1
|
Conway E, Wu H and Tian L: Overview of
risk factors for esophageal squamous cell carcinoma in China.
Cancers (Basel). 15:56042023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Li J, Xu J, Zheng Y, Gao Y, He S, Li H,
Zou K, Li N, Tian J, Chen W and He J: Esophageal cancer:
Epidemiology, risk factors and screening. Chin J Cancer Res.
33:535–547. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen R, Zheng R, Zhang S, Wang S, Sun K,
Zeng H, Li L, Wei W and He J: Patterns and trends in esophageal
cancer incidence and mortality in China: An analysis based on
cancer registry data. J Natl Cancer Cent. 3:21–27. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang CS and Chen XL: Research on
esophageal cancer: With personal perspectives from studies in China
and Kenya. Int J Cancer. 149:264–276. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai
K and Li J: Platinum based theranostics nanoplatforms for antitumor
applications. J Mater Chem B. 11:8387–8403. 2023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang C, Xu C, Gao X and Yao Q:
Platinum-based drugs for cancer therapy and anti-tumor strategies.
Theranostics. 12:2115–2132. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang J, Liu X, Cao S, Dong X, Rao S and
Cai K: Understanding Esophageal Cancer: The challenges and
opportunities for the next decade. Front Oncol. 10:17272020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ashrafizadeh M: Cell death mechanisms in
human cancers: Molecular pathways, therapy resistance and
therapeutic perspective. J Cancer Biol Ther. 1:17–40. 2024.
|
10
|
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang
P, Tong S, Zhang H and Yan J: The genus Tripterygium: A
phytochemistry and pharmacological review. Fitoterapia.
137:1041902019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Feng K, Li X, Bai Y, Zhang D and Tian L:
Mechanisms of cancer cell death induction by triptolide: A
comprehensive overview. Heliyon. 10:e243352024. View Article : Google Scholar : PubMed/NCBI
|
12
|
Song J, He GN and Dai L: A comprehensive
review on celastrol, triptolide and triptonide: Insights on their
pharmacological activity, toxicity, combination therapy, new dosage
form and novel drug delivery routes. Biomed Pharmacother.
162:1147052023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fanelli M, Tavanti E, Patrizio MP, Vella
S, Fernandez-Ramos A, Magagnoli F, Luppi S, Hattinger CM and Serra
M: Cisplatin resistance in osteosarcoma: In vitro validation of
candidate DNA repair-related therapeutic targets and drugs for
tailored treatments. Front Oncol. 10:3312020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu W, Li J, Wu S, Li S, Le L, Su X, Qiu
P, Hu H and Yan G: Triptolide cooperates with Cisplatin to induce
apoptosis in gemcitabine-resistant pancreatic cancer. Pancreas.
41:1029–1038. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu H, Zhu S, Tong Y, Huang G, Tan B and
Yang L: Antitumor activity of triptolide in SKOV3 cells and
SKOV3/DDP in vivo and in vitro. Anticancer Drugs. 31:483–491. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang G, Hu H, Zhang Y, Zhu Y, Liu J, Tan
B and Chen T: Triptolide sensitizes cisplatin-resistant human
epithelial ovarian cancer by inhibiting the phosphorylation of AKT.
J Cancer. 10:3012–3020. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hamdi AM, Jiang ZZ, Guerram M, Yousef BA,
Hassan HM, Ling JW and Zhang LY: Biochemical and computational
evaluation of Triptolide-induced cytotoxicity against NSCLC. Biomed
Pharmacother. 103:1557–1566. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li L, Wang C, Qiu Z, Deng D, Chen X, Wang
Q, Meng Y, Zhang B, Zheng G and Hu J: Triptolide inhibits
intrahepatic cholangiocarcinoma growth by suppressing glycolysis
via the AKT/mTOR pathway. Phytomedicine. 109:1545752023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Su Y, Yang S, Xiao Z, Wang W, Okunieff P
and Zhang L: Triptolide alters mitochondrial functions. Adv Exp Med
Biol. 599:139–146. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cai J, Yi M, Tan Y, Li X, Li G, Zeng Z,
Xiong W and Xiang B: Natural product triptolide induces
GSDME-mediated pyroptosis in head and neck cancer through
suppressing mitochondrial hexokinase-IotaIota. J Exp Clin Cancer
Res. 40:1902021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou H, Liu Y, Wang C, Liu L, Wang H,
Zhang Y, Long C and Sun X: Triptolide inhibits Epstein-Barr nuclear
antigen 1 expression by increasing sensitivity of mitochondria
apoptosis of nasopharyngeal carcinoma cells. J Exp Clin Cancer Res.
37:1922018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liang H, Che W, Peng F, Chen H, Xie X and
Wu B: Triptolide inhibits esophageal squamous cell carcinoma
progression by regulating the circNOX4/miR-153-3p/SATB1 signaling
pathway. Thorac Cancer. 15:538–549. 2024. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yanchun M, Yi W, Lu W, Yu Q, Jian Y,
Pengzhou K, Ting Y, Hongyi L, Fang W, Xiaolong C and Yongping C:
Triptolide prevents proliferation and migration of esophageal
squamous cell cancer via MAPK/ERK signaling pathway. Eur J
Pharmacol. 851:43–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu L, Zhu X and Wu Y: Effects of glucose
metabolism, lipid metabolism, and glutamine metabolism on tumor
microenvironment and clinical implications. Biomolecules.
12:5802022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rigoulet M, Bouchez CL, Paumard P, Ransac
S, Cuvellier S, Duvezin-Caubet S, Mazat JP and Devin A: Cell energy
metabolism: An update. Biochim Biophys Acta Bioenerg.
1861:1482762020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liberti MV and Locasale JW: The warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Reinfeld BI, Rathmell WK, Kim TK and
Rathmell JC: The therapeutic implications of immunosuppressive
tumor aerobic glycolysis. Cell Mol Immunol. 19:46–58. 2022.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y and Patti GJ: The Warburg effect: A
signature of mitochondrial overload. Trends Cell Biol.
33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chang CH, Qiu J, O'Sullivan D, Buck MD,
Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ,
et al: Metabolic competition in the tumor microenvironment is a
driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C,
Wang Y, Liu P, Ong IM, Li B, et al: PKM2 methylation by CARM1
activates aerobic glycolysis to promote tumorigenesis. Nat Cell
Biol. 19:1358–1370. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bai R and Cui J: Mitochondrial immune
regulation and anti-tumor immunotherapy strategies targeting
mitochondria. Cancer Lett. 564:2162232023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Paul S, Ghosh S and Kumar S: Tumor
glycolysis, an essential sweet tooth of tumor cells. Semin Cancer
Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xie Y, Wang M, Xia M, Guo Y, Zu X and
Zhong J: Ubiquitination regulation of aerobic glycolysis in cancer.
Life Sci. 292:1203222022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zong WX, Rabinowitz JD and White E:
Mitochondria and cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun H, Wang H and Wang X, Aoki Y and Wang
X, Yang Y, Cheng X, Wang Z and Wang X: Aurora-A/SOX8/FOXK1
signaling axis promotes chemoresistance via suppression of cell
senescence and induction of glucose metabolism in ovarian cancer
organoids and cells. Theranostics. 10:6928–6945. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yun J, Mullarky E, Lu C, Bosch KN,
Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, et
al: Vitamin C selectively kills KRAS and BRAF mutant colorectal
cancer cells by targeting GAPDH. Science. 350:1391–1396. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yan F, Zhao W, Xu X, Li C, Li X, Liu S,
Shi L and Wu Y: LncRNA DHRS4-AS1 inhibits the stemness of NSCLC
cells by sponging miR-224-3p and upregulating TP53 and TET1. Front
Cell Dev Biol. 8:5852512020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lane AN, Higashi RM and Fan TW: Metabolic
reprogramming in tumors: Contributions of the tumor
microenvironment. Genes Dis. 7:185–198. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
China National Certificatino and
Accreditation Administration: The People's Republic of China
Certification and Accreditation Industry Standards (RB/T 173-2018):
Guideline of Assessment for Humane Endpoints in Animal Experiments.
2018. http://rbtest.cnca.cn/cnca_kfs/file/read/c61b11ea7094db88fc82793142dbb977April
21–2024
|
40
|
Simoneschi D, Rona G, Zhou N, Jeong YT,
Jiang S, Milletti G, Arbini AA, O'Sullivan A, Wang AA, Nithikasem
S, et al: CRL4(AMBRA1) is a master regulator of D-type cyclins.
Nature. 592:789–793. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jomova K, Alomar SY, Alwasel SH,
Nepovimova E, Kuca K and Valko M: Several lines of antioxidant
defense against oxidative stress: Antioxidant enzymes,
nanomaterials with multiple enzyme-mimicking activities, and
low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367.
2024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kalpage HA, Wan J, Morse PT, Zurek MP,
Turner AA, Khobeir A, Yazdi N, Hakim L, Liu J, Vaishnav A, et al:
Cytochrome c phosphorylation: Control of mitochondrial electron
transport chain flux and apoptosis. Int J Biochem Cell Biol.
121:1057042020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Morse PT, Arroum T, Wan J, Pham L,
Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BFP
and Hüttemann M: Phosphorylations and acetylations of cytochrome c
control mitochondrial respiration, mitochondrial membrane
potential, energy, ROS, and Apoptosis. Cells. 13:4932024.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Nie J, Zhao C, Deng LI, Chen J, Yu B, Wu
X, Pang P and Chen X: Efficacy of traditional Chinese medicine in
treating cancer. Biomed Rep. 4:3–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi
M, Borazanci E and Han H: Triptolide and its derivatives as cancer
therapies. Trends Pharmacol Sci. 40:327–341. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xian D and Zhao Y: LncRNA KCNQ1OT1
enhanced the methotrexate resistance of colorectal cancer cells by
regulating miR-760/PPP1R1B via the cAMP signalling pathway. J Cell
Mol Med. 23:3808–3823. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hashemi M, Arani HZ, Orouei S, Fallah S,
Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar
H, Heidari H, et al: EMT mechanism in breast cancer metastasis and
drug resistance: Revisiting molecular interactions and biological
functions. Biomed Pharmacother. 155:1137742022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu M, Qi B, Xiaoxiang W, Xu J and Liu X:
Baicalein increases cisplatin sensitivity of A549 lung
adenocarcinoma cells via PI3K/Akt/NF-ĸB pathway. Biomed
Pharmacother. 90:677–685. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao C, Guo R, Guan F, Ma S, Li M, Wu J,
Liu X, Li H and Yang B: MicroRNA-128-3p enhances the
chemosensitivity of temozolomide in glioblastoma by targeting c-Met
and EMT. Sci Rep. 10:94712020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu G and Song G: Regulation of tumor cell
glycometabolism and tumor therapy. Sheng Wu Yi Xue Gong Cheng Xue
Za Zhi. 36:691–695. 2019.(In Chinese). PubMed/NCBI
|
51
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bhattacharya B, Mohd Omar MF and Soong R:
The Warburg effect and drug resistance. Br J Pharmacol.
173:970–979. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Andreucci E, Peppicelli S, Ruzzolini J,
Bianchini F, Biagioni A, Papucci L, Magnelli L, Mazzanti B, Stecca
B and Calorini L: The acidic tumor microenvironment drives a
stem-like phenotype in melanoma cells. J Mol Med (Berl).
98:1431–1446. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ippolito L, Marini A, Cavallini L, Morandi
A, Pietrovito L, Pintus G, Giannoni E, Schrader T, Puhr M, Chiarugi
P and Taddei ML: Metabolic shift toward oxidative phosphorylation
in docetaxel resistant prostate cancer cells. Oncotarget.
7:61890–61904. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li
J, Liu H, Xing J, Zhang Y and Li N: Triptolide enhances
carboplatin-induced apoptosis by inhibiting nucleotide excision
repair (NER) activity in melanoma. Front Pharmacol. 14:11574332023.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhu J, Wang H, Chen F, Lv H, Xu Z, Fu J,
Hou Y, Xu Y and Pi J: Triptolide enhances chemotherapeutic efficacy
of antitumor drugs in non-small-cell lung cancer cells by
inhibiting Nrf2-ARE activity. Toxicol Appl Pharmacol. 358:1–9.
2018. View Article : Google Scholar : PubMed/NCBI
|