commun. 479:787–792. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Bromann PA, Korkaya H and Courtneidge SA: The interplay between Src family kinases and receptor tyrosine kinases. Oncogene. 23:7957–7968. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Chen G, Li T, Zhang L, Yi M, Chen F, Wang Z and Zhang X: Src-stimulated IRTKS phosphorylation enhances cell migration. FEBS Lett. 585:2972–2978. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Ebadi Zavieh S and Safari F: The antitumor activity of hAMSCs secretome in HT-29 colon cancer cells through downregulation of EGFR/c-Src/IRTKS expression and p38/ERK1/2 phosphorylation. Cell Biochem Biophys. 80:395–402. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Wang KS, Chen G, Shen HL, Li TT, Chen F, Wang QW, Wang ZQ, Han ZG and Zhang X: Insulin receptor tyrosine kinase substrate enhances low levels of MDM2-mediated p53 ubiquitination. PLoS One. 6:e235712011. View Article : Google Scholar : PubMed/NCBI

68 

D'Amours D, Sallmann FR, Dixit VM and Poirier GG: Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. J Cell Sci. 114:3771–3778. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Hickman ES, Moroni MC and Helin K: The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev. 12:60–66. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Nakanishi Y, Akiyama N, Tsukaguchi T, Fujii T, Satoh Y, Ishii N and Aoki M: Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Mol Cancer Ther. 14:704–712. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Williams SV, Hurst CD and Knowles MA: Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 22:795–803. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, et al: Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3:636–647. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A and Bahrami A: The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing. Mod Pathol. 29:359–369. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Guo R, Luo J, Chang J, Rekhtman N, Arcila M and Drilon A: MET-dependent solid tumours-molecular diagnosis and targeted therapy. Nat Rev Clin Oncol. 17:569–587. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Stransky N, Cerami E, Schalm S, Kim JL and Lengauer C: The landscape of kinase fusions in cancer. Nat Commun. 5:48462014. View Article : Google Scholar : PubMed/NCBI

76 

Cui XF, Shang XY, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, et al: Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett. 575:2164042023. View Article : Google Scholar : PubMed/NCBI

77 

Xie J, Lu ZN, Bai SH, Cui XF, Lian HY, Xie CY, Wang N, Wang L and Han ZG: Heterochromatin formation and remodeling by IRTKS condensates counteract cellular senescence. EMBO J. 43:4542–4577. 2024. View Article : Google Scholar : PubMed/NCBI

78 

Yuan GF, Ding WW, Sun BJ, Zhu L, Gao YW and Chen LL: Upregulated circRNA_102231 promotes gastric cancer progression and its clinical significance. Bioengineered. 12:4936–4945. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Chou AM, Sem KP, Lam WJ, Ahmed S and Lim CY: Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development. Sci Rep. 7:404852017. View Article : Google Scholar : PubMed/NCBI

80 

Galligan CL, Baig E, Bykerk V, Keystone EC and Fish EN: Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: Correlates with disease activity. Genes Immun. 8:480–491. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Xia P, Wang S, Xiong Z, Ye B, Huang LY, Han ZG and Fan Z: IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nat Commun. 6:81322015. View Article : Google Scholar : PubMed/NCBI

82 

Rehwinkel J and Gack MU: RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat Rev Immunol. 20:537–551. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Naesens L, Haerynck F and Gack MU: The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol. 44:435–449. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Makeyev AV and Liebhaber SA: The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA. 8:265–278. 2002. View Article : Google Scholar : PubMed/NCBI

85 

Rousseau G, Reynier P, Jousset N, Rougé-Maillart C and Palmiere C: Updated review of postmortem biochemical exploration of hypothermia with a presentation of standard strategy of sampling and analyses. Clin Chem Lab Med. 56:1819–1827. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Elmsjö A, Ward LJ, Horioka K, Watanabe S, Kugelberg FC, Druid H and Green H: Biomarker patterns and mechanistic insights into hypothermia from a postmortem metabolomics investigation. Sci Rep. 14:189722024. View Article : Google Scholar : PubMed/NCBI

87 

Bańka K, Teresiński G and Buszewicz G: Free fatty acids as markers of death from hypothermia. Forensic Sci Int. 234:79–85. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Takamiya M, Saigusa K and Dewa K: DNA microarray analysis of hypothermia-exposed murine lungs for identification of forensic biomarkers. Leg Med (Tokyo). 48:1017892021. View Article : Google Scholar : PubMed/NCBI

89 

Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI

90 

Ramasubbu K and Devi Rajeswari V: Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review. Mol Cell Biochem. 478:1307–1324. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI

92 

Fares A, Carracedo Uribe C, Martinez D, Rehman T, Silva Rondon C and Sandoval-Sus J: Bruton's tyrosine kinase inhibitors: Recent updates. Int J Mol Sci. 25:22082024. View Article : Google Scholar : PubMed/NCBI

93 

Roskoski R Jr: Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res. 200:1070592024. View Article : Google Scholar : PubMed/NCBI

94 

Nammour HM, Madrigal K, Starling CT and Doan HQ: Advancing treatment options for merkel cell carcinoma: A review of tumor-targeted therapies. Int J Mol Sci. 25:110552024. View Article : Google Scholar : PubMed/NCBI

95 

Bae WH, Maraka S and Daher A: Challenges and advances in glioblastoma targeted therapy: The promise of drug repurposing and biomarker exploration. Front Oncol. 14:14414602024. View Article : Google Scholar : PubMed/NCBI

96 

Myers SH, Brunton VG and Unciti-Broceta A: AXL inhibitors in cancer: A medicinal chemistry perspective. J Med Chem. 59:3593–3608. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Shyam Sunder S, Sharma UC and Pokharel S: Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 8:2622023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X and Zhang Z: Insulin receptor tyrosine kinase substrate in health and disease (Review). Mol Med Rep 31: 72, 2025.
APA
Zhang, X., & Zhang, Z. (2025). Insulin receptor tyrosine kinase substrate in health and disease (Review). Molecular Medicine Reports, 31, 72. https://doi.org/10.3892/mmr.2025.13437
MLA
Zhang, X., Zhang, Z."Insulin receptor tyrosine kinase substrate in health and disease (Review)". Molecular Medicine Reports 31.3 (2025): 72.
Chicago
Zhang, X., Zhang, Z."Insulin receptor tyrosine kinase substrate in health and disease (Review)". Molecular Medicine Reports 31, no. 3 (2025): 72. https://doi.org/10.3892/mmr.2025.13437
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X and Zhang Z: Insulin receptor tyrosine kinase substrate in health and disease (Review). Mol Med Rep 31: 72, 2025.
APA
Zhang, X., & Zhang, Z. (2025). Insulin receptor tyrosine kinase substrate in health and disease (Review). Molecular Medicine Reports, 31, 72. https://doi.org/10.3892/mmr.2025.13437
MLA
Zhang, X., Zhang, Z."Insulin receptor tyrosine kinase substrate in health and disease (Review)". Molecular Medicine Reports 31.3 (2025): 72.
Chicago
Zhang, X., Zhang, Z."Insulin receptor tyrosine kinase substrate in health and disease (Review)". Molecular Medicine Reports 31, no. 3 (2025): 72. https://doi.org/10.3892/mmr.2025.13437
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team