Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)

  • Authors:
    • Jianan Shen
    • Youxiang Ding
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
    Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 75
    |
    Published online on: January 24, 2025
       https://doi.org/10.3892/mmr.2025.13441
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI

3 

Orsolic I, Carrier A and Esteller M: Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 39:74–88. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Chen Z, Zhong X, Xia M and Zhong J: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Zhao BS, Roundtree IA and He C: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 18:31–42. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A database of RNA modification pathways-2013 update. Nucleic Acids Res. 41((Database Issue)): D262–D267. 2013.PubMed/NCBI

7 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

8 

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Yu S, Li X, Liu S, Yang R, Liu X and Wu S: N6-methyladenosine: A novel RNA imprint in human cancer. Front Oncol. 9:14072019. View Article : Google Scholar : PubMed/NCBI

11 

Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Roignant JY and Soller M: m6A in mRNA: An ancient mechanism for fine-tuning gene expression. Trends Genet. 33:380–390. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM and Nielsen FC: A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 19:1262–1270. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Cao J, Mu Q and Huang H: The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int. 2018:42172592018. View Article : Google Scholar : PubMed/NCBI

15 

Cui XH, Hu SY, Zhu CF and Qin XH: Expression and prognostic analyses of the insulin-like growth factor 2 mRNA binding protein family in human pancreatic cancer. BMC Cancer. 20:11602020. View Article : Google Scholar : PubMed/NCBI

16 

Dai N, Rapley J, Angel M, Yanik MF, Blower MD and Avruch J: mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 25:1159–1172. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Wang J, Chen L and Qiang P: The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21:992021. View Article : Google Scholar : PubMed/NCBI

18 

Li X, Li Y and Lu H: [ARTICLE WITHDRAWN] miR-1193 suppresses proliferation and invasion of human breast cancer cells through directly targeting IGF2BP2. Oncol Res. 25:579–585. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Wu XL, Lu RY, Wang LK, Wang YY, Dai YJ, Wang CY, Yang YJ, Guo F, Xue J and Yang DD: Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2. J Cell Biochem. 120:1221–1231. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Nielsen J, Kristensen MA, Willemoës M, Nielsen FC and Christiansen J: Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Res. 32:4368–4376. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Li N, Deng L, Zhang Y, Tang X, Lei B and Zhang Q: IGF2BP2 modulates autophagy and serves as a prognostic marker in glioma. Ibrain. 10:19–33. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Lv L, Zhang X, Liu Y, Zhu X, Pan R and Huang L: Three liquid-liquid phase separation-related genes associated with prognosis in glioma. Pharmgenomics Pers Med. 17:171–181. 2024.PubMed/NCBI

23 

Hu Y, Chen J, Liu M, Feng Q and Peng H: IGF2BP2 serves as a core m6A regulator in head and neck squamous cell carcinoma. Biosci Rep. 42:BSR202213112022. View Article : Google Scholar : PubMed/NCBI

24 

Deng X, Jiang Q, Liu Z and Chen W: Clinical significance of an m6A reader gene, IGF2BP2, in head and neck squamous cell carcinoma. Front Mol Biosci. 7:682020. View Article : Google Scholar : PubMed/NCBI

25 

Tang X, Tang Q, Li S, Li M and Yang T: IGF2BP2 acts as a m6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization. Cell Death Discov. 9:3712023. View Article : Google Scholar : PubMed/NCBI

26 

Lin SH, Lin CW, Lu JW, Yang WE, Lin YM, Lu HJ and Yang SF: Cytoplasmic IGF2BP2 protein expression in human patients with oral squamous cell carcinoma: Prognostic and clinical implications. Int J Med Sci. 19:1198–1204. 2022. View Article : Google Scholar : PubMed/NCBI

27 

Barghash A, Golob-Schwarzl N, Helms V, Haybaeck J and Kessler SM: Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma. Oncotarget. 7:49743–49750. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu J, Wei W, Yang M and Huang X: Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma. Exp Ther Med. 23:2522022. View Article : Google Scholar : PubMed/NCBI

29 

Deng H, Yao H, Zhou S, He C, Huang Y, Li Y, Chen H and Shu J: Pancancer analysis uncovers an immunological role and prognostic value of the m6A reader IGF2BP2 in pancreatic cancer. Mol Cell Probes. 73:1019482024. View Article : Google Scholar : PubMed/NCBI

30 

Dahlem C, Barghash A, Puchas P, Haybaeck J and Kessler SM: The insulin-like growth factor 2 mRNA binding protein IMP2/IGF2BP2 is overexpressed and correlates with poor survival in pancreatic cancer. Int J Mol Sci. 20:32042019. View Article : Google Scholar : PubMed/NCBI

31 

Zhang JY, Chan EK, Peng XX and Tan EM: A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma. J Exp Med. 189:1101–1110. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Lu M, Nakamura RM, Dent ED, Zhang JY, Nielsen FC, Christiansen J, Chan EK and Tan EM: Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol. 159:945–953. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 19:722020. View Article : Google Scholar : PubMed/NCBI

34 

Gong L, Liu Q, Jia M and Sun X: Systematic analysis of IGF2BP family members in non-small-cell lung cancer. Hum Genomics. 18:632024. View Article : Google Scholar : PubMed/NCBI

35 

Jia M, Shi Y, Xie Y, Li W, Deng J, Fu D, Bai J, Ma Y, Zuberi Z, Li J and Li Z: WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments. Cells. 11:252021. View Article : Google Scholar : PubMed/NCBI

36 

Almawi WY, Zidi S, Sghaier I, El-Ghali RM, Daldoul A and Midlenko A: Novel association of IGF2BP2 gene variants with altered risk of breast cancer and as potential molecular biomarker of triple negative breast cancer. Clin Breast Cancer. 23:272–280. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Yuan J, Li X, Wang F, Liu H, Guan W and Xu G: Insulin-like growth factor 2 mRNA-binding protein 2 is a therapeutic target in ovarian cancer. Exp Biol Med (Maywood). 248:2198–2209. 2023.PubMed/NCBI

38 

Yang L, Liu J, Jin Y, Xing J, Zhang J, Chen X and Yu A: Synchronous profiling of mRNA N6-methyladenosine modifications and mRNA expression in high-grade serous ovarian cancer: A pilot study. Sci Rep. 14:104272024. View Article : Google Scholar : PubMed/NCBI

39 

He X, Li W, Liang X, Zhu X, Zhang L, Huang Y, Yu T, Li S and Chen Z: IGF2BP2 overexpression indicates poor survival in patients with acute myelocytic leukemia. Cell Physiol Biochem. 51:1945–1956. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Feng P, Chen D, Wang X, Li Y, Li Z, Li B, Zhang Y, Li W, Zhang J, Ye J, et al: Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 36:2180–2188. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Zhou W, Gao Q, He C, Wang L, Wang Y, Feng L, Li W, Liu W, Ma R and Liu L: Association between polymorphism in diabetes susceptibility gene insulin-like growth factor 2mRNA-binding protein 2 and risk of diffuse large B-cell lymphoma. Clin Med Insights Oncol. 17:117955492312011282023. View Article : Google Scholar : PubMed/NCBI

42 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Zhao Y, Zhou Y, Qian Y, Wei W, Lin X, Mao S, Sun J and Jin J: m6A-dependent upregulation of DDX21 by super-enhancer-driven IGF2BP2 and IGF2BP3 facilitates progression of acute myeloid leukaemia. Clin Transl Med. 14:e16282024. View Article : Google Scholar : PubMed/NCBI

44 

Song T, Hu Z, Zeng C, Luo H and Liu J: FLOT1, stabilized by WTAP/IGF2BP2 mediated N6-methyladenosine modification, predicts poor prognosis and promotes growth and invasion in gliomas. Heliyon. 9:e162802023. View Article : Google Scholar : PubMed/NCBI

45 

Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C and Hu G: RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 41:62022. View Article : Google Scholar : PubMed/NCBI

46 

Liang J, Cai H, Hou C, Song F, Jiang Y, Wang Z, Qiu D, Zhu Y, Wang F, Yu D and Hou J: METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner. Clin Sci (Lond). 137:1373–1389. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Leng F, Miu YY, Zhang Y, Luo H, Lu XL, Cheng H and Zheng ZG: A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc. Oncol Lett. 22:6972021. View Article : Google Scholar : PubMed/NCBI

48 

Xu L, Li Q, Wang Y, Wang L, Guo Y, Yang R, Zhao N, Ge N, Wang Y and Guo C: m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability. Am J Cancer Res. 11:5282–5298. 2021.PubMed/NCBI

49 

Lin CW, Yang WE, Su CW, Lu HJ, Su SC and Yang SF: IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer. Int J Biol Sci. 20:818–830. 2024. View Article : Google Scholar : PubMed/NCBI

50 

Dong L, Geng Z, Liu Z, Tao M, Pan M and Lu X: IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR. Pathol Res Pract. 225:1535502021. View Article : Google Scholar : PubMed/NCBI

51 

Wang W, Ding Y, Zhao Y and Li X: m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther. 31:285–299. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Zheng H, Cao Z, Lv Y and Cai X: WTAP-mediated N6-methyladenine modification of circEEF2 promotes lung adenocarcinoma tumorigenesis by stabilizing CANT1 in an IGF2BP2-dependent manner. Mol Biotechnol. Apr 15–2024.(Epub ahead of print). View Article : Google Scholar

53 

Han L, Lei G, Chen Z, Zhang Y, Huang C and Chen W: IGF2BP2 regulates MALAT1 by serving as an N6-methyladenosine reader to promote NSCLC proliferation. Front Mol Biosci. 8:7800892022. View Article : Google Scholar : PubMed/NCBI

54 

Huang GW, Chen QQ, Ma CC, Xie LH and Gu J: linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol. 136:1060152021. View Article : Google Scholar : PubMed/NCBI

55 

Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI

56 

Zhao R, Li T, Zhao X, Yang Z, Ma L and Wang X: The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA. Biochem Cell Biol. 102:169–178. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Li Y, Xiao Z, Wang Y, Zhang D and Chen Z: The m6A reader IGF2BP2 promotes esophageal cell carcinoma progression by enhancing EIF4A1 translation. Cancer Cell Int. 24:1622024. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Z, Xing Y, Gao W, Yang L, Shi J, Song W and Li T: N6-methyladenosine (m6A) reader IGF2BP2 promotes gastric cancer progression via targeting SIRT1. Bioengineered. 13:11541–11550. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Shen H, Zhu H, Chen Y, Shen Z, Qiu W, Qian C and Zhang J: ZEB1-induced LINC01559 expedites cell proliferation, migration and EMT process in gastric cancer through recruiting IGF2BP2 to stabilize ZEB1 expression. Cell Death Dis. 12:3492021. View Article : Google Scholar : PubMed/NCBI

60 

Ouyang J, Li J, Li D, Jiang J, Hao T, Xia Y, Lu X, Zhang C and He Y: IGF2BP2 promotes epithelial to mesenchymal transition and metastasis through stabilizing HMGA1 mRNA in gastric cancer. Cancers(Basel). 14:53812022.PubMed/NCBI

61 

Liu D, Xia AD, Wu LP, Li S, Zhang K and Chen D: IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal. 94:1103132022. View Article : Google Scholar : PubMed/NCBI

62 

Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. View Article : Google Scholar : PubMed/NCBI

63 

Yi J, Peng F, Zhao J and Gong X: METTL3/IGF2BP2 axis affects the progression of colorectal cancer by regulating m6A modification of STAG3. Sci Rep. 13:172922023. View Article : Google Scholar : PubMed/NCBI

64 

Cui J, Tian J, Wang W, He T, Li X, Gu C, Wang L, Wu J and Shang A: IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism. Cancer Sci. 112:4087–4099. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Bian Y, Wang Y, Xu S, Gao Z, Li C, Fan Z, Ding J and Wang K: m6A Modification of Long Non-Coding RNA HNF1A-AS1 Facilitates Cell Cycle Progression in Colorectal Cancer via IGF2BP2-Mediated CCND1 mRNA Stabilization. Cells. 11:30082022. View Article : Google Scholar : PubMed/NCBI

66 

Hou P, Meng S, Li M, Lin T, Chu S, Li Z, Zheng J, Gu Y and Bai J: Correction to: LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 40:3652021. View Article : Google Scholar : PubMed/NCBI

67 

Liu TY, Hu CC, Han CY, Mao SY, Zhang WX, Xu YM, Sun YJ, Jiang DB, Zhang XY, Zhang JX, et al: IGF2BP2 promotes colorectal cancer progression by upregulating the expression of TFRC and enhancing iron metabolism. Biol Direct. 18:192023. View Article : Google Scholar : PubMed/NCBI

68 

Ye S, Song W, Xu X, Zhao X and Yang L: IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett. 590:1641–1650. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Liu K, Wei C, Yu H, Zhang Q and Du Z: HMGA2 overexpression activates IGF2BP2 to stabilize APLP2 via m6A modification and promote pancreatic cancer progression. Heliyon. 10:e272682024. View Article : Google Scholar : PubMed/NCBI

70 

Cao P, Wu Y, Sun D, Zhang W, Qiu J, Tang Z, Xue X and Qin L: IGF2BP2 promotes pancreatic carcinoma progression by enhancing the stability of B3GNT6 mRNA via m6A methylation. Cancer Med. 12:4405–4420. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, et al: Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis. 1870:1671832024. View Article : Google Scholar : PubMed/NCBI

72 

Peng WX, Liu F, Jiang JH, Yuan H, Zhang Z, Yang L and Mo YY: N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis. 10:554–567. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Lu J, Yu L, Xie N, Wu Y and Li B: METTL14 facilitates the metastasis of pancreatic carcinoma by stabilizing LINC00941 in an m6A-IGF2BP2-dependent manner. J Cancer. 14:1117–1131. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Weng H, Feng W, Li F, Huang D, Lin L and Wang Z: Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors. 41:152–164. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Zhao C, Sun J, Dang Z, Su Q and Yang J: Circ_0000775 promotes the migration, invasion and EMT of hepatic carcinoma cells by recruiting IGF2BP2 to stabilize CDC27. Pathol Res Pract. 235:1539082022. View Article : Google Scholar : PubMed/NCBI

76 

Zhang X, Li Z, Nie H, Huang Y, Du J, Xi Y, Guo C, Mu M, Li X, Zheng X, et al: The IGF2BP2-lncRNA TRPC7-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. Cell Signal. 117:1110782024. View Article : Google Scholar : PubMed/NCBI

77 

Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J and Kiemer AK: IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis. 6:e18942015. View Article : Google Scholar : PubMed/NCBI

78 

Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, et al: IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism. Front Oncol. 10:5788162020. View Article : Google Scholar : PubMed/NCBI

79 

Guan XQ, Yuan XN, Feng KX, Shao YC, Liu Q, Yang ZL, Chen YY, Deng J, Hu MS, Li J, et al: IGF2BP2-modified UBE2D1 interacts with Smad2/3 to promote the progression of breast cancer. Am J Cancer Res. 13:2948–2968. 2023.PubMed/NCBI

80 

Xia T, Dai XY, Sang MY, Zhang X, Xu F, Wu J, Shi L, Wei JF and Ding Q: IGF2BP2 drives cell cycle progression in triple-negative breast cancer by recruiting EIF4A1 to promote the m6A-modified CDK6 translation initiation process. Adv Sci (Weinh). 11:e23051422024. View Article : Google Scholar : PubMed/NCBI

81 

Li Y, Francia G and Zhang JY: p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget. 6:32656–32668. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Shi Y, Xiong X, Sun Y, Geng Z, Chen X, Cui X, Lv J, Ge L, Jia X and Xu J: IGF2BP2 promotes ovarian cancer growth and metastasis by upregulating CKAP2L protein expression in an m6 A-dependent manner. FASEB J. 37:e231832023. View Article : Google Scholar : PubMed/NCBI

83 

Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H and Wang H: IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther. 31:1221–1236. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m6A/FOXM1 manner. Cell Death Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI

85 

Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI

86 

He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI

87 

Wang X, Hu M, Yu L, Wang X, Jiang X, Zhang G and Ding K: The ‘m6A writer’ METTL3 and the ‘m6A reader’ IGF2BP2 regulate cutaneous T-cell lymphomas progression via CDKN2A. Hematol Oncol. 40:567–576. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Li J, Cao H, Yang J and Wang B: CircCDK1 blocking IGF2BP2-mediated m6A modification of CPPED1 promotes laryngeal squamous cell carcinoma metastasis via the PI3K/AKT signal pathway. Gene. 884:1476862023. View Article : Google Scholar : PubMed/NCBI

89 

Li J, Cao H, Yang J and Wang B: IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep. 14:30142024. View Article : Google Scholar : PubMed/NCBI

90 

Yu D, Xiao Z, Zou Z, Lin L, Li J, Tan J and Chen W: IGF2BP2 promotes head and neck squamous carcinoma cell proliferation and growth via the miR-98-5p/PI3K/Akt signaling pathway. Front Oncol. 13:12529992023. View Article : Google Scholar : PubMed/NCBI

91 

Xu X, Yu Y, Zong K, Lv P and Gu Y: Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 38:4972019. View Article : Google Scholar : PubMed/NCBI

92 

Mu Q, Wang L, Yu F, Gao H, Lei T, Li P, Liu P, Zheng X, Hu X, Chen Y, et al: Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway. Cancer Biol Ther. 16:623–633. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Latifkar A, Wang F, Mullmann JJ, Panizza E, Fernandez IR, Ling L, Miller AD, Fischbach C, Weiss RS, Lin H, et al: IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci USA. 119:e22004771192022. View Article : Google Scholar : PubMed/NCBI

94 

Kim HY, Ha Thi HT and Hong S: IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett. 415:30–39. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Mao J, Qiu H and Guo L: LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun. 580:74–80. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Sun M, Zhang X, Bi F, Wang D, Zhou X, Li X and Yang Q: FTO inhibits epithelial ovarian cancer progression by destabilising SNAI1 mRNA through IGF2BP2. Cancers (Basel). 14:52182022. View Article : Google Scholar : PubMed/NCBI

97 

Yan Y, Ma J, Chen Q, Zhang T, Fan R and Du J: GAS5 regulated by FTO-mediated m6A modification suppresses cell proliferation via the IGF2BP2/QKI axis in breast cancer. Discov Oncol. 15:1822024. View Article : Google Scholar : PubMed/NCBI

98 

Ren J, Huang B, Li W, Wang Y, Pan X, Ma Q, Liu Y, Wang X, Liang C, Zhang Y, et al: RNA-binding protein IGF2BP2 suppresses metastasis of clear cell renal cell carcinoma by enhancing CKB mRNA stability and expression. Transl Oncol. 42:1019042024. View Article : Google Scholar : PubMed/NCBI

99 

Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al: Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 12:e9942022. View Article : Google Scholar : PubMed/NCBI

100 

Wang G, Zhuang T, Zhen F, Zhang C, Wang Q, Miao X, Qi N and Yao R: IGF2BP2 inhibits invasion and migration of clear cell renal cell carcinoma via targeting Netrin-4 in an m6A-dependent manner. Mol Carcinog. 63:1572–1587. 2024. View Article : Google Scholar : PubMed/NCBI

101 

Wu EY, Huang LP and Bao JH: miR-96-5p regulates cervical cancer cell resistance to cisplatin by inhibiting lncRNA TRIM52-AS1 and promoting IGF2BP2. Kaohsiung J Med Sci. 38:1178–1189. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Fu L, Zhang D, Yi N, Cao Y, Wei Y, Wang W and Li L: Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression. Hum Cell. 35:1560–1576. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Xia C, Li Q, Cheng X, Wu T, Gao P and Gu Y: Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered. 13:2450–2469. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Han J, Yu X, Wang S, Wang Y, Liu Q, Xu H and Wang X: IGF2BP2 induces U251 glioblastoma cell chemoresistance by inhibiting FOXO1-mediated PID1 expression through stabilizing lncRNA DANCR. Front Cell Dev Biol. 9:6592282022. View Article : Google Scholar : PubMed/NCBI

105 

Zhang M, Wang Q, Ke Z, Liu Y, Guo H, Fang S and Lu K: LINC01001 promotes progression of crizotinib-resistant NSCLC by modulating IGF2BP2/MYC axis. Front Pharmacol. 12:7592672021. View Article : Google Scholar : PubMed/NCBI

106 

Wang J, Xu J and Zheng J: A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner. Sci Rep. 13:207302023. View Article : Google Scholar : PubMed/NCBI

107 

Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett. 527:10–23. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Wang X, Li X, Zhou Y, Huang X and Jiang X: Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol Toxicol. 38:963–977. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Shi SJ, Han DH, Zhang JL, Li Y, Yang AG and Zhang R: VIM-AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2-mediated HMGCS1 mRNA stabilization. Int J Oncol. 62:342023. View Article : Google Scholar : PubMed/NCBI

110 

Dong FL, Xu ZZ, Wang YQ, Li T, Wang X and Li J: Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology. 22:2982024. View Article : Google Scholar : PubMed/NCBI

111 

Kendzia S, Franke S, Kröhler T, Golob-Schwarzl N, Schweiger C, Toeglhofer AM, Skofler C, Uranitsch S, El-Heliebi A, Fuchs J, et al: A combined computational and functional approach identifies IGF2BP2 as a driver of chemoresistance in a wide array of pre-clinical models of colorectal cancer. Mol Cancer. 22:892023. View Article : Google Scholar : PubMed/NCBI

112 

Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, et al: FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res. 43:342024. View Article : Google Scholar : PubMed/NCBI

113 

Hu P, Lin L, Huang T, Li Z, Xiao M, Guo H, Chen G, Liu D, Ke M, Shan H, et al: Circular RNA circEYA3 promotes the radiation resistance of hepatocellular carcinoma via the IGF2BP2/DTX3L axis. Cancer Cell Int. 23:3082023. View Article : Google Scholar : PubMed/NCBI

114 

Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Wu S, Chi C, Weng S, Zhou W and Liu Z: IGF2BP2 promotes lncRNA DANCR stability mediated glycolysis and affects the progression of FLT3-ITD + acute myeloid leukemia. Apoptosis. 28:1035–1047. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Zhou J, Zhang H, Zhong K, Tao L, Lin Y, Xie G, Tan Y, Wu Y, Lu Y, Chen Z, et al: N6-methyladenosine facilitates mitochondrial fusion of colorectal cancer cells via induction of GSH synthesis and stabilization of OPA1 mRNA. Natl Sci Rev. 11:nwae0392024. View Article : Google Scholar : PubMed/NCBI

117 

Wang J, Zhu M, Zhu J, Li J, Zhu X, Wang K, Shen K, Yang K, Ni X, Liu X, et al: HES1 promotes aerobic glycolysis and cancer progression of colorectal cancer via IGF2BP2-mediated GLUT1 m6A modification. Cell Death Discov. 9:4112023. View Article : Google Scholar : PubMed/NCBI

118 

Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI

119 

Yang K, Zhong Z, Zou J, Liao JY, Chen S, Zhou S, Zhao Y, Li J, Yin D, Huang K and Li Y: Glycolysis and tumor progression promoted by the m6A writer VIRMA via m6A-dependent upregulation of STRA6 in pancreatic ductal adenocarcinoma. Cancer Lett. 590:2168402024. View Article : Google Scholar : PubMed/NCBI

120 

Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y and Xu Y: EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 82:831–845. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. View Article : Google Scholar : PubMed/NCBI

123 

Qiu X, Xu Q, Liao B, Hu S, Zhou Y and Zhang H: Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/HK2 axis in colorectal cancer. Histol Histopathol. 38:1145–1156. 2023.PubMed/NCBI

124 

Wang Z, Wang MM, Geng Y, Ye CY and Zang YS: Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med. 20:4022022. View Article : Google Scholar : PubMed/NCBI

125 

Xu K, Dai X, Wu J and Wen K: N6-methyladenosine (m6A) reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression. J Cancer Res Clin Oncol. 148:3375–3384. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J and Sun X: m6A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov. 7:2922021. View Article : Google Scholar : PubMed/NCBI

127 

Ye M, Chen J, Lu F, Zhao M, Wu S, Hu C, Yu P, Kan J, Bai J, Tian Y and Tang Q: Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer. Cell Biosci. 13:1482023. View Article : Google Scholar : PubMed/NCBI

128 

Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, Hu C, Lu F, Yu P, Xu L, et al: ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med. 21:7412023. View Article : Google Scholar : PubMed/NCBI

129 

Chandra J, Hansen M, Labarriere N, Marigo I, Souza-Fonseca-Guimaraes F, Vujanovic L, Koguchi Y and Jacquelot N: Editorial: Cancer immunotherapies: From efficacy to resistance mechanisms. Front Immunol. 13:9397892022. View Article : Google Scholar : PubMed/NCBI

130 

Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI

131 

Liu T, Han C, Hu C, Mao S, Sun Y, Yang S and Yang K: Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 39:303–310. 2023.(In Chinese). PubMed/NCBI

132 

Liu QZ, Zhang N, Chen JY, Zhou MJ, Zhou DH, Chen Z, Huang ZX, Xie YX, Qiao GL and Tu XH: WTAP-induced N6-methyladenosine of PD-L1 blocked T-cell-mediated antitumor activity under hypoxia in colorectal cancer. Cancer Sci. 115:1749–1762. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Liu Y, Shi M, He X, Cao Y, Liu P, Li F, Zou S, Wen C, Zhan Q, Xu Z, et al: LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 15:522022. View Article : Google Scholar : PubMed/NCBI

134 

Li S, Wu Q, Liu J and Zhong Y: Identification of two m6A Readers YTHDF1 and IGF2BP2 as immune biomarkers in head and neck squamous cell carcinoma. Front Genet. 13:9036342022. View Article : Google Scholar : PubMed/NCBI

135 

Zhou L, Li H, Cai H, Liu W, Pan E, Yu D and He S: Upregulation of IGF2BP2 promotes oral squamous cell carcinoma progression that is related to cell proliferation, metastasis and tumor-infiltrating immune cells. Front Oncol. 12:8095892022. View Article : Google Scholar : PubMed/NCBI

136 

Zhu L, Liu Y, Tang H and Wang P: FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022. View Article : Google Scholar : PubMed/NCBI

137 

Huang C, Xu R, Zhu X and Jiang H: m6A-modified circABCC4 promotes stemness and metastasis of prostate cancer by recruiting IGF2BP2 to increase stability of CCAR1. Cancer Gene Ther. 30:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI

138 

Ji R, Wu C, Yao J, Xu J, Lin J, Gu H, Fu M and Zhang X, Li Y and Zhang X: IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression. Cell Death Dis. 14:6932023. View Article : Google Scholar : PubMed/NCBI

139 

Janiszewska M, Suvà ML, Riggi N, Houtkooper RH, Auwerx J, Clément-Schatlo V, Radovanovic I, Rheinbay E, Provero P and Stamenkovic I: Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26:1926–1944. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Degrauwe N, Schlumpf TB, Janiszewska M, Martin P, Cauderay A, Provero P, Riggi N, Suvà ML, Paro R and Stamenkovic I: The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15:1634–1647. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Cui Y, Wen Y, Lv C, Zhao D, Yang Y, Qiu H and Wang C: Decreased RNA-binding protein IGF2BP2 downregulates NT5DC2, which suppresses cell proliferation, and induces cell cycle arrest and apoptosis in diffuse large B-cell lymphoma cells by regulating the p53 signaling pathway. Mol Med Rep. 26:2862022. View Article : Google Scholar : PubMed/NCBI

142 

Ye J, Wu Y, Chen Y, Ren Y, Jiang X, Dong Z, Zhang J, Jin M, Chen X, Wang Z and Xiao M: ALKBH5 promotes hypopharyngeal squamous cell carcinoma apoptosis by targeting TLR2 in a YTHDF1/IGF2BP2-mediated manner. Cell Death Discov. 9:3082023. View Article : Google Scholar : PubMed/NCBI

143 

Yang X and Liu J: Targeting PD-L1 (Programmed death-ligand 1) and inhibiting the expression of IGF2BP2 (Insulin-like growth factor 2 mRNA-binding protein 2) affect the proliferation and apoptosis of hypopharyngeal carcinoma cells. Bioengineered. 12:7755–7764. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Kessler SM, Pokorny J, Zimmer V, Laggai S, Lammert F, Bohle RM and Kiemer AK: IGF2 mRNA binding protein p62/IMP2-2 in hepatocellular carcinoma: Antiapoptotic action is independent of IGF2/PI3K signaling. Am J Physiol Gastrointest Liver Physiol. 304:G328–G336. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Zheng X, Wu J, Song L and Huang B: ACSM3 suppresses proliferation and induces apoptosis and cell cycle arrest in acute myeloid leukemia cells via the regulation of IGF2BP2. Exp Ther Med. 25:1772023. View Article : Google Scholar : PubMed/NCBI

146 

Dixon SJ: Ferroptosis: Bug or feature? Immunol Rev. 277:150–157. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

148 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI

150 

Ye J, Chen X, Jiang X, Dong Z, Hu S and Xiao M: RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m6 A-IGF2BP2-dependent manner. J Clin Lab Anal. 36:e245142022. View Article : Google Scholar : PubMed/NCBI

151 

Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J and Wang K: m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/FOXM1 positive feedback loop. Cancer Lett. 596:2170042024. View Article : Google Scholar : PubMed/NCBI

152 

Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, Fan F and Ellis LM: The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol. 12:105–112. 2002. View Article : Google Scholar : PubMed/NCBI

153 

Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, et al: TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 22:3475–3488. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Fang H, Sun Q, Zhou J, Zhang H, Song Q, Zhang H, Yu G, Guo Y, Huang C, Mou Y, et al: m6A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma. Mol Cancer. 22:992023. View Article : Google Scholar : PubMed/NCBI

156 

He Z, Zhong Y, Regmi P, Lv T, Ma W, Wang J, Liu F, Yang S, Zhong Y, Zhou R, et al: Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol Cancer. 23:652024. View Article : Google Scholar : PubMed/NCBI

157 

Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI

158 

Xu S, Bai J, Zhuan Z, Li B, Zhang Z, Wu X, Luo X and Yang L: EBV-LMP1 is involved in vasculogenic mimicry formation via VEGFA/VEGFR1 signaling in nasopharyngeal carcinoma. Oncol Rep. 40:377–384. 2018.PubMed/NCBI

159 

Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, An J, Dong X, Liu F and Wang Y: ZEB2 promotes vasculogenic mimicry by TGF-β1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol. 98:352–359. 2015. View Article : Google Scholar : PubMed/NCBI

160 

Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, Raugei G, Bologna M, Calorini L and Chiarugi P: EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res. 9:149–160. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D, et al: Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS One. 8:e571882013. View Article : Google Scholar : PubMed/NCBI

162 

Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI

163 

Li H, Wang D, Yi B, Cai H, Wang Y, Lou X, Xi Z and Li Z: SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Biol Sci. 17:2912–2930. 2021. View Article : Google Scholar : PubMed/NCBI

164 

Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA. Cancers (Basel). 14:12682022. View Article : Google Scholar : PubMed/NCBI

165 

Sa R, Guo M, Liu D and Guan F: AhR antagonist promotes differentiation of papillary thyroid cancer via regulating circSH2B3/miR-4640-5P/IGF2BP2 axis. Front Pharmacol. 12:7953862021. View Article : Google Scholar : PubMed/NCBI

166 

Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, et al: First small-molecule inhibitors targeting the RNA-binding protein IGF2BP2/IMP2 for cancer therapy. ACS Chem Biol. 17:361–375. 2022. View Article : Google Scholar : PubMed/NCBI

167 

Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, Zhou K, Li W, Hu J, Fu C, et al: The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 40:1566–1582.e10. 2022. View Article : Google Scholar : PubMed/NCBI

168 

Chanda S, Lepikhov K, Dahlem C, Schymik HS, Hoppstädter J, Geber AK, Wagner K, Kessler SM, Empting M and Kiemer AK: Gene editing and small molecule inhibitors of the RNA binding protein IGF2BP2/IMP2 show its potential as an anti-cancer drug target. Front Biosci (Landmark Ed). 29:412024. View Article : Google Scholar : PubMed/NCBI

169 

Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI

171 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Ye M, Dong S, Hou H, Zhang T and Shen M: Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling. Mol Ther Nucleic Acids. 23:1–12. 2021. View Article : Google Scholar : PubMed/NCBI

173 

Liu FY, Zhou SJ, Deng YL, Zhang ZY, Zhang EL, Wu ZB, Huang ZY and Chen XP: MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death Dis. 6:e16702015. View Article : Google Scholar : PubMed/NCBI

174 

Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu Z, Liao Q, Wang H, Wang W and Su M: Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis. Biomark Res. 10:602022. View Article : Google Scholar : PubMed/NCBI

175 

Wu X, Fan Y, Liu Y, Shen B, Lu H and Ma H: Long non-coding RNA CCAT2 promotes the development of esophageal squamous cell carcinoma by inhibiting miR-200b to upregulate the IGF2BP2/TK1 axis. Front Oncol. 11:6806422021. View Article : Google Scholar : PubMed/NCBI

176 

Fen H, Hongmin Z, Wei W, Chao Y, Yang Y, Bei L and Zhihua S: RHPN1-AS1 drives the progression of hepatocellular carcinoma via regulating miR-596/IGF2BP2 axis. Curr Pharm Des. 25:4630–4640. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Zhu X, Yu H, Li H, Zhang W, Sun L, Dou T, Wang Z, Zhao H and Yang H: lncRNA SNHG1 promotes the progression of hepatocellular carcinoma by regulating the miR-7-5p/IGF2BP2 axis. Heliyon. 10:e276312024. View Article : Google Scholar : PubMed/NCBI

178 

Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H, Yang C, Sun J, Chen K, Zhou J, et al: CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA. Mol Cancer. 21:1402022. View Article : Google Scholar : PubMed/NCBI

179 

Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J and Chen C: Tumor suppressor microRNA-138 suppresses low-grade glioma development and metastasis via regulating IGF2BP2. Onco Targets Ther. 13:2247–2260. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Ding L, Wang L and Guo F: microRNA-188 acts as a tumour suppressor in glioma by directly targeting the IGF2BP2 gene. Mol Med Rep. 16:7124–7130. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Huang RS, Zheng YL, Li C, Ding C, Xu C and Zhao J: MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci. 199:104–111. 2018. View Article : Google Scholar : PubMed/NCBI

182 

Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C and Wang S: Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol. 13:572020. View Article : Google Scholar : PubMed/NCBI

184 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al: Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shen J and Ding Y: Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 31: 75, 2025.
APA
Shen, J., & Ding, Y. (2025). Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Molecular Medicine Reports, 31, 75. https://doi.org/10.3892/mmr.2025.13441
MLA
Shen, J., Ding, Y."Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)". Molecular Medicine Reports 31.3 (2025): 75.
Chicago
Shen, J., Ding, Y."Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)". Molecular Medicine Reports 31, no. 3 (2025): 75. https://doi.org/10.3892/mmr.2025.13441
Copy and paste a formatted citation
x
Spandidos Publications style
Shen J and Ding Y: Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 31: 75, 2025.
APA
Shen, J., & Ding, Y. (2025). Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Molecular Medicine Reports, 31, 75. https://doi.org/10.3892/mmr.2025.13441
MLA
Shen, J., Ding, Y."Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)". Molecular Medicine Reports 31.3 (2025): 75.
Chicago
Shen, J., Ding, Y."Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)". Molecular Medicine Reports 31, no. 3 (2025): 75. https://doi.org/10.3892/mmr.2025.13441
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team