
Insulin receptor tyrosine kinase substrate in health and disease (Review)
- Authors:
- Xueyan Zhang
- Zhewen Zhang
-
Affiliations: Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China - Published online on: January 23, 2025 https://doi.org/10.3892/mmr.2025.13437
- Article Number: 72
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Millard TH, Dawson J and Machesky LM: Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties. J Cell Sci. 120:1663–1672. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saarikangas J, Zhao HX, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PK, Butcher SJ and Lappalainen P: Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol. 19:95–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamagishi A, Masuda M, Ohki T, Onishi H and Mochizuki N: A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem. 279:14929–14936. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, et al: Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci USA. 97:9543–9548. 2000. View Article : Google Scholar : PubMed/NCBI | |
Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR and McMahon HT: BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science. 303:495–499. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao HX, Pykäläinen A and Lappalainen P: I-BAR domain proteins: Linking actin and plasma membrane dynamics. Curr Opin Cell Biol. 23:14–21. 2011. View Article : Google Scholar : PubMed/NCBI | |
Frost A, Unger VM and De Camilli P: The BAR domain superfamily: Membrane-molding macromolecules. Cell. 137:191–196. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qualmann B, Koch D and Kessels MM: Let's go bananas: Revisiting the endocytic BAR code. EMBO J. 30:3501–3515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suetsugu S, Toyooka K and Senju Y: Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin Cell Dev Biol. 21:340–349. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mullins RD, Heuser JA and Pollard TD: The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA. 95:6181–6186. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bompard G and Caron E: Regulation of WASP/WAVE proteins: Making a long story short. J Cell Biol. 166:957–962. 2004. View Article : Google Scholar : PubMed/NCBI | |
Machesky LM and Insall RH: Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol. 8:1347–1356. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pollard TD and Borisy GG: Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG and Gertler FB: Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 109:509–521. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG and Gertler FB: Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron. 42:37–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pellegrin S and Mellor H: The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol. 15:129–133. 2005. View Article : Google Scholar : PubMed/NCBI | |
Revenu C, Athman R, Robine S and Louvard D: The co-workers of actin filaments: From cell structures to signals. Nat Rev Mol Cell Biol. 5:635–646. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T and Borisy GG: Role of fascin in filopodial protrusion. J Cell Biol. 174:863–875. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J and Hall A: Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol. 11:1645–1655. 2001. View Article : Google Scholar : PubMed/NCBI | |
Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, Berhoerster K, Kreienkamp HJ, Milanesi F, Di Fiore PP, et al: Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8:1337–1347. 2006. View Article : Google Scholar : PubMed/NCBI | |
Suetsugu S, Kurisu S, Oikawa T, Yamazaki D, Oda A and Takenawa T: Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. J Cell Biol. 173:571–585. 2006. View Article : Google Scholar : PubMed/NCBI | |
Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM and Ahmed S: mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem. 287:4702–4714. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miki H, Yamaguchi H, Suetsugu S and Takenawa T: IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 408:732–735. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara T, Mammoto A, Kim Y and Takai Y: Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun. 271:626–629. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chou AM, Sem KP, Wright GD, Sudhaharan T and Ahmed S: Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J Biol Chem. 289:24383–24396. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sudhaharan T, Sem KP, Liew HF, Yu YH, Goh WI, Chou AM and Ahmed S: The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci. 129:2829–2840. 2016. View Article : Google Scholar : PubMed/NCBI | |
Crepin VF, Girard F, Schüller S, Phillips AD, Mousnier A and Frankel G: Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol Microbiol. 75:308–323. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li T, Cheng Z, Wang K, Chen F, Han Z and Zhang X: Cloning and expressing of IRTKS and its effect on cell morphology. J Med Mol Biol. 6:214–218. 2009. | |
Fox S, Tran A, Trinkle-Mulcahy L and Copeland JW: Cooperative assembly of filopodia by the formin FMNL2 and I-BAR domain protein IRTKS. J Biol Chem. 298:1025122022. View Article : Google Scholar : PubMed/NCBI | |
Tapon N and Hall A: Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol. 9:86–92. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hall A: Ras-related GTPases and the cytoskeleton. Mol Biol Cell. 3:475–479. 1992. View Article : Google Scholar : PubMed/NCBI | |
Campellone KG, Brady MJ, Alamares JG, Rowe DC, Skehan BM, Tipper DJ and Leong JM: Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol. 8:1488–1503. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kühn S, Erdmann C, Kage F, Block J, Schwenkmezger L, Steffen A, Rottner K and Geyer M: The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat Commun. 6:70882015. View Article : Google Scholar : PubMed/NCBI | |
Young LE, Heimsath EG and Higgs HN: Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol Biol Cell. 26:4646–4659. 2015. View Article : Google Scholar : PubMed/NCBI | |
Veltman DM, Auciello G, Spence HJ, Machesky LM, Rappoport JZ and Insall RH: Functional analysis of Dictyostelium IBARa reveals a conserved role of the I-BAR domain in endocytosis. Biochem J. 436:45–52. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li LS, Baxter SS, Zhao P, Gu N and Zhan X: Differential interactions of missing in metastasis and insulin receptor tyrosine kinase substrate with RAB proteins in the endocytosis of CXCR4. J Biol Chem. 294:6494–6505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Postema MM, Grega-Larson NE, Neininger AC and Tyska MJ: IRTKS (BAIAP2L1) elongates epithelial microvilli using EPS8-dependent and independent mechanisms. Curr Biol. 28:2876–2888.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meenderink LM, Gaeta IM, Postema MM, Cencer CS, Chinowsky CR, Krystofiak ES, Millis BA and Tyska MJ: Actin dynamics drive microvillar motility and clustering during brush border assembly. Dev Cell. 50:545–556.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaeta IM, Meenderink LM, Postema MM, Cencer CS and Tyska MJ: Direct visualization of epithelial microvilli biogenesis. Curr Biol. 31:2561–2575.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shifrin DA Jr, McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ and Tyska MJ: Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol. 22:627–631. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vallance BA, Chan C, Robertson ML and Finlay BB: Enteropathogenic and enterohemorrhagic Escherichia coli infections: Emerging themes in pathogenesis and prevention. Can J Gastroenterol. 16:771–778. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kaper JB, Nataro JP and Mobley HL: Pathogenic Escherichia coli. Nat Rev Microbiol. 2:123–140. 2004. View Article : Google Scholar : PubMed/NCBI | |
Campellone KG and Leong JM: Tails of two Tirs: Actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr Opin Microbiol. 6:82–90. 2003. View Article : Google Scholar : PubMed/NCBI | |
Allen-Vercoe E, Waddell B, Toh MC and DeVinney R: Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation. Infect Immun. 74:6196–6205. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brady MJ, Campellone KG, Ghildiyal M and Leong JM: Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol. 9:2242–2253. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coburn B, Sekirov I and Finlay BB: Type III secretion systems and disease. Clin Microbiol Rev. 20:535–549. 2007. View Article : Google Scholar : PubMed/NCBI | |
Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S and Lange A: Atomic model of the type III secretion system needle. Nature. 486:276–279. 2012. View Article : Google Scholar : PubMed/NCBI | |
Campellone KG: Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277:2390–2402. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vingadassalom D, Kazlauskas A, Skehan B, Cheng HC, Magoun L, Robbins D, Rosen MK, Saksela K and Leong JM: Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA. 106:6754–6759. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K and Permi P: Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Proc Natl Acad Sci USA. 107:21743–21748. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K and Permi P: Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly. Structure. 20:1692–1703. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang LY, Wang YP, Wei BF, Yang J, Wang JQ, Wu BH, Zhang ZZ, Hou YY, Sun WM, Hu RM, et al: Deficiency of IRTKS as an adaptor of insulin receptor leads to insulin resistance. Cell Res. 23:1310–1321. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu CC, Cui XF, Huang LY, Shang X, Wu B, Wang N, He K and Han Z: IRTKS promotes insulin signaling transduction through inhibiting SHIP2 phosphatase activity. Int J Mol Sci. 20:28342019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu Z, Ma YM, Guan X, Jiang Z, Sun P, Liu ER, Zhang YK, Wang HY and Wang XS: Upregulated insulin receptor tyrosine kinase substrate promotes the proliferation of colorectal cancer cells via the bFGF/AKT signaling pathway. Gastroenterol Rep (Oxf). 9:166–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chao A, Tsai CL, Jung SM, Chuang WC, Kao C, Hsu A, Chen SH, Lin CY, Lee YC, Lee YS, et al: BAI1-associated protein 2-like 1 (BAIAP2L1) is a potential biomarker in ovarian cancer. PLoS One. 10:e01330812015. View Article : Google Scholar : PubMed/NCBI | |
Huang LY, Wang XF, Cui XF, Li H, Zhao J, Wu CC, Min L, Zhou Z, Wan L, Wang YP, et al: IRTKS is correlated with progression and survival time of patients with gastric cancer. Gut. 67:1400–1409. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang YP, Huang LY, Sun WM, Zhang ZZ, Fang JZ, Wei BF, Wu BH and Han ZG: Insulin receptor tyrosine kinase substrate activates EGFR/ERK signalling pathway and promotes cell proliferation of hepatocellular carcinoma. Cancer Lett. 337:96–106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Zhou XY, Zhou CL, Liu J, Yong T, Fan Y and Wang C: Insulin receptor tyrosine kinase substrate (IRTKS) promotes the tumorigenesis of pancreatic cancer via PI3K/AKT signaling. Hum Cell. 35:1885–1899. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M and Zhang S: Cell fusion-related proteins and signaling pathways, and their roles in the development and progression of cancer. Front Cell Dev Biol. 9:8096682022. View Article : Google Scholar : PubMed/NCBI | |
Oikawa T and Matsuo K: Possible role of IRTKS in Tks5-driven osteoclast fusion. Commun Integr Biol. 5:511–515. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R and Gu W: Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science. 302:1972–1975. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li LS, Liu HY, Baxter SS, Gu N, Ji M and Zhan X: The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum. Biochem Biophys Res Commun. 479:787–792. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bromann PA, Korkaya H and Courtneidge SA: The interplay between Src family kinases and receptor tyrosine kinases. Oncogene. 23:7957–7968. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Li T, Zhang L, Yi M, Chen F, Wang Z and Zhang X: Src-stimulated IRTKS phosphorylation enhances cell migration. FEBS Lett. 585:2972–2978. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ebadi Zavieh S and Safari F: The antitumor activity of hAMSCs secretome in HT-29 colon cancer cells through downregulation of EGFR/c-Src/IRTKS expression and p38/ERK1/2 phosphorylation. Cell Biochem Biophys. 80:395–402. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang KS, Chen G, Shen HL, Li TT, Chen F, Wang QW, Wang ZQ, Han ZG and Zhang X: Insulin receptor tyrosine kinase substrate enhances low levels of MDM2-mediated p53 ubiquitination. PLoS One. 6:e235712011. View Article : Google Scholar : PubMed/NCBI | |
D'Amours D, Sallmann FR, Dixit VM and Poirier GG: Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. J Cell Sci. 114:3771–3778. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hickman ES, Moroni MC and Helin K: The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev. 12:60–66. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi Y, Akiyama N, Tsukaguchi T, Fujii T, Satoh Y, Ishii N and Aoki M: Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Mol Cancer Ther. 14:704–712. 2015. View Article : Google Scholar : PubMed/NCBI | |
Williams SV, Hurst CD and Knowles MA: Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 22:795–803. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, et al: Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3:636–647. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A and Bahrami A: The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing. Mod Pathol. 29:359–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Luo J, Chang J, Rekhtman N, Arcila M and Drilon A: MET-dependent solid tumours-molecular diagnosis and targeted therapy. Nat Rev Clin Oncol. 17:569–587. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stransky N, Cerami E, Schalm S, Kim JL and Lengauer C: The landscape of kinase fusions in cancer. Nat Commun. 5:48462014. View Article : Google Scholar : PubMed/NCBI | |
Cui XF, Shang XY, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, et al: Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett. 575:2164042023. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Lu ZN, Bai SH, Cui XF, Lian HY, Xie CY, Wang N, Wang L and Han ZG: Heterochromatin formation and remodeling by IRTKS condensates counteract cellular senescence. EMBO J. 43:4542–4577. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yuan GF, Ding WW, Sun BJ, Zhu L, Gao YW and Chen LL: Upregulated circRNA_102231 promotes gastric cancer progression and its clinical significance. Bioengineered. 12:4936–4945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chou AM, Sem KP, Lam WJ, Ahmed S and Lim CY: Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development. Sci Rep. 7:404852017. View Article : Google Scholar : PubMed/NCBI | |
Galligan CL, Baig E, Bykerk V, Keystone EC and Fish EN: Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: Correlates with disease activity. Genes Immun. 8:480–491. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xia P, Wang S, Xiong Z, Ye B, Huang LY, Han ZG and Fan Z: IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nat Commun. 6:81322015. View Article : Google Scholar : PubMed/NCBI | |
Rehwinkel J and Gack MU: RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat Rev Immunol. 20:537–551. 2020. View Article : Google Scholar : PubMed/NCBI | |
Naesens L, Haerynck F and Gack MU: The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol. 44:435–449. 2023. View Article : Google Scholar : PubMed/NCBI | |
Makeyev AV and Liebhaber SA: The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA. 8:265–278. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rousseau G, Reynier P, Jousset N, Rougé-Maillart C and Palmiere C: Updated review of postmortem biochemical exploration of hypothermia with a presentation of standard strategy of sampling and analyses. Clin Chem Lab Med. 56:1819–1827. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elmsjö A, Ward LJ, Horioka K, Watanabe S, Kugelberg FC, Druid H and Green H: Biomarker patterns and mechanistic insights into hypothermia from a postmortem metabolomics investigation. Sci Rep. 14:189722024. View Article : Google Scholar : PubMed/NCBI | |
Bańka K, Teresiński G and Buszewicz G: Free fatty acids as markers of death from hypothermia. Forensic Sci Int. 234:79–85. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takamiya M, Saigusa K and Dewa K: DNA microarray analysis of hypothermia-exposed murine lungs for identification of forensic biomarkers. Leg Med (Tokyo). 48:1017892021. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI | |
Ramasubbu K and Devi Rajeswari V: Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review. Mol Cell Biochem. 478:1307–1324. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI | |
Fares A, Carracedo Uribe C, Martinez D, Rehman T, Silva Rondon C and Sandoval-Sus J: Bruton's tyrosine kinase inhibitors: Recent updates. Int J Mol Sci. 25:22082024. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res. 200:1070592024. View Article : Google Scholar : PubMed/NCBI | |
Nammour HM, Madrigal K, Starling CT and Doan HQ: Advancing treatment options for merkel cell carcinoma: A review of tumor-targeted therapies. Int J Mol Sci. 25:110552024. View Article : Google Scholar : PubMed/NCBI | |
Bae WH, Maraka S and Daher A: Challenges and advances in glioblastoma targeted therapy: The promise of drug repurposing and biomarker exploration. Front Oncol. 14:14414602024. View Article : Google Scholar : PubMed/NCBI | |
Myers SH, Brunton VG and Unciti-Broceta A: AXL inhibitors in cancer: A medicinal chemistry perspective. J Med Chem. 59:3593–3608. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shyam Sunder S, Sharma UC and Pokharel S: Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 8:2622023. View Article : Google Scholar : PubMed/NCBI |