
Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review)
- Authors:
- Jianan Shen
- Youxiang Ding
-
Affiliations: Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China - Published online on: January 24, 2025 https://doi.org/10.3892/mmr.2025.13441
- Article Number: 75
-
Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI | |
Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI | |
Orsolic I, Carrier A and Esteller M: Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 39:74–88. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhong X, Xia M and Zhong J: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao BS, Roundtree IA and He C: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 18:31–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A database of RNA modification pathways-2013 update. Nucleic Acids Res. 41((Database Issue)): D262–D267. 2013.PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li X, Liu S, Yang R, Liu X and Wu S: N6-methyladenosine: A novel RNA imprint in human cancer. Front Oncol. 9:14072019. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roignant JY and Soller M: m6A in mRNA: An ancient mechanism for fine-tuning gene expression. Trends Genet. 33:380–390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM and Nielsen FC: A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 19:1262–1270. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Mu Q and Huang H: The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int. 2018:42172592018. View Article : Google Scholar : PubMed/NCBI | |
Cui XH, Hu SY, Zhu CF and Qin XH: Expression and prognostic analyses of the insulin-like growth factor 2 mRNA binding protein family in human pancreatic cancer. BMC Cancer. 20:11602020. View Article : Google Scholar : PubMed/NCBI | |
Dai N, Rapley J, Angel M, Yanik MF, Blower MD and Avruch J: mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 25:1159–1172. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen L and Qiang P: The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21:992021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li Y and Lu H: [ARTICLE WITHDRAWN] miR-1193 suppresses proliferation and invasion of human breast cancer cells through directly targeting IGF2BP2. Oncol Res. 25:579–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu XL, Lu RY, Wang LK, Wang YY, Dai YJ, Wang CY, Yang YJ, Guo F, Xue J and Yang DD: Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2. J Cell Biochem. 120:1221–1231. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nielsen J, Kristensen MA, Willemoës M, Nielsen FC and Christiansen J: Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Res. 32:4368–4376. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li N, Deng L, Zhang Y, Tang X, Lei B and Zhang Q: IGF2BP2 modulates autophagy and serves as a prognostic marker in glioma. Ibrain. 10:19–33. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lv L, Zhang X, Liu Y, Zhu X, Pan R and Huang L: Three liquid-liquid phase separation-related genes associated with prognosis in glioma. Pharmgenomics Pers Med. 17:171–181. 2024.PubMed/NCBI | |
Hu Y, Chen J, Liu M, Feng Q and Peng H: IGF2BP2 serves as a core m6A regulator in head and neck squamous cell carcinoma. Biosci Rep. 42:BSR202213112022. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Jiang Q, Liu Z and Chen W: Clinical significance of an m6A reader gene, IGF2BP2, in head and neck squamous cell carcinoma. Front Mol Biosci. 7:682020. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Tang Q, Li S, Li M and Yang T: IGF2BP2 acts as a m6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization. Cell Death Discov. 9:3712023. View Article : Google Scholar : PubMed/NCBI | |
Lin SH, Lin CW, Lu JW, Yang WE, Lin YM, Lu HJ and Yang SF: Cytoplasmic IGF2BP2 protein expression in human patients with oral squamous cell carcinoma: Prognostic and clinical implications. Int J Med Sci. 19:1198–1204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Barghash A, Golob-Schwarzl N, Helms V, Haybaeck J and Kessler SM: Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma. Oncotarget. 7:49743–49750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu J, Wei W, Yang M and Huang X: Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma. Exp Ther Med. 23:2522022. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Yao H, Zhou S, He C, Huang Y, Li Y, Chen H and Shu J: Pancancer analysis uncovers an immunological role and prognostic value of the m6A reader IGF2BP2 in pancreatic cancer. Mol Cell Probes. 73:1019482024. View Article : Google Scholar : PubMed/NCBI | |
Dahlem C, Barghash A, Puchas P, Haybaeck J and Kessler SM: The insulin-like growth factor 2 mRNA binding protein IMP2/IGF2BP2 is overexpressed and correlates with poor survival in pancreatic cancer. Int J Mol Sci. 20:32042019. View Article : Google Scholar : PubMed/NCBI | |
Zhang JY, Chan EK, Peng XX and Tan EM: A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma. J Exp Med. 189:1101–1110. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lu M, Nakamura RM, Dent ED, Zhang JY, Nielsen FC, Christiansen J, Chan EK and Tan EM: Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol. 159:945–953. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 19:722020. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Liu Q, Jia M and Sun X: Systematic analysis of IGF2BP family members in non-small-cell lung cancer. Hum Genomics. 18:632024. View Article : Google Scholar : PubMed/NCBI | |
Jia M, Shi Y, Xie Y, Li W, Deng J, Fu D, Bai J, Ma Y, Zuberi Z, Li J and Li Z: WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments. Cells. 11:252021. View Article : Google Scholar : PubMed/NCBI | |
Almawi WY, Zidi S, Sghaier I, El-Ghali RM, Daldoul A and Midlenko A: Novel association of IGF2BP2 gene variants with altered risk of breast cancer and as potential molecular biomarker of triple negative breast cancer. Clin Breast Cancer. 23:272–280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Li X, Wang F, Liu H, Guan W and Xu G: Insulin-like growth factor 2 mRNA-binding protein 2 is a therapeutic target in ovarian cancer. Exp Biol Med (Maywood). 248:2198–2209. 2023.PubMed/NCBI | |
Yang L, Liu J, Jin Y, Xing J, Zhang J, Chen X and Yu A: Synchronous profiling of mRNA N6-methyladenosine modifications and mRNA expression in high-grade serous ovarian cancer: A pilot study. Sci Rep. 14:104272024. View Article : Google Scholar : PubMed/NCBI | |
He X, Li W, Liang X, Zhu X, Zhang L, Huang Y, Yu T, Li S and Chen Z: IGF2BP2 overexpression indicates poor survival in patients with acute myelocytic leukemia. Cell Physiol Biochem. 51:1945–1956. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng P, Chen D, Wang X, Li Y, Li Z, Li B, Zhang Y, Li W, Zhang J, Ye J, et al: Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 36:2180–2188. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Gao Q, He C, Wang L, Wang Y, Feng L, Li W, Liu W, Ma R and Liu L: Association between polymorphism in diabetes susceptibility gene insulin-like growth factor 2mRNA-binding protein 2 and risk of diffuse large B-cell lymphoma. Clin Med Insights Oncol. 17:117955492312011282023. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhou Y, Qian Y, Wei W, Lin X, Mao S, Sun J and Jin J: m6A-dependent upregulation of DDX21 by super-enhancer-driven IGF2BP2 and IGF2BP3 facilitates progression of acute myeloid leukaemia. Clin Transl Med. 14:e16282024. View Article : Google Scholar : PubMed/NCBI | |
Song T, Hu Z, Zeng C, Luo H and Liu J: FLOT1, stabilized by WTAP/IGF2BP2 mediated N6-methyladenosine modification, predicts poor prognosis and promotes growth and invasion in gliomas. Heliyon. 9:e162802023. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C and Hu G: RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 41:62022. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Cai H, Hou C, Song F, Jiang Y, Wang Z, Qiu D, Zhu Y, Wang F, Yu D and Hou J: METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner. Clin Sci (Lond). 137:1373–1389. 2023. View Article : Google Scholar : PubMed/NCBI | |
Leng F, Miu YY, Zhang Y, Luo H, Lu XL, Cheng H and Zheng ZG: A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc. Oncol Lett. 22:6972021. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Li Q, Wang Y, Wang L, Guo Y, Yang R, Zhao N, Ge N, Wang Y and Guo C: m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability. Am J Cancer Res. 11:5282–5298. 2021.PubMed/NCBI | |
Lin CW, Yang WE, Su CW, Lu HJ, Su SC and Yang SF: IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer. Int J Biol Sci. 20:818–830. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Geng Z, Liu Z, Tao M, Pan M and Lu X: IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR. Pathol Res Pract. 225:1535502021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Ding Y, Zhao Y and Li X: m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther. 31:285–299. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Cao Z, Lv Y and Cai X: WTAP-mediated N6-methyladenine modification of circEEF2 promotes lung adenocarcinoma tumorigenesis by stabilizing CANT1 in an IGF2BP2-dependent manner. Mol Biotechnol. Apr 15–2024.(Epub ahead of print). View Article : Google Scholar | |
Han L, Lei G, Chen Z, Zhang Y, Huang C and Chen W: IGF2BP2 regulates MALAT1 by serving as an N6-methyladenosine reader to promote NSCLC proliferation. Front Mol Biosci. 8:7800892022. View Article : Google Scholar : PubMed/NCBI | |
Huang GW, Chen QQ, Ma CC, Xie LH and Gu J: linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol. 136:1060152021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Li T, Zhao X, Yang Z, Ma L and Wang X: The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA. Biochem Cell Biol. 102:169–178. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Xiao Z, Wang Y, Zhang D and Chen Z: The m6A reader IGF2BP2 promotes esophageal cell carcinoma progression by enhancing EIF4A1 translation. Cancer Cell Int. 24:1622024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xing Y, Gao W, Yang L, Shi J, Song W and Li T: N6-methyladenosine (m6A) reader IGF2BP2 promotes gastric cancer progression via targeting SIRT1. Bioengineered. 13:11541–11550. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Zhu H, Chen Y, Shen Z, Qiu W, Qian C and Zhang J: ZEB1-induced LINC01559 expedites cell proliferation, migration and EMT process in gastric cancer through recruiting IGF2BP2 to stabilize ZEB1 expression. Cell Death Dis. 12:3492021. View Article : Google Scholar : PubMed/NCBI | |
Ouyang J, Li J, Li D, Jiang J, Hao T, Xia Y, Lu X, Zhang C and He Y: IGF2BP2 promotes epithelial to mesenchymal transition and metastasis through stabilizing HMGA1 mRNA in gastric cancer. Cancers(Basel). 14:53812022.PubMed/NCBI | |
Liu D, Xia AD, Wu LP, Li S, Zhang K and Chen D: IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal. 94:1103132022. View Article : Google Scholar : PubMed/NCBI | |
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Peng F, Zhao J and Gong X: METTL3/IGF2BP2 axis affects the progression of colorectal cancer by regulating m6A modification of STAG3. Sci Rep. 13:172922023. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Tian J, Wang W, He T, Li X, Gu C, Wang L, Wu J and Shang A: IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism. Cancer Sci. 112:4087–4099. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Wang Y, Xu S, Gao Z, Li C, Fan Z, Ding J and Wang K: m6A Modification of Long Non-Coding RNA HNF1A-AS1 Facilitates Cell Cycle Progression in Colorectal Cancer via IGF2BP2-Mediated CCND1 mRNA Stabilization. Cells. 11:30082022. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Meng S, Li M, Lin T, Chu S, Li Z, Zheng J, Gu Y and Bai J: Correction to: LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 40:3652021. View Article : Google Scholar : PubMed/NCBI | |
Liu TY, Hu CC, Han CY, Mao SY, Zhang WX, Xu YM, Sun YJ, Jiang DB, Zhang XY, Zhang JX, et al: IGF2BP2 promotes colorectal cancer progression by upregulating the expression of TFRC and enhancing iron metabolism. Biol Direct. 18:192023. View Article : Google Scholar : PubMed/NCBI | |
Ye S, Song W, Xu X, Zhao X and Yang L: IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett. 590:1641–1650. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Wei C, Yu H, Zhang Q and Du Z: HMGA2 overexpression activates IGF2BP2 to stabilize APLP2 via m6A modification and promote pancreatic cancer progression. Heliyon. 10:e272682024. View Article : Google Scholar : PubMed/NCBI | |
Cao P, Wu Y, Sun D, Zhang W, Qiu J, Tang Z, Xue X and Qin L: IGF2BP2 promotes pancreatic carcinoma progression by enhancing the stability of B3GNT6 mRNA via m6A methylation. Cancer Med. 12:4405–4420. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, et al: Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis. 1870:1671832024. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Liu F, Jiang JH, Yuan H, Zhang Z, Yang L and Mo YY: N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis. 10:554–567. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Yu L, Xie N, Wu Y and Li B: METTL14 facilitates the metastasis of pancreatic carcinoma by stabilizing LINC00941 in an m6A-IGF2BP2-dependent manner. J Cancer. 14:1117–1131. 2023. View Article : Google Scholar : PubMed/NCBI | |
Weng H, Feng W, Li F, Huang D, Lin L and Wang Z: Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors. 41:152–164. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Sun J, Dang Z, Su Q and Yang J: Circ_0000775 promotes the migration, invasion and EMT of hepatic carcinoma cells by recruiting IGF2BP2 to stabilize CDC27. Pathol Res Pract. 235:1539082022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li Z, Nie H, Huang Y, Du J, Xi Y, Guo C, Mu M, Li X, Zheng X, et al: The IGF2BP2-lncRNA TRPC7-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. Cell Signal. 117:1110782024. View Article : Google Scholar : PubMed/NCBI | |
Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J and Kiemer AK: IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis. 6:e18942015. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, et al: IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism. Front Oncol. 10:5788162020. View Article : Google Scholar : PubMed/NCBI | |
Guan XQ, Yuan XN, Feng KX, Shao YC, Liu Q, Yang ZL, Chen YY, Deng J, Hu MS, Li J, et al: IGF2BP2-modified UBE2D1 interacts with Smad2/3 to promote the progression of breast cancer. Am J Cancer Res. 13:2948–2968. 2023.PubMed/NCBI | |
Xia T, Dai XY, Sang MY, Zhang X, Xu F, Wu J, Shi L, Wei JF and Ding Q: IGF2BP2 drives cell cycle progression in triple-negative breast cancer by recruiting EIF4A1 to promote the m6A-modified CDK6 translation initiation process. Adv Sci (Weinh). 11:e23051422024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Francia G and Zhang JY: p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget. 6:32656–32668. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Xiong X, Sun Y, Geng Z, Chen X, Cui X, Lv J, Ge L, Jia X and Xu J: IGF2BP2 promotes ovarian cancer growth and metastasis by upregulating CKAP2L protein expression in an m6 A-dependent manner. FASEB J. 37:e231832023. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H and Wang H: IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther. 31:1221–1236. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m6A/FOXM1 manner. Cell Death Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI | |
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI | |
He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Hu M, Yu L, Wang X, Jiang X, Zhang G and Ding K: The ‘m6A writer’ METTL3 and the ‘m6A reader’ IGF2BP2 regulate cutaneous T-cell lymphomas progression via CDKN2A. Hematol Oncol. 40:567–576. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao H, Yang J and Wang B: CircCDK1 blocking IGF2BP2-mediated m6A modification of CPPED1 promotes laryngeal squamous cell carcinoma metastasis via the PI3K/AKT signal pathway. Gene. 884:1476862023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao H, Yang J and Wang B: IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep. 14:30142024. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Xiao Z, Zou Z, Lin L, Li J, Tan J and Chen W: IGF2BP2 promotes head and neck squamous carcinoma cell proliferation and growth via the miR-98-5p/PI3K/Akt signaling pathway. Front Oncol. 13:12529992023. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Yu Y, Zong K, Lv P and Gu Y: Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 38:4972019. View Article : Google Scholar : PubMed/NCBI | |
Mu Q, Wang L, Yu F, Gao H, Lei T, Li P, Liu P, Zheng X, Hu X, Chen Y, et al: Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway. Cancer Biol Ther. 16:623–633. 2015. View Article : Google Scholar : PubMed/NCBI | |
Latifkar A, Wang F, Mullmann JJ, Panizza E, Fernandez IR, Ling L, Miller AD, Fischbach C, Weiss RS, Lin H, et al: IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci USA. 119:e22004771192022. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Ha Thi HT and Hong S: IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett. 415:30–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Qiu H and Guo L: LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun. 580:74–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Zhang X, Bi F, Wang D, Zhou X, Li X and Yang Q: FTO inhibits epithelial ovarian cancer progression by destabilising SNAI1 mRNA through IGF2BP2. Cancers (Basel). 14:52182022. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Ma J, Chen Q, Zhang T, Fan R and Du J: GAS5 regulated by FTO-mediated m6A modification suppresses cell proliferation via the IGF2BP2/QKI axis in breast cancer. Discov Oncol. 15:1822024. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Huang B, Li W, Wang Y, Pan X, Ma Q, Liu Y, Wang X, Liang C, Zhang Y, et al: RNA-binding protein IGF2BP2 suppresses metastasis of clear cell renal cell carcinoma by enhancing CKB mRNA stability and expression. Transl Oncol. 42:1019042024. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al: Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 12:e9942022. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Zhuang T, Zhen F, Zhang C, Wang Q, Miao X, Qi N and Yao R: IGF2BP2 inhibits invasion and migration of clear cell renal cell carcinoma via targeting Netrin-4 in an m6A-dependent manner. Mol Carcinog. 63:1572–1587. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu EY, Huang LP and Bao JH: miR-96-5p regulates cervical cancer cell resistance to cisplatin by inhibiting lncRNA TRIM52-AS1 and promoting IGF2BP2. Kaohsiung J Med Sci. 38:1178–1189. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Zhang D, Yi N, Cao Y, Wei Y, Wang W and Li L: Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression. Hum Cell. 35:1560–1576. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Li Q, Cheng X, Wu T, Gao P and Gu Y: Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered. 13:2450–2469. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han J, Yu X, Wang S, Wang Y, Liu Q, Xu H and Wang X: IGF2BP2 induces U251 glioblastoma cell chemoresistance by inhibiting FOXO1-mediated PID1 expression through stabilizing lncRNA DANCR. Front Cell Dev Biol. 9:6592282022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang Q, Ke Z, Liu Y, Guo H, Fang S and Lu K: LINC01001 promotes progression of crizotinib-resistant NSCLC by modulating IGF2BP2/MYC axis. Front Pharmacol. 12:7592672021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu J and Zheng J: A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner. Sci Rep. 13:207302023. View Article : Google Scholar : PubMed/NCBI | |
Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett. 527:10–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li X, Zhou Y, Huang X and Jiang X: Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol Toxicol. 38:963–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG and Zhang R: VIM-AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2-mediated HMGCS1 mRNA stabilization. Int J Oncol. 62:342023. View Article : Google Scholar : PubMed/NCBI | |
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X and Li J: Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology. 22:2982024. View Article : Google Scholar : PubMed/NCBI | |
Kendzia S, Franke S, Kröhler T, Golob-Schwarzl N, Schweiger C, Toeglhofer AM, Skofler C, Uranitsch S, El-Heliebi A, Fuchs J, et al: A combined computational and functional approach identifies IGF2BP2 as a driver of chemoresistance in a wide array of pre-clinical models of colorectal cancer. Mol Cancer. 22:892023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, et al: FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res. 43:342024. View Article : Google Scholar : PubMed/NCBI | |
Hu P, Lin L, Huang T, Li Z, Xiao M, Guo H, Chen G, Liu D, Ke M, Shan H, et al: Circular RNA circEYA3 promotes the radiation resistance of hepatocellular carcinoma via the IGF2BP2/DTX3L axis. Cancer Cell Int. 23:3082023. View Article : Google Scholar : PubMed/NCBI | |
Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Chi C, Weng S, Zhou W and Liu Z: IGF2BP2 promotes lncRNA DANCR stability mediated glycolysis and affects the progression of FLT3-ITD + acute myeloid leukemia. Apoptosis. 28:1035–1047. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang H, Zhong K, Tao L, Lin Y, Xie G, Tan Y, Wu Y, Lu Y, Chen Z, et al: N6-methyladenosine facilitates mitochondrial fusion of colorectal cancer cells via induction of GSH synthesis and stabilization of OPA1 mRNA. Natl Sci Rev. 11:nwae0392024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu M, Zhu J, Li J, Zhu X, Wang K, Shen K, Yang K, Ni X, Liu X, et al: HES1 promotes aerobic glycolysis and cancer progression of colorectal cancer via IGF2BP2-mediated GLUT1 m6A modification. Cell Death Discov. 9:4112023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Zhong Z, Zou J, Liao JY, Chen S, Zhou S, Zhao Y, Li J, Yin D, Huang K and Li Y: Glycolysis and tumor progression promoted by the m6A writer VIRMA via m6A-dependent upregulation of STRA6 in pancreatic ductal adenocarcinoma. Cancer Lett. 590:2168402024. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y and Xu Y: EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 82:831–845. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. View Article : Google Scholar : PubMed/NCBI | |
Qiu X, Xu Q, Liao B, Hu S, Zhou Y and Zhang H: Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/HK2 axis in colorectal cancer. Histol Histopathol. 38:1145–1156. 2023.PubMed/NCBI | |
Wang Z, Wang MM, Geng Y, Ye CY and Zang YS: Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med. 20:4022022. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Dai X, Wu J and Wen K: N6-methyladenosine (m6A) reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression. J Cancer Res Clin Oncol. 148:3375–3384. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J and Sun X: m6A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov. 7:2922021. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Chen J, Lu F, Zhao M, Wu S, Hu C, Yu P, Kan J, Bai J, Tian Y and Tang Q: Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer. Cell Biosci. 13:1482023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, Hu C, Lu F, Yu P, Xu L, et al: ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med. 21:7412023. View Article : Google Scholar : PubMed/NCBI | |
Chandra J, Hansen M, Labarriere N, Marigo I, Souza-Fonseca-Guimaraes F, Vujanovic L, Koguchi Y and Jacquelot N: Editorial: Cancer immunotherapies: From efficacy to resistance mechanisms. Front Immunol. 13:9397892022. View Article : Google Scholar : PubMed/NCBI | |
Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Hu C, Mao S, Sun Y, Yang S and Yang K: Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 39:303–310. 2023.(In Chinese). PubMed/NCBI | |
Liu QZ, Zhang N, Chen JY, Zhou MJ, Zhou DH, Chen Z, Huang ZX, Xie YX, Qiao GL and Tu XH: WTAP-induced N6-methyladenosine of PD-L1 blocked T-cell-mediated antitumor activity under hypoxia in colorectal cancer. Cancer Sci. 115:1749–1762. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Shi M, He X, Cao Y, Liu P, Li F, Zou S, Wen C, Zhan Q, Xu Z, et al: LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 15:522022. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu Q, Liu J and Zhong Y: Identification of two m6A Readers YTHDF1 and IGF2BP2 as immune biomarkers in head and neck squamous cell carcinoma. Front Genet. 13:9036342022. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Li H, Cai H, Liu W, Pan E, Yu D and He S: Upregulation of IGF2BP2 promotes oral squamous cell carcinoma progression that is related to cell proliferation, metastasis and tumor-infiltrating immune cells. Front Oncol. 12:8095892022. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Liu Y, Tang H and Wang P: FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Xu R, Zhu X and Jiang H: m6A-modified circABCC4 promotes stemness and metastasis of prostate cancer by recruiting IGF2BP2 to increase stability of CCAR1. Cancer Gene Ther. 30:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ji R, Wu C, Yao J, Xu J, Lin J, Gu H, Fu M and Zhang X, Li Y and Zhang X: IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression. Cell Death Dis. 14:6932023. View Article : Google Scholar : PubMed/NCBI | |
Janiszewska M, Suvà ML, Riggi N, Houtkooper RH, Auwerx J, Clément-Schatlo V, Radovanovic I, Rheinbay E, Provero P and Stamenkovic I: Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26:1926–1944. 2012. View Article : Google Scholar : PubMed/NCBI | |
Degrauwe N, Schlumpf TB, Janiszewska M, Martin P, Cauderay A, Provero P, Riggi N, Suvà ML, Paro R and Stamenkovic I: The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15:1634–1647. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Wen Y, Lv C, Zhao D, Yang Y, Qiu H and Wang C: Decreased RNA-binding protein IGF2BP2 downregulates NT5DC2, which suppresses cell proliferation, and induces cell cycle arrest and apoptosis in diffuse large B-cell lymphoma cells by regulating the p53 signaling pathway. Mol Med Rep. 26:2862022. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Wu Y, Chen Y, Ren Y, Jiang X, Dong Z, Zhang J, Jin M, Chen X, Wang Z and Xiao M: ALKBH5 promotes hypopharyngeal squamous cell carcinoma apoptosis by targeting TLR2 in a YTHDF1/IGF2BP2-mediated manner. Cell Death Discov. 9:3082023. View Article : Google Scholar : PubMed/NCBI | |
Yang X and Liu J: Targeting PD-L1 (Programmed death-ligand 1) and inhibiting the expression of IGF2BP2 (Insulin-like growth factor 2 mRNA-binding protein 2) affect the proliferation and apoptosis of hypopharyngeal carcinoma cells. Bioengineered. 12:7755–7764. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kessler SM, Pokorny J, Zimmer V, Laggai S, Lammert F, Bohle RM and Kiemer AK: IGF2 mRNA binding protein p62/IMP2-2 in hepatocellular carcinoma: Antiapoptotic action is independent of IGF2/PI3K signaling. Am J Physiol Gastrointest Liver Physiol. 304:G328–G336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Wu J, Song L and Huang B: ACSM3 suppresses proliferation and induces apoptosis and cell cycle arrest in acute myeloid leukemia cells via the regulation of IGF2BP2. Exp Ther Med. 25:1772023. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ: Ferroptosis: Bug or feature? Immunol Rev. 277:150–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Chen X, Jiang X, Dong Z, Hu S and Xiao M: RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m6 A-IGF2BP2-dependent manner. J Clin Lab Anal. 36:e245142022. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J and Wang K: m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/FOXM1 positive feedback loop. Cancer Lett. 596:2170042024. View Article : Google Scholar : PubMed/NCBI | |
Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, Fan F and Ellis LM: The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol. 12:105–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, et al: TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 22:3475–3488. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fang H, Sun Q, Zhou J, Zhang H, Song Q, Zhang H, Yu G, Guo Y, Huang C, Mou Y, et al: m6A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma. Mol Cancer. 22:992023. View Article : Google Scholar : PubMed/NCBI | |
He Z, Zhong Y, Regmi P, Lv T, Ma W, Wang J, Liu F, Yang S, Zhong Y, Zhou R, et al: Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol Cancer. 23:652024. View Article : Google Scholar : PubMed/NCBI | |
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Bai J, Zhuan Z, Li B, Zhang Z, Wu X, Luo X and Yang L: EBV-LMP1 is involved in vasculogenic mimicry formation via VEGFA/VEGFR1 signaling in nasopharyngeal carcinoma. Oncol Rep. 40:377–384. 2018.PubMed/NCBI | |
Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, An J, Dong X, Liu F and Wang Y: ZEB2 promotes vasculogenic mimicry by TGF-β1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol. 98:352–359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, Raugei G, Bologna M, Calorini L and Chiarugi P: EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res. 9:149–160. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D, et al: Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS One. 8:e571882013. View Article : Google Scholar : PubMed/NCBI | |
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang D, Yi B, Cai H, Wang Y, Lou X, Xi Z and Li Z: SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Biol Sci. 17:2912–2930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA. Cancers (Basel). 14:12682022. View Article : Google Scholar : PubMed/NCBI | |
Sa R, Guo M, Liu D and Guan F: AhR antagonist promotes differentiation of papillary thyroid cancer via regulating circSH2B3/miR-4640-5P/IGF2BP2 axis. Front Pharmacol. 12:7953862021. View Article : Google Scholar : PubMed/NCBI | |
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, et al: First small-molecule inhibitors targeting the RNA-binding protein IGF2BP2/IMP2 for cancer therapy. ACS Chem Biol. 17:361–375. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, Zhou K, Li W, Hu J, Fu C, et al: The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 40:1566–1582.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chanda S, Lepikhov K, Dahlem C, Schymik HS, Hoppstädter J, Geber AK, Wagner K, Kessler SM, Empting M and Kiemer AK: Gene editing and small molecule inhibitors of the RNA binding protein IGF2BP2/IMP2 show its potential as an anti-cancer drug target. Front Biosci (Landmark Ed). 29:412024. View Article : Google Scholar : PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Dong S, Hou H, Zhang T and Shen M: Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling. Mol Ther Nucleic Acids. 23:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu FY, Zhou SJ, Deng YL, Zhang ZY, Zhang EL, Wu ZB, Huang ZY and Chen XP: MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death Dis. 6:e16702015. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu Z, Liao Q, Wang H, Wang W and Su M: Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis. Biomark Res. 10:602022. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Fan Y, Liu Y, Shen B, Lu H and Ma H: Long non-coding RNA CCAT2 promotes the development of esophageal squamous cell carcinoma by inhibiting miR-200b to upregulate the IGF2BP2/TK1 axis. Front Oncol. 11:6806422021. View Article : Google Scholar : PubMed/NCBI | |
Fen H, Hongmin Z, Wei W, Chao Y, Yang Y, Bei L and Zhihua S: RHPN1-AS1 drives the progression of hepatocellular carcinoma via regulating miR-596/IGF2BP2 axis. Curr Pharm Des. 25:4630–4640. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Yu H, Li H, Zhang W, Sun L, Dou T, Wang Z, Zhao H and Yang H: lncRNA SNHG1 promotes the progression of hepatocellular carcinoma by regulating the miR-7-5p/IGF2BP2 axis. Heliyon. 10:e276312024. View Article : Google Scholar : PubMed/NCBI | |
Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H, Yang C, Sun J, Chen K, Zhou J, et al: CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA. Mol Cancer. 21:1402022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J and Chen C: Tumor suppressor microRNA-138 suppresses low-grade glioma development and metastasis via regulating IGF2BP2. Onco Targets Ther. 13:2247–2260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Wang L and Guo F: microRNA-188 acts as a tumour suppressor in glioma by directly targeting the IGF2BP2 gene. Mol Med Rep. 16:7124–7130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang RS, Zheng YL, Li C, Ding C, Xu C and Zhao J: MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci. 199:104–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C and Wang S: Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol. 13:572020. View Article : Google Scholar : PubMed/NCBI | |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al: Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI |