You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI | |
|
Orsolic I, Carrier A and Esteller M: Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 39:74–88. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Zhong X, Xia M and Zhong J: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao BS, Roundtree IA and He C: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 18:31–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A database of RNA modification pathways-2013 update. Nucleic Acids Res. 41((Database Issue)): D262–D267. 2013.PubMed/NCBI | |
|
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Li X, Liu S, Yang R, Liu X and Wu S: N6-methyladenosine: A novel RNA imprint in human cancer. Front Oncol. 9:14072019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Roignant JY and Soller M: m6A in mRNA: An ancient mechanism for fine-tuning gene expression. Trends Genet. 33:380–390. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM and Nielsen FC: A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 19:1262–1270. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Cao J, Mu Q and Huang H: The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int. 2018:42172592018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui XH, Hu SY, Zhu CF and Qin XH: Expression and prognostic analyses of the insulin-like growth factor 2 mRNA binding protein family in human pancreatic cancer. BMC Cancer. 20:11602020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai N, Rapley J, Angel M, Yanik MF, Blower MD and Avruch J: mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 25:1159–1172. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Chen L and Qiang P: The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21:992021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Li Y and Lu H: [ARTICLE WITHDRAWN] miR-1193 suppresses proliferation and invasion of human breast cancer cells through directly targeting IGF2BP2. Oncol Res. 25:579–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu XL, Lu RY, Wang LK, Wang YY, Dai YJ, Wang CY, Yang YJ, Guo F, Xue J and Yang DD: Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2. J Cell Biochem. 120:1221–1231. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen J, Kristensen MA, Willemoës M, Nielsen FC and Christiansen J: Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Res. 32:4368–4376. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Deng L, Zhang Y, Tang X, Lei B and Zhang Q: IGF2BP2 modulates autophagy and serves as a prognostic marker in glioma. Ibrain. 10:19–33. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lv L, Zhang X, Liu Y, Zhu X, Pan R and Huang L: Three liquid-liquid phase separation-related genes associated with prognosis in glioma. Pharmgenomics Pers Med. 17:171–181. 2024.PubMed/NCBI | |
|
Hu Y, Chen J, Liu M, Feng Q and Peng H: IGF2BP2 serves as a core m6A regulator in head and neck squamous cell carcinoma. Biosci Rep. 42:BSR202213112022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Jiang Q, Liu Z and Chen W: Clinical significance of an m6A reader gene, IGF2BP2, in head and neck squamous cell carcinoma. Front Mol Biosci. 7:682020. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Tang Q, Li S, Li M and Yang T: IGF2BP2 acts as a m6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization. Cell Death Discov. 9:3712023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin SH, Lin CW, Lu JW, Yang WE, Lin YM, Lu HJ and Yang SF: Cytoplasmic IGF2BP2 protein expression in human patients with oral squamous cell carcinoma: Prognostic and clinical implications. Int J Med Sci. 19:1198–1204. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Barghash A, Golob-Schwarzl N, Helms V, Haybaeck J and Kessler SM: Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma. Oncotarget. 7:49743–49750. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu J, Wei W, Yang M and Huang X: Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma. Exp Ther Med. 23:2522022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng H, Yao H, Zhou S, He C, Huang Y, Li Y, Chen H and Shu J: Pancancer analysis uncovers an immunological role and prognostic value of the m6A reader IGF2BP2 in pancreatic cancer. Mol Cell Probes. 73:1019482024. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlem C, Barghash A, Puchas P, Haybaeck J and Kessler SM: The insulin-like growth factor 2 mRNA binding protein IMP2/IGF2BP2 is overexpressed and correlates with poor survival in pancreatic cancer. Int J Mol Sci. 20:32042019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang JY, Chan EK, Peng XX and Tan EM: A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma. J Exp Med. 189:1101–1110. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Lu M, Nakamura RM, Dent ED, Zhang JY, Nielsen FC, Christiansen J, Chan EK and Tan EM: Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol. 159:945–953. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 19:722020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong L, Liu Q, Jia M and Sun X: Systematic analysis of IGF2BP family members in non-small-cell lung cancer. Hum Genomics. 18:632024. View Article : Google Scholar : PubMed/NCBI | |
|
Jia M, Shi Y, Xie Y, Li W, Deng J, Fu D, Bai J, Ma Y, Zuberi Z, Li J and Li Z: WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments. Cells. 11:252021. View Article : Google Scholar : PubMed/NCBI | |
|
Almawi WY, Zidi S, Sghaier I, El-Ghali RM, Daldoul A and Midlenko A: Novel association of IGF2BP2 gene variants with altered risk of breast cancer and as potential molecular biomarker of triple negative breast cancer. Clin Breast Cancer. 23:272–280. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Li X, Wang F, Liu H, Guan W and Xu G: Insulin-like growth factor 2 mRNA-binding protein 2 is a therapeutic target in ovarian cancer. Exp Biol Med (Maywood). 248:2198–2209. 2023.PubMed/NCBI | |
|
Yang L, Liu J, Jin Y, Xing J, Zhang J, Chen X and Yu A: Synchronous profiling of mRNA N6-methyladenosine modifications and mRNA expression in high-grade serous ovarian cancer: A pilot study. Sci Rep. 14:104272024. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Li W, Liang X, Zhu X, Zhang L, Huang Y, Yu T, Li S and Chen Z: IGF2BP2 overexpression indicates poor survival in patients with acute myelocytic leukemia. Cell Physiol Biochem. 51:1945–1956. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Feng P, Chen D, Wang X, Li Y, Li Z, Li B, Zhang Y, Li W, Zhang J, Ye J, et al: Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 36:2180–2188. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Gao Q, He C, Wang L, Wang Y, Feng L, Li W, Liu W, Ma R and Liu L: Association between polymorphism in diabetes susceptibility gene insulin-like growth factor 2mRNA-binding protein 2 and risk of diffuse large B-cell lymphoma. Clin Med Insights Oncol. 17:117955492312011282023. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Zhou Y, Qian Y, Wei W, Lin X, Mao S, Sun J and Jin J: m6A-dependent upregulation of DDX21 by super-enhancer-driven IGF2BP2 and IGF2BP3 facilitates progression of acute myeloid leukaemia. Clin Transl Med. 14:e16282024. View Article : Google Scholar : PubMed/NCBI | |
|
Song T, Hu Z, Zeng C, Luo H and Liu J: FLOT1, stabilized by WTAP/IGF2BP2 mediated N6-methyladenosine modification, predicts poor prognosis and promotes growth and invasion in gliomas. Heliyon. 9:e162802023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C and Hu G: RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 41:62022. View Article : Google Scholar : PubMed/NCBI | |
|
Liang J, Cai H, Hou C, Song F, Jiang Y, Wang Z, Qiu D, Zhu Y, Wang F, Yu D and Hou J: METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner. Clin Sci (Lond). 137:1373–1389. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Leng F, Miu YY, Zhang Y, Luo H, Lu XL, Cheng H and Zheng ZG: A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc. Oncol Lett. 22:6972021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Li Q, Wang Y, Wang L, Guo Y, Yang R, Zhao N, Ge N, Wang Y and Guo C: m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability. Am J Cancer Res. 11:5282–5298. 2021.PubMed/NCBI | |
|
Lin CW, Yang WE, Su CW, Lu HJ, Su SC and Yang SF: IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer. Int J Biol Sci. 20:818–830. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dong L, Geng Z, Liu Z, Tao M, Pan M and Lu X: IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR. Pathol Res Pract. 225:1535502021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Ding Y, Zhao Y and Li X: m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther. 31:285–299. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Cao Z, Lv Y and Cai X: WTAP-mediated N6-methyladenine modification of circEEF2 promotes lung adenocarcinoma tumorigenesis by stabilizing CANT1 in an IGF2BP2-dependent manner. Mol Biotechnol. Apr 15–2024.(Epub ahead of print). View Article : Google Scholar | |
|
Han L, Lei G, Chen Z, Zhang Y, Huang C and Chen W: IGF2BP2 regulates MALAT1 by serving as an N6-methyladenosine reader to promote NSCLC proliferation. Front Mol Biosci. 8:7800892022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang GW, Chen QQ, Ma CC, Xie LH and Gu J: linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol. 136:1060152021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Li T, Zhao X, Yang Z, Ma L and Wang X: The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA. Biochem Cell Biol. 102:169–178. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Xiao Z, Wang Y, Zhang D and Chen Z: The m6A reader IGF2BP2 promotes esophageal cell carcinoma progression by enhancing EIF4A1 translation. Cancer Cell Int. 24:1622024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Xing Y, Gao W, Yang L, Shi J, Song W and Li T: N6-methyladenosine (m6A) reader IGF2BP2 promotes gastric cancer progression via targeting SIRT1. Bioengineered. 13:11541–11550. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shen H, Zhu H, Chen Y, Shen Z, Qiu W, Qian C and Zhang J: ZEB1-induced LINC01559 expedites cell proliferation, migration and EMT process in gastric cancer through recruiting IGF2BP2 to stabilize ZEB1 expression. Cell Death Dis. 12:3492021. View Article : Google Scholar : PubMed/NCBI | |
|
Ouyang J, Li J, Li D, Jiang J, Hao T, Xia Y, Lu X, Zhang C and He Y: IGF2BP2 promotes epithelial to mesenchymal transition and metastasis through stabilizing HMGA1 mRNA in gastric cancer. Cancers(Basel). 14:53812022.PubMed/NCBI | |
|
Liu D, Xia AD, Wu LP, Li S, Zhang K and Chen D: IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal. 94:1103132022. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Peng F, Zhao J and Gong X: METTL3/IGF2BP2 axis affects the progression of colorectal cancer by regulating m6A modification of STAG3. Sci Rep. 13:172922023. View Article : Google Scholar : PubMed/NCBI | |
|
Cui J, Tian J, Wang W, He T, Li X, Gu C, Wang L, Wu J and Shang A: IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism. Cancer Sci. 112:4087–4099. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bian Y, Wang Y, Xu S, Gao Z, Li C, Fan Z, Ding J and Wang K: m6A Modification of Long Non-Coding RNA HNF1A-AS1 Facilitates Cell Cycle Progression in Colorectal Cancer via IGF2BP2-Mediated CCND1 mRNA Stabilization. Cells. 11:30082022. View Article : Google Scholar : PubMed/NCBI | |
|
Hou P, Meng S, Li M, Lin T, Chu S, Li Z, Zheng J, Gu Y and Bai J: Correction to: LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 40:3652021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu TY, Hu CC, Han CY, Mao SY, Zhang WX, Xu YM, Sun YJ, Jiang DB, Zhang XY, Zhang JX, et al: IGF2BP2 promotes colorectal cancer progression by upregulating the expression of TFRC and enhancing iron metabolism. Biol Direct. 18:192023. View Article : Google Scholar : PubMed/NCBI | |
|
Ye S, Song W, Xu X, Zhao X and Yang L: IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett. 590:1641–1650. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu K, Wei C, Yu H, Zhang Q and Du Z: HMGA2 overexpression activates IGF2BP2 to stabilize APLP2 via m6A modification and promote pancreatic cancer progression. Heliyon. 10:e272682024. View Article : Google Scholar : PubMed/NCBI | |
|
Cao P, Wu Y, Sun D, Zhang W, Qiu J, Tang Z, Xue X and Qin L: IGF2BP2 promotes pancreatic carcinoma progression by enhancing the stability of B3GNT6 mRNA via m6A methylation. Cancer Med. 12:4405–4420. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, et al: Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis. 1870:1671832024. View Article : Google Scholar : PubMed/NCBI | |
|
Peng WX, Liu F, Jiang JH, Yuan H, Zhang Z, Yang L and Mo YY: N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis. 10:554–567. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Yu L, Xie N, Wu Y and Li B: METTL14 facilitates the metastasis of pancreatic carcinoma by stabilizing LINC00941 in an m6A-IGF2BP2-dependent manner. J Cancer. 14:1117–1131. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Weng H, Feng W, Li F, Huang D, Lin L and Wang Z: Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors. 41:152–164. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Sun J, Dang Z, Su Q and Yang J: Circ_0000775 promotes the migration, invasion and EMT of hepatic carcinoma cells by recruiting IGF2BP2 to stabilize CDC27. Pathol Res Pract. 235:1539082022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Li Z, Nie H, Huang Y, Du J, Xi Y, Guo C, Mu M, Li X, Zheng X, et al: The IGF2BP2-lncRNA TRPC7-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. Cell Signal. 117:1110782024. View Article : Google Scholar : PubMed/NCBI | |
|
Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J and Kiemer AK: IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis. 6:e18942015. View Article : Google Scholar : PubMed/NCBI | |
|
Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, et al: IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism. Front Oncol. 10:5788162020. View Article : Google Scholar : PubMed/NCBI | |
|
Guan XQ, Yuan XN, Feng KX, Shao YC, Liu Q, Yang ZL, Chen YY, Deng J, Hu MS, Li J, et al: IGF2BP2-modified UBE2D1 interacts with Smad2/3 to promote the progression of breast cancer. Am J Cancer Res. 13:2948–2968. 2023.PubMed/NCBI | |
|
Xia T, Dai XY, Sang MY, Zhang X, Xu F, Wu J, Shi L, Wei JF and Ding Q: IGF2BP2 drives cell cycle progression in triple-negative breast cancer by recruiting EIF4A1 to promote the m6A-modified CDK6 translation initiation process. Adv Sci (Weinh). 11:e23051422024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Francia G and Zhang JY: p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget. 6:32656–32668. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Xiong X, Sun Y, Geng Z, Chen X, Cui X, Lv J, Ge L, Jia X and Xu J: IGF2BP2 promotes ovarian cancer growth and metastasis by upregulating CKAP2L protein expression in an m6 A-dependent manner. FASEB J. 37:e231832023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H and Wang H: IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther. 31:1221–1236. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m6A/FOXM1 manner. Cell Death Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI | |
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI | |
|
He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Hu M, Yu L, Wang X, Jiang X, Zhang G and Ding K: The ‘m6A writer’ METTL3 and the ‘m6A reader’ IGF2BP2 regulate cutaneous T-cell lymphomas progression via CDKN2A. Hematol Oncol. 40:567–576. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao H, Yang J and Wang B: CircCDK1 blocking IGF2BP2-mediated m6A modification of CPPED1 promotes laryngeal squamous cell carcinoma metastasis via the PI3K/AKT signal pathway. Gene. 884:1476862023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao H, Yang J and Wang B: IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep. 14:30142024. View Article : Google Scholar : PubMed/NCBI | |
|
Yu D, Xiao Z, Zou Z, Lin L, Li J, Tan J and Chen W: IGF2BP2 promotes head and neck squamous carcinoma cell proliferation and growth via the miR-98-5p/PI3K/Akt signaling pathway. Front Oncol. 13:12529992023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Yu Y, Zong K, Lv P and Gu Y: Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 38:4972019. View Article : Google Scholar : PubMed/NCBI | |
|
Mu Q, Wang L, Yu F, Gao H, Lei T, Li P, Liu P, Zheng X, Hu X, Chen Y, et al: Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway. Cancer Biol Ther. 16:623–633. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Latifkar A, Wang F, Mullmann JJ, Panizza E, Fernandez IR, Ling L, Miller AD, Fischbach C, Weiss RS, Lin H, et al: IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci USA. 119:e22004771192022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HY, Ha Thi HT and Hong S: IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett. 415:30–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mao J, Qiu H and Guo L: LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun. 580:74–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Zhang X, Bi F, Wang D, Zhou X, Li X and Yang Q: FTO inhibits epithelial ovarian cancer progression by destabilising SNAI1 mRNA through IGF2BP2. Cancers (Basel). 14:52182022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan Y, Ma J, Chen Q, Zhang T, Fan R and Du J: GAS5 regulated by FTO-mediated m6A modification suppresses cell proliferation via the IGF2BP2/QKI axis in breast cancer. Discov Oncol. 15:1822024. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Huang B, Li W, Wang Y, Pan X, Ma Q, Liu Y, Wang X, Liang C, Zhang Y, et al: RNA-binding protein IGF2BP2 suppresses metastasis of clear cell renal cell carcinoma by enhancing CKB mRNA stability and expression. Transl Oncol. 42:1019042024. View Article : Google Scholar : PubMed/NCBI | |
|
Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al: Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 12:e9942022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Zhuang T, Zhen F, Zhang C, Wang Q, Miao X, Qi N and Yao R: IGF2BP2 inhibits invasion and migration of clear cell renal cell carcinoma via targeting Netrin-4 in an m6A-dependent manner. Mol Carcinog. 63:1572–1587. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu EY, Huang LP and Bao JH: miR-96-5p regulates cervical cancer cell resistance to cisplatin by inhibiting lncRNA TRIM52-AS1 and promoting IGF2BP2. Kaohsiung J Med Sci. 38:1178–1189. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fu L, Zhang D, Yi N, Cao Y, Wei Y, Wang W and Li L: Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression. Hum Cell. 35:1560–1576. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia C, Li Q, Cheng X, Wu T, Gao P and Gu Y: Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered. 13:2450–2469. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Yu X, Wang S, Wang Y, Liu Q, Xu H and Wang X: IGF2BP2 induces U251 glioblastoma cell chemoresistance by inhibiting FOXO1-mediated PID1 expression through stabilizing lncRNA DANCR. Front Cell Dev Biol. 9:6592282022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang Q, Ke Z, Liu Y, Guo H, Fang S and Lu K: LINC01001 promotes progression of crizotinib-resistant NSCLC by modulating IGF2BP2/MYC axis. Front Pharmacol. 12:7592672021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Xu J and Zheng J: A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner. Sci Rep. 13:207302023. View Article : Google Scholar : PubMed/NCBI | |
|
Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett. 527:10–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Li X, Zhou Y, Huang X and Jiang X: Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol Toxicol. 38:963–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG and Zhang R: VIM-AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2-mediated HMGCS1 mRNA stabilization. Int J Oncol. 62:342023. View Article : Google Scholar : PubMed/NCBI | |
|
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X and Li J: Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology. 22:2982024. View Article : Google Scholar : PubMed/NCBI | |
|
Kendzia S, Franke S, Kröhler T, Golob-Schwarzl N, Schweiger C, Toeglhofer AM, Skofler C, Uranitsch S, El-Heliebi A, Fuchs J, et al: A combined computational and functional approach identifies IGF2BP2 as a driver of chemoresistance in a wide array of pre-clinical models of colorectal cancer. Mol Cancer. 22:892023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, et al: FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res. 43:342024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu P, Lin L, Huang T, Li Z, Xiao M, Guo H, Chen G, Liu D, Ke M, Shan H, et al: Circular RNA circEYA3 promotes the radiation resistance of hepatocellular carcinoma via the IGF2BP2/DTX3L axis. Cancer Cell Int. 23:3082023. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Chi C, Weng S, Zhou W and Liu Z: IGF2BP2 promotes lncRNA DANCR stability mediated glycolysis and affects the progression of FLT3-ITD + acute myeloid leukemia. Apoptosis. 28:1035–1047. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Zhang H, Zhong K, Tao L, Lin Y, Xie G, Tan Y, Wu Y, Lu Y, Chen Z, et al: N6-methyladenosine facilitates mitochondrial fusion of colorectal cancer cells via induction of GSH synthesis and stabilization of OPA1 mRNA. Natl Sci Rev. 11:nwae0392024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhu M, Zhu J, Li J, Zhu X, Wang K, Shen K, Yang K, Ni X, Liu X, et al: HES1 promotes aerobic glycolysis and cancer progression of colorectal cancer via IGF2BP2-mediated GLUT1 m6A modification. Cell Death Discov. 9:4112023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Zhong Z, Zou J, Liao JY, Chen S, Zhou S, Zhao Y, Li J, Yin D, Huang K and Li Y: Glycolysis and tumor progression promoted by the m6A writer VIRMA via m6A-dependent upregulation of STRA6 in pancreatic ductal adenocarcinoma. Cancer Lett. 590:2168402024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y and Xu Y: EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 82:831–845. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu X, Xu Q, Liao B, Hu S, Zhou Y and Zhang H: Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/HK2 axis in colorectal cancer. Histol Histopathol. 38:1145–1156. 2023.PubMed/NCBI | |
|
Wang Z, Wang MM, Geng Y, Ye CY and Zang YS: Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med. 20:4022022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Dai X, Wu J and Wen K: N6-methyladenosine (m6A) reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression. J Cancer Res Clin Oncol. 148:3375–3384. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J and Sun X: m6A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov. 7:2922021. View Article : Google Scholar : PubMed/NCBI | |
|
Ye M, Chen J, Lu F, Zhao M, Wu S, Hu C, Yu P, Kan J, Bai J, Tian Y and Tang Q: Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer. Cell Biosci. 13:1482023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, Hu C, Lu F, Yu P, Xu L, et al: ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med. 21:7412023. View Article : Google Scholar : PubMed/NCBI | |
|
Chandra J, Hansen M, Labarriere N, Marigo I, Souza-Fonseca-Guimaraes F, Vujanovic L, Koguchi Y and Jacquelot N: Editorial: Cancer immunotherapies: From efficacy to resistance mechanisms. Front Immunol. 13:9397892022. View Article : Google Scholar : PubMed/NCBI | |
|
Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Han C, Hu C, Mao S, Sun Y, Yang S and Yang K: Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 39:303–310. 2023.(In Chinese). PubMed/NCBI | |
|
Liu QZ, Zhang N, Chen JY, Zhou MJ, Zhou DH, Chen Z, Huang ZX, Xie YX, Qiao GL and Tu XH: WTAP-induced N6-methyladenosine of PD-L1 blocked T-cell-mediated antitumor activity under hypoxia in colorectal cancer. Cancer Sci. 115:1749–1762. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Shi M, He X, Cao Y, Liu P, Li F, Zou S, Wen C, Zhan Q, Xu Z, et al: LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 15:522022. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wu Q, Liu J and Zhong Y: Identification of two m6A Readers YTHDF1 and IGF2BP2 as immune biomarkers in head and neck squamous cell carcinoma. Front Genet. 13:9036342022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Li H, Cai H, Liu W, Pan E, Yu D and He S: Upregulation of IGF2BP2 promotes oral squamous cell carcinoma progression that is related to cell proliferation, metastasis and tumor-infiltrating immune cells. Front Oncol. 12:8095892022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Liu Y, Tang H and Wang P: FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Xu R, Zhu X and Jiang H: m6A-modified circABCC4 promotes stemness and metastasis of prostate cancer by recruiting IGF2BP2 to increase stability of CCAR1. Cancer Gene Ther. 30:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ji R, Wu C, Yao J, Xu J, Lin J, Gu H, Fu M and Zhang X, Li Y and Zhang X: IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression. Cell Death Dis. 14:6932023. View Article : Google Scholar : PubMed/NCBI | |
|
Janiszewska M, Suvà ML, Riggi N, Houtkooper RH, Auwerx J, Clément-Schatlo V, Radovanovic I, Rheinbay E, Provero P and Stamenkovic I: Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26:1926–1944. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Degrauwe N, Schlumpf TB, Janiszewska M, Martin P, Cauderay A, Provero P, Riggi N, Suvà ML, Paro R and Stamenkovic I: The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15:1634–1647. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Wen Y, Lv C, Zhao D, Yang Y, Qiu H and Wang C: Decreased RNA-binding protein IGF2BP2 downregulates NT5DC2, which suppresses cell proliferation, and induces cell cycle arrest and apoptosis in diffuse large B-cell lymphoma cells by regulating the p53 signaling pathway. Mol Med Rep. 26:2862022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Wu Y, Chen Y, Ren Y, Jiang X, Dong Z, Zhang J, Jin M, Chen X, Wang Z and Xiao M: ALKBH5 promotes hypopharyngeal squamous cell carcinoma apoptosis by targeting TLR2 in a YTHDF1/IGF2BP2-mediated manner. Cell Death Discov. 9:3082023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X and Liu J: Targeting PD-L1 (Programmed death-ligand 1) and inhibiting the expression of IGF2BP2 (Insulin-like growth factor 2 mRNA-binding protein 2) affect the proliferation and apoptosis of hypopharyngeal carcinoma cells. Bioengineered. 12:7755–7764. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kessler SM, Pokorny J, Zimmer V, Laggai S, Lammert F, Bohle RM and Kiemer AK: IGF2 mRNA binding protein p62/IMP2-2 in hepatocellular carcinoma: Antiapoptotic action is independent of IGF2/PI3K signaling. Am J Physiol Gastrointest Liver Physiol. 304:G328–G336. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Wu J, Song L and Huang B: ACSM3 suppresses proliferation and induces apoptosis and cell cycle arrest in acute myeloid leukemia cells via the regulation of IGF2BP2. Exp Ther Med. 25:1772023. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ: Ferroptosis: Bug or feature? Immunol Rev. 277:150–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Chen X, Jiang X, Dong Z, Hu S and Xiao M: RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m6 A-IGF2BP2-dependent manner. J Clin Lab Anal. 36:e245142022. View Article : Google Scholar : PubMed/NCBI | |
|
Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J and Wang K: m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/FOXM1 positive feedback loop. Cancer Lett. 596:2170042024. View Article : Google Scholar : PubMed/NCBI | |
|
Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, Fan F and Ellis LM: The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol. 12:105–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, et al: TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 22:3475–3488. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, Sun Q, Zhou J, Zhang H, Song Q, Zhang H, Yu G, Guo Y, Huang C, Mou Y, et al: m6A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma. Mol Cancer. 22:992023. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Zhong Y, Regmi P, Lv T, Ma W, Wang J, Liu F, Yang S, Zhong Y, Zhou R, et al: Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol Cancer. 23:652024. View Article : Google Scholar : PubMed/NCBI | |
|
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Bai J, Zhuan Z, Li B, Zhang Z, Wu X, Luo X and Yang L: EBV-LMP1 is involved in vasculogenic mimicry formation via VEGFA/VEGFR1 signaling in nasopharyngeal carcinoma. Oncol Rep. 40:377–384. 2018.PubMed/NCBI | |
|
Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, An J, Dong X, Liu F and Wang Y: ZEB2 promotes vasculogenic mimicry by TGF-β1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol. 98:352–359. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, Raugei G, Bologna M, Calorini L and Chiarugi P: EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res. 9:149–160. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D, et al: Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS One. 8:e571882013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wang D, Yi B, Cai H, Wang Y, Lou X, Xi Z and Li Z: SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Biol Sci. 17:2912–2930. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sa R, Liang R, Qiu X, He Z, Liu Z and Chen L: Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA. Cancers (Basel). 14:12682022. View Article : Google Scholar : PubMed/NCBI | |
|
Sa R, Guo M, Liu D and Guan F: AhR antagonist promotes differentiation of papillary thyroid cancer via regulating circSH2B3/miR-4640-5P/IGF2BP2 axis. Front Pharmacol. 12:7953862021. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, et al: First small-molecule inhibitors targeting the RNA-binding protein IGF2BP2/IMP2 for cancer therapy. ACS Chem Biol. 17:361–375. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, Zhou K, Li W, Hu J, Fu C, et al: The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 40:1566–1582.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chanda S, Lepikhov K, Dahlem C, Schymik HS, Hoppstädter J, Geber AK, Wagner K, Kessler SM, Empting M and Kiemer AK: Gene editing and small molecule inhibitors of the RNA binding protein IGF2BP2/IMP2 show its potential as an anti-cancer drug target. Front Biosci (Landmark Ed). 29:412024. View Article : Google Scholar : PubMed/NCBI | |
|
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI | |
|
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye M, Dong S, Hou H, Zhang T and Shen M: Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling. Mol Ther Nucleic Acids. 23:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu FY, Zhou SJ, Deng YL, Zhang ZY, Zhang EL, Wu ZB, Huang ZY and Chen XP: MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death Dis. 6:e16702015. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu Z, Liao Q, Wang H, Wang W and Su M: Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis. Biomark Res. 10:602022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Fan Y, Liu Y, Shen B, Lu H and Ma H: Long non-coding RNA CCAT2 promotes the development of esophageal squamous cell carcinoma by inhibiting miR-200b to upregulate the IGF2BP2/TK1 axis. Front Oncol. 11:6806422021. View Article : Google Scholar : PubMed/NCBI | |
|
Fen H, Hongmin Z, Wei W, Chao Y, Yang Y, Bei L and Zhihua S: RHPN1-AS1 drives the progression of hepatocellular carcinoma via regulating miR-596/IGF2BP2 axis. Curr Pharm Des. 25:4630–4640. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Yu H, Li H, Zhang W, Sun L, Dou T, Wang Z, Zhao H and Yang H: lncRNA SNHG1 promotes the progression of hepatocellular carcinoma by regulating the miR-7-5p/IGF2BP2 axis. Heliyon. 10:e276312024. View Article : Google Scholar : PubMed/NCBI | |
|
Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H, Yang C, Sun J, Chen K, Zhou J, et al: CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA. Mol Cancer. 21:1402022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J and Chen C: Tumor suppressor microRNA-138 suppresses low-grade glioma development and metastasis via regulating IGF2BP2. Onco Targets Ther. 13:2247–2260. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ding L, Wang L and Guo F: microRNA-188 acts as a tumour suppressor in glioma by directly targeting the IGF2BP2 gene. Mol Med Rep. 16:7124–7130. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang RS, Zheng YL, Li C, Ding C, Xu C and Zhao J: MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci. 199:104–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C and Wang S: Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol. 13:572020. View Article : Google Scholar : PubMed/NCBI | |
|
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al: Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI |