
Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review)
- Authors:
- Abdul Aziz Mohamed Yusoff
- Siti Zulaikha Nashwa Mohd Khair
- Siti Muslihah Abd Radzak
-
Affiliations: Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia - Published online on: January 24, 2025 https://doi.org/10.3892/mmr.2025.13443
- Article Number: 78
-
Copyright: © Mohamed Yusoff et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Libby CJ, McConathy J, Darley-Usmar V and Hjelmeland AB: The role of metabolic plasticity in blood and brain stem cell pathophysiology. Cancer Res. 80:5–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Morrison AJ: Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J. 289:1302–1314. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I and Bagci-Onder T: Tumor cell infiltration into the brain in glioblastoma: From mechanisms to clinical perspectives. Cancers (Basel). 14:4432022. View Article : Google Scholar : PubMed/NCBI | |
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA and Kim AJ: Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev. 188:1144152022. View Article : Google Scholar : PubMed/NCBI | |
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM and Marqués-Torrejón MÁ: Glioblastoma therapy: Past, present and future. Int J Mol Sci. 25:25292024. View Article : Google Scholar : PubMed/NCBI | |
San-Millán I: The key role of mitochondrial function in health and disease. Antioxidants (Basel). 12:7822023. View Article : Google Scholar : PubMed/NCBI | |
Wang SF, Tseng LM and Lee HC: Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 30:612023. View Article : Google Scholar : PubMed/NCBI | |
Leão Barros MB, Pinheiro DDR and Borges BDN: Mitochondrial DNA alterations in glioblastoma (GBM). Int J Mol Sci. 22:58552021. View Article : Google Scholar : PubMed/NCBI | |
Mohamed Yusoff AA: Role of mitochondrial DNA mutations in brain tumors: A mini-review. J Cancer Res Ther. 11:535–544. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z and Mohamed Yusoff AA: Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med. 50:1042022. View Article : Google Scholar : PubMed/NCBI | |
Denisenko TV, Gorbunova AS and Zhivotovsky B: Mitochondrial involvement in migration, invasion and metastasis. Front Cell Dev Biol. 7:3552019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Yang D, Zhou B, Luan Y, Yao Q, Liu Y, Yang S, Jia J, Xu Y, Bie X, et al: Decrease of MtDNA copy number affects mitochondrial function and involves in the pathological consequences of ischaemic stroke. J Cell Mol Med. 26:4157–4168. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tuchalska-Czuroń J, Lenart J, Augustyniak J and Durlik M: Is mitochondrial DNA copy number a good prognostic marker in resectable pancreatic cancer? Pancreatology. 19:73–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L and Shen YQ: Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. Cell Insight. 2:1001132023. View Article : Google Scholar : PubMed/NCBI | |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol. 25 (12 Suppl 2):iv1–iv99. 2023. View Article : Google Scholar : PubMed/NCBI | |
Thomas DL: 2021 Updates to the World Health Organization classification of adult-type and pediatric-type diffuse gliomas: A clinical practice review. Chin Clin Oncol. 12:72023. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Xia Q, Liu L, Li S and Dong L: Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Front Mol Biosci. 7:5627982020. View Article : Google Scholar : PubMed/NCBI | |
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D and Baranowska-Bosiacka I: Epidemiology of glioblastoma multiforme-literature review. Cancers (Basel). 14:24122022. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 24 (Suppl 5):v1–v95. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M and Ciurea AV: Deciphering glioblastoma: Fundamental and novel insights into the biology and therapeutic strategies of gliomas. Curr Issues Mol Biol. 46:2402–2443. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA and Torchilin VP: Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers (Basel). 15:21162023. View Article : Google Scholar : PubMed/NCBI | |
Ohka F, Natsume A and Wakabayashi T: Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012:8784252012. View Article : Google Scholar : PubMed/NCBI | |
Ohgaki H and Kleihues P: The definition of primary and secondary glioblastoma. Clin Cancer Res. 19:764–772. 2013. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO Classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Torrisi F, Alberghina C, D'Aprile S, Pavone AM, Longhitano L, Giallongo S, Tibullo D, Di Rosa M, Zappalà A, Cammarata FP, et al: The hallmarks of glioblastoma: Heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicines. 10:8062022. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
Verdugo E, Puerto I and Medina MÁ: An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun (Lond). 42:1083–1111. 2022. View Article : Google Scholar : PubMed/NCBI | |
Marker DF, Agnihotri S, Amankulor N, Murdoch GH and Pearce TM: The dominant TP53 hotspot mutation in IDH-mutant astrocytoma, R273C, has distinctive pathologic features and sex-specific prognostic implications. Neurooncol Adv. 4:vdab1822021.PubMed/NCBI | |
Dekker LJM, Verheul C, Wensveen N, Leenders W, Lamfers MLM, Leenstra S and Luider TM: Effects of the IDH1 R132H mutation on the energy metabolism: A comparison between tissue and corresponding primary glioma cell cultures. ACS Omega. 7:3568–3578. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lan Z, Li X and Zhang X Glioblastoma: An update in pathology, molecular mechanisms and biomarkers. Int J Mol Sci. 25:30402024. View Article : Google Scholar : PubMed/NCBI | |
Mohd Khair SZN, Abd Radzak SM and Mohamed Yusoff AA: The uprising of mitochondrial DNA biomarker in cancer. Dis Markers. 2021:76752692021. View Article : Google Scholar : PubMed/NCBI | |
Jacobs LJHC and Riemer J: Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett. 597:205–223. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, et al: Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med. 55:1595–1619. 2023. View Article : Google Scholar : PubMed/NCBI | |
Antonucci S, Di Lisa F and Kaludercic N: Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium. 94:1023442021. View Article : Google Scholar : PubMed/NCBI | |
Habbane M, Montoya J, Rhouda T, Sbaoui Y, Radallah D and Emperador S: Human mitochondrial DNA: Particularities and diseases. Biomedicines. 9:13642021. View Article : Google Scholar : PubMed/NCBI | |
Bonekamp NA and Larsson NG: SnapShot: Mitochondrial nucleoid. Cell. 172:388–388.e1. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF and Clayton DA: Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol. 31:4994–5010. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG and Jakobs S: Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci USA. 108:13534–13539. 2011. View Article : Google Scholar : PubMed/NCBI | |
He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, et al: Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 40:6109–6121. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han S, Udeshi ND, Deerinck TJ, Svinkina T, Ellisman MH, Carr SA and Ting AY: Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem Biol. 24:404–414. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N and Kang D: Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31:1640–1645. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang YE, Marinov GK, Wold BJ and Chan DC: Genome-wide analysis reveals coating of the mitochondrial genome by TFAM. PLoS One. 8:e745132013. View Article : Google Scholar : PubMed/NCBI | |
Ngo HB, Lovely GA, Phillips R and Chan DC: Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun. 5:30772014. View Article : Google Scholar : PubMed/NCBI | |
Farge G, Mehmedovic M, Baclayon M, van den Wildenberg SMJL, Roos WH, Gustafsson CM, Wuite GJ and Falkenberg M: In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep. 8:66–74. 2014. View Article : Google Scholar : PubMed/NCBI | |
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al: Sequence and organization of the human mitochondrial genome. Nature. 290:457–465. 1981. View Article : Google Scholar : PubMed/NCBI | |
Slone J and Huang T: The special considerations of gene therapy for mitochondrial diseases. NPJ Genom Med. 5:72020. View Article : Google Scholar : PubMed/NCBI | |
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE and Patel SS: Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem. 295:18406–18425. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ren B, Guan MX, Zhou T, Cai X and Shan G: Emerging functions of mitochondria-encoded noncoding RNAs. Trends Genet. 39:125–139. 2023. View Article : Google Scholar : PubMed/NCBI | |
Montoya J, Christianson T, Levens D, Rabinowitz M and Attardi G: Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA. 79:7195–7199. 1982. View Article : Google Scholar : PubMed/NCBI | |
Zollo O, Tiranti V and Sondheimer N: Transcriptional requirements of the distal heavy-strand promoter of mtDNA. Proc Natl Acad Sci USA. 109:6508–6512. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tan BG, Gustafsson CM and Falkenberg M: Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol. 25:119–132. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Tzertzinis G, Schildkraut I and Ettwiller L: Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res. 32:162–174. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan BG, Mutti CD, Shi Y, Xie X, Zhu X, Silva-Pinheiro P, Menger KE, Díaz-Maldonado H, Wei W, Nicholls TJ, et al: The human mitochondrial genome contains a second light strand promoter. Mol Cell. 82:3646–3660.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kummer E and Ban N: Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol. 22:307–325. 2021. View Article : Google Scholar : PubMed/NCBI | |
Menger KE, Rodríguez-Luis A, Chapman J and Nicholls TJ: Controlling the topology of mammalian mitochondrial DNA. Open Biol. 11:2101682021. View Article : Google Scholar : PubMed/NCBI | |
Matkarimov BT and Saparbaev MK: DNA repair and mutagenesis in vertebrate mitochondria: Evidence for asymmetric DNA strand inheritance. Adv Exp Med Biol. 1241:77–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Falkenberg M, Larsson NG and Gustafsson CM: Replication and transcription of human mitochondrial DNA. Annu Rev Biochem. 93:47–77. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu H, Zhang F and Xu H: The initiation of mitochondrial DNA replication. Biochem Soc Trans. 52:1243–1251. 2024. View Article : Google Scholar : PubMed/NCBI | |
Falkenberg M: Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem. 62:287–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peter B and Falkenberg M: TWINKLE and other human mitochondrial DNA helicases: Structure, function and disease. Genes (Basel). 11:4082020. View Article : Google Scholar : PubMed/NCBI | |
Silva-Pinheiro P, Pardo-Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, Li S, Rozsivalova DH, Valenzuela S, Dogan SA, et al: DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Res. 49:5230–5248. 2021. View Article : Google Scholar : PubMed/NCBI | |
Posse V, Al-Behadili A, Uhler JP, Clausen AR, Reyes A, Zeviani M, Falkenberg M and Gustafsson CM: RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet. 15:e10077812019. View Article : Google Scholar : PubMed/NCBI | |
Fusté JM, Wanrooij S, Jemt E, Granycome CE, Cluett TJ, Shi Y, Atanassova N, Holt IJ, Gustafsson CM and Falkenberg M: Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell. 37:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sarfallah A, Zamudio-Ochoa A, Anikin M and Temiakov D: Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL. EMBO J. 40:e1079882021. View Article : Google Scholar : PubMed/NCBI | |
Picard M: Blood mitochondrial DNA copy number: What are we counting? Mitochondrion. 60:1–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kozhukhar N, Fant A and Alexeyev MF: Quantification of mtDNA content in cultured cells by direct droplet digital PCR. Mitochondrion. 61:102–113. 2021. View Article : Google Scholar : PubMed/NCBI | |
Castellani CA, Longchamps RJ, Sun J, Guallar E and Arking DE: Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 53:214–223. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koller A, Filosi M, Weissensteiner H, Fazzini F, Gorski M, Pattaro C, Schönherr S, Forer L, Herold JM, Stark KJ, et al: Nuclear and mitochondrial genetic variants associated with mitochondrial DNA copy number. Sci Rep. 14:20832024. View Article : Google Scholar : PubMed/NCBI | |
Rath SP, Gupta R, Todres E, Wang H, Jourdain AA, Ardlie KG, Calvo SE and Mootha VK: Mitochondrial genome copy number variation across tissues in mice and humans. Proc Natl Acad Sci USA. 121:e24022911212024. View Article : Google Scholar | |
Shokolenko I and Alexeyev M: Mitochondrial DNA: Consensuses and controversies. DNA (Basel). 2:131–148. 2022.PubMed/NCBI | |
Khozhukhar N, Spadafora D, Rodriguez Y and Alexeyev M: Elimination of mitochondrial DNA from mammalian cells. Curr Protoc Cell Biol. 78:20.11.1–20.11.14. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Hara R, Tedone E, Ludlow A, Huang E, Arosio B, Mari D and Shay JW: Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res. 29:1878–1888. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matsushima Y, Matsumura K, Ishii S, Inagaki H, Suzuki T, Matsuda Y, Beck K and Kitagawa Y: Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J Biol Chem. 278:31149–31158. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM and Larsson NG: Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 13:935–944. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N and Kang D: Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol. 24:9823–9834. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bonekamp NA, Jiang M, Motori E, Garcia Villegas R, Koolmeister C, Atanassov I, Mesaros A, Park CB and Larsson NG: High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo. Life Sci Alliance. 4:e2021010342021. View Article : Google Scholar : PubMed/NCBI | |
Matsushima Y, Goto Y and Kaguni LS: Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA. 107:18410–18415. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aasumets K, Basikhina Y, Pohjoismäki JL, Goffart S and Gerhold J: TFAM knockdown-triggered mtDNA-nucleoid aggregation and a decrease in mtDNA copy number induce the reorganization of nucleoid populations and mitochondria-associated ER-membrane contacts. Biochem Biophys Rep. 28:1011422021.PubMed/NCBI | |
Matsuda T, Kanki T, Tanimura T, Kang D and Matsuura ET: Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochem Biophys Res Commun. 430:717–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maniura-Weber K, Goffart S, Garstka HL, Montoya J and Wiesner RJ: Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 32:6015–6027. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brinckmann A, Weiss C, Wilbert F, von Moers A, Zwirner A, Stoltenburg-Didinger G, Wilichowski E and Schuelke M: Regionalized pathology correlates with augmentation of mtDNA copy numbers in a patient with myoclonic epilepsy with ragged-red fibers (MERRF-syndrome). PLoS One. 5:e135132010. View Article : Google Scholar : PubMed/NCBI | |
Kozhukhar N and Alexeyev MF: Limited predictive value of TFAM in mitochondrial biogenesis. Mitochondrion. 49:156–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D and Suzuki CK: Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell. 49:121–132. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kühl I, Miranda M, Posse V, Milenkovic D, Mourier A, Siira SJ, Bonekamp NA, Neumann U, Filipovska A, Polosa PL, et al: POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci Adv. 2:e16009632016. View Article : Google Scholar : PubMed/NCBI | |
Sitarz KS, Yu-Wai-Man P, Pyle A, Stewart JD, Rautenstrauss B, Seeman P, Reilly MM, Horvath R and Chinnery PF: MFN2 mutations cause compensatory mitochondrial DNA proliferation. Brain. 135:e2191–3. –e220. 1–3. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vielhaber S, Debska-Vielhaber G, Peeva V, Schoeler S, Kudin AP, Minin I, Schreiber S, Dengler R, Kollewe K, Zuschratter W, et al: Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125:245–256. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Leeuwen N, Beekman M, Deelen J, van den Akker EB, de Craen AJM, Slagboom PE and 't Hart LM: Low mitochondrial DNA content associates with familial longevity: The leiden longevity study. Age (Dordr). 36:96292014. View Article : Google Scholar : PubMed/NCBI | |
Mengel-From J, Thinggaard M, Dalgård C, Kyvik KO, Christensen K and Christiansen L: Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet. 133:1149–1159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mizuno G, Yamada H, Tsuboi Y, Munetsuna E, Yamazaki M, Ando Y, Kageyama I, Nouchi Y, Teshigawara A, Hattori Y, et al: Low mitochondrial DNA copy number in peripheral blood mononuclear cells is associated with future mortality risk: A long-term follow-up study from Japan. J Nutr Health Aging. 28:1000132024. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Lei H, Wang H, Qi L, Liu Y, Liu Y, Shi Y, Chen J and Shen QT: Dysregulated inter-mitochondrial crosstalk in glioblastoma cells revealed by in situ cryo-electron tomography. Proc Natl Acad Sci USA. 121:e23111601212024. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, et al: Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet. 52:342–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, Han J, Augustsson MT, Lauko A, Sravya P, Røsland GV, et al: GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nat Cancer. 4:648–664. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vidone M, Clima R, Santorsola M, Calabrese C, Girolimetti G, Kurelac I, Amato LB, Iommarini L, Trevisan E, Leone M, et al: A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int J Biochem Cell Biol. 63:46–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mohamed Yusoff AA, Mohd Nasir KN, Haris K, Mohd Khair SZN, Abdul Ghani ARI, Idris Z and Abdullah JM: Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients. Oncol Lett. 14:5179–5188. 2017.PubMed/NCBI | |
Radzak S, Khair Z, Ahmad F, Idris Z and Yusoff A: Accumulation of mitochondrial DNA microsatellite instability in Malaysian patients with primary central nervous system tumors. Turk Neurosurg. 31:99–106. 2021.PubMed/NCBI | |
Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG and St John JC: The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun. 2:12014. View Article : Google Scholar : PubMed/NCBI | |
Khair SZNM, Ab Radzak SM, Idris Z, Zin AAM, Ahmad WMAW and Yusoff AAM: The effect of somatic mutations in mitochondrial DNA on the survival of patients with primary brain tumors. Croat Med J. 65:111–121. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM and Idris Z: Mitochondrial 10398A>G NADH-dehydrogenase subunit 3 of complex I is frequently altered in intra-axial brain tumors in Malaysia. Brain Tumor Res Treat. 6:31–38. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lloyd RE, Keatley K, Littlewood DT, Meunier B, Holt WV, An Q, Higgins SC, Polyzoidis S, Stephenson KF, Ashkan K, et al: Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro Oncol. 17:942–952. 2015. View Article : Google Scholar : PubMed/NCBI | |
Keatley K, Stromei-Cleroux S, Wiltshire T, Rajala N, Burton G, Holt WV, Littlewood DTJ, Briscoe AG, Jung J, Ashkan K, et al: Integrated approach reveals role of mitochondrial germ-line mutation F18L in Respiratory Chain, oxidative alterations, drug sensitivity, and patient prognosis in glioblastoma. Int J Mol Sci. 20:33642019. View Article : Google Scholar : PubMed/NCBI | |
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z and Lee HC: Prevalence of mitochondrial DNA common deletion in patients with gliomas and meningiomas: A first report from a Malaysian study group. J Chin Med Assoc. 83:838–844. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Qiu X, Huang J, Zhuo Z, Chen H, Zeng R, Wu H, Guo K, Yang Q, Ye H, et al: Development and validation of a novel mitophagy-related gene prognostic signature for glioblastoma multiforme. BMC Cancer. 22:6442022. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Hua W and Wang H: Comprehensive analysis of mitochondrial dynamic-related genes on their functions and prognostic values for glioblastoma multiforme. Genes Dis. 11:1010842023. View Article : Google Scholar : PubMed/NCBI | |
Su J and Li Y, Liu Q, Peng G, Qin C and Li Y: Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J Transl Med. 20:4402022. View Article : Google Scholar : PubMed/NCBI | |
Peng G, Feng Y, Wang X, Huang W and Li Y: The mitochondria-related gene risk mode revealed p66Shc as a prognostic mitochondria-related gene of glioblastoma. Sci Rep. 14:114182024. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raimondi V, Ciccarese F and Ciminale V: Oncogenic pathways and the electron transport chain: A dangeROS liaison. Br J Cancer. 122:168–181. 2020. View Article : Google Scholar : PubMed/NCBI | |
Franceschi S, Corsinovi D, Lessi F, Tantillo E, Aretini P, Menicagli M, Scopelliti C, Civita P, Pasqualetti F, Naccarato AG, et al: Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. EBioMedicine. 37:56–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Peng W, Song X, Wang Q and Wang W: Anticancer effect of icaritin inhibits cell growth of colon cancer through reactive oxygen species, Bcl-2 and cyclin D1/E signaling. Oncol Lett. 12:3537–3542. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu J, Jiang L, Wei X, Niu C, Wang R, Zhang J, Meng D and Yao K: Bach1 induces endothelial cell apoptosis and cell-cycle arrest through ROS generation. Oxid Med Cell Longev. 2016:62340432016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Ma X, Gao P, Han X, Zhao P, Xie F and Liu M: Advancing glioblastoma treatment by targeting metabolism. Neoplasia. 51:1009852024. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Wang C, Zheng X, Li S, Zhang W, Kang Z, Yin S, Chen J, Chen F and Li W: Warburg effect-related risk scoring model to assess clinical significance and immunity characteristics of glioblastoma. Cancer Med. 12:20639–20654. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P and Caja L: Glucose and amino acid metabolic dependencies linked to stemness and metastasis in different aggressive cancer types. Front Pharmacol. 12:7237982021. View Article : Google Scholar : PubMed/NCBI | |
Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J and Sun C: Mitochondria's role in the maintenance of cancer stem cells in glioblastoma. Front Oncol. 11:5826942021. View Article : Google Scholar : PubMed/NCBI | |
Nakhle J, Khattar K, Özkan T, Boughlita A, Abba Moussa D, Darlix A, Lorcy F, Rigau V, Bauchet L, Gerbal-Chaloin S, et al: Mitochondria transfer from mesenchymal stem cells confers chemoresistance to glioblastoma stem cells through metabolic rewiring. Cancer Res Commun. 3:1041–1056. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qian W and Van Houten B: Alterations in bioenergetics due to changes in mitochondrial DNA copy number. Methods. 51:452–457. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singh KK, Ayyasamy V, Owens KM, Koul MS and Vujcic M: Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet. 54:516–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dickinson A, Yeung KY, Donoghue J, Baker MJ, Kelly RD, McKenzie M, Johns TG and St John JC: The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death Differ. 20:1644–1653. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Yu M, Tsoli M, Chang C, Joshi S, Liu J, Ryall S, Chornenkyy Y, Siddaway R, Hawkins C and Ziegler DS: Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro Oncol. 22:139–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D and Schaffer SW: Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol. 294:C413–C422. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J and Bai Y: A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet. 18:1578–1589. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sadakierska-Chudy A, Kotarska A, Frankowska M, Jastrzębska J, Wydra K, Miszkiel J, Przegaliński E and Filip M: The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Mol Neurobiol. 54:7460–7470. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Yao X and Shen Y: Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Sci Rep. 6:358592016. View Article : Google Scholar : PubMed/NCBI | |
Al-Kafaji G and Golbahar J: High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. Biomed Res Int. 2013:7549462013. View Article : Google Scholar : PubMed/NCBI | |
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y and Jiang M: Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol. 7:12292024. View Article : Google Scholar : PubMed/NCBI | |
Grady CI, Walsh LM and Heiss JD: Mitoepigenetics and gliomas: Epigenetic alterations to mitochondrial DNA and nuclear DNA alter mtDNA expression and contribute to glioma pathogenicity. Front Neurol. 14:11547532023. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Chen L, Song Z and He H: The fate of damaged mitochondrial DNA in the cell. Biochim Biophys Acta Mol Cell Res. 1869:1192332022. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Tigano M and Sfeir A: Safeguarding mitochondrial genomes in higher eukaryotes. Nat Struct Mol Biol. 27:687–695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee HC and Wei YH: Mitochondrial role in life and death of the cell. J Biomed Sci. 7:2–15. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fontana GA and Gahlon HL: Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 48:11244–11258. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi AA and Sander C: Mitochondrial DNA copy number variation across human cancers. Elife. 5:e107692016. View Article : Google Scholar : PubMed/NCBI | |
Dardaud LM, Bris C, Desquiret-Dumas V, Boisselier B, Tabouret E, Mokhtari K, Figarella-Branger D, Rousseau A and Procaccio V: High mitochondrial DNA copy number is associated with longer survival in young patients with glioblastoma. Neuro Oncol. 21:1084–1085. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang BC: Evidence for association of mitochondrial DNA sequence amplification and nuclear localization in human low-grade gliomas. Mutat Res. 354:27–33. 1996. View Article : Google Scholar : PubMed/NCBI | |
Liang BC and Hays L: Mitochondrial DNA copy number changes in human gliomas. Cancer Lett. 105:167–173. 1996. View Article : Google Scholar : PubMed/NCBI | |
Correia RL, Oba-Shinjo SM, Uno M, Huang N and Marie SKN: Mitochondrial DNA depletion and its correlation with TFAM, TFB1M, TFB2M and POLG in human diffusely infiltrating astrocytomas. Mitochondrion. 11:48–53. 2011. View Article : Google Scholar : PubMed/NCBI | |
Soltész B, Pös O, Wlachovska Z, Budis J, Hekel R, Strieskova L, Liptak JB, Krampl W, Styk J, Németh N, et al: Mitochondrial DNA copy number changes, heteroplasmy, and mutations in plasma-derived exosomes and brain tissue of glioblastoma patients. Mol Cell Probes. 66:1018752022. View Article : Google Scholar : PubMed/NCBI | |
Marucci G, Maresca A, Caporali L, Farnedi A, Betts CM, Morandi L, de Biase D, Cerasoli S, Foschini MP, Bonora E, et al: Oncocytic glioblastoma: A glioblastoma showing oncocytic changes and increased mitochondrial DNA copy number. Hum Pathol. 44:1867–1876. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li D, Qu F, Chen Y, Li G, Jiang H, Huang X, Yang H and Xing J: Association of leukocyte mitochondrial DNA content with glioma risk: Evidence from a Chinese case-control study. BMC Cancer. 14:6802014. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Song R, Lu Z and Zhao H: Mitochondrial DNA copy number in whole blood and glioma risk: A case control study. Mol Carcinog. 55:2089–2094. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Qu Y, Gao K, Yang Q, Shi B, Hou P and Ji M: High copy number of mitochondrial DNA (mtDNA) predicts good prognosis in glioma patients. Am J Cancer Res. 5:1207–1216. 2015.PubMed/NCBI | |
Sourty B, Dardaud LM, Bris C, Desquiret-Dumas V, Boisselier B, Basset L, Figarella-Branger D, Morel A, Sanson M, Procaccio V and Rousseau A: Mitochondrial DNA copy number as a prognostic marker is age-dependent in adult glioblastoma. Neurooncol Adv. 4:vdab1912022.PubMed/NCBI | |
Ab Radzak SM, Mohd Khair SZN, Idris Z, Wan Ahmad WMA, Patar A and Mohamed Yusoff AA: Mitochondrial deoxyribonucleic acid copy number elevation as a predictor for extended survival and favorable outcomes in high-grade brain tumor patients: A Malaysian study. Eurasian J Med. 56:7–14. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hua L, Juratli TA, Zhu H, Deng J, Wang D, Sun S, Xie Q, Wakimoto H and Gong Y: High tumor mitochondrial DNA content correlates with an improved patient's outcome in WHO grade III Meningioma. Front Oncol. 10:5422942020. View Article : Google Scholar : PubMed/NCBI | |
Sravya P, Krishna ASU, Santosh V and Arivazhagan A: Mitochondrial DNA content in tumor tissue and blood of patients with glioblastoma-A reliable biomarker? Int J Neurooncol. 3:12–18. 2020. View Article : Google Scholar | |
Sravya P, Nimbalkar VP, Kanuri NN, Sugur H, Verma BK, Kundu P, Rao S, Uday Krishna AS, Somanna S, Kondaiah P, et al: Low mitochondrial DNA copy number is associated with poor prognosis and treatment resistance in glioblastoma. Mitochondrion. 55:154–163. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang J, Huang X, Zhang J, Zhou X, Hu J, Li G, He S and Xing J: High leukocyte mitochondrial DNA content contributes to poor prognosis in glioma patients through its immunosuppressive effect. Br J Cancer. 113:99–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun X and St John JC: Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenetics Chromatin. 11:532018. View Article : Google Scholar : PubMed/NCBI | |
Braun Y, Filipski K, Bernatz S, Baumgarten P, Roller B, Zinke J, Zeiner PS, Ilina E, Senft C, Ronellenfitsch MW, et al: Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma. Neuropathol Appl Neurobiol. 47:379–393. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oliva CR, Nozell SE, Diers A, McClugage SG III, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A and Griguer CE: Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem. 285:39759–39767. 2010. View Article : Google Scholar : PubMed/NCBI | |
Luna B, Bhatia S, Yoo C, Felty Q, Sandberg DI, Duchowny M, Khatib Z, Miller I, Ragheb J, Prasanna J and Roy D: Proteomic and mitochondrial genomic analyses of pediatric brain tumors. Mol Neurobiol. 52:1341–1363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, et al: Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One. 15:e02281662020. View Article : Google Scholar : PubMed/NCBI | |
Filograna R, Mennuni M, Alsina D and Larsson NG: Mitochondrial DNA copy number in human disease: The more the better? FEBS Lett. 595:976–1002. 2021. View Article : Google Scholar : PubMed/NCBI | |
Domazet B, Maclennan GT, Lopez-Beltran A, Montironi R and Cheng L: Laser capture microdissection in the genomic and proteomic era: Targeting the genetic basis of cancer. Int J Clin Exp Pathol. 1:475–488. 2008.PubMed/NCBI | |
Kurdi M, Bamaga A, Alkhotani A, Alsharif T, Abdel-Hamid GA, Selim ME, Alsinani T, Albeshri A, Badahdah A, Basheikh M and Baeesa S: Mitochondrial DNA alterations in glioblastoma and current therapeutic targets. Front Biosci (Landmark Ed). 29:3672024. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, et al: MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight. 8:e1698682023. View Article : Google Scholar : PubMed/NCBI | |
Mou JJ, Peng J, Shi YY, Li N, Wang Y, Ke Y, Zhou YF and Zhou FX: Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Biomed Pharmacother. 103:729–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Devic S: Warburg effect-a consequence or the cause of carcinogenesis? J Cancer. 7:817–822. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dickinson A, Yeung V and St. John J: Abnormal regulation of mitochondrial DNA copy number in glioblastoma multiforme cancer stem cells. Biol Reprod. 87 (Suppl 1):S5982012. View Article : Google Scholar | |
Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Sierpinski R and Majsterek I: PI3K/Akt/mTOR signaling pathway in blood malignancies-new therapeutic possibilities. Cancers (Basel). 15:52972023. View Article : Google Scholar : PubMed/NCBI | |
Tufail M, Jiang CH and Li N: Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI | |
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB and Larsson NG: Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 5:eaav98242019. View Article : Google Scholar : PubMed/NCBI | |
Tian Q, Moore AZ, Oppong R, Ding J, Zampino M, Fishbein KW, Spencer RG and Ferrucci L: Mitochondrial DNA copy number and heteroplasmy load correlate with skeletal muscle oxidative capacity by P31 MR spectroscopy. Aging Cell. 20:e134872021. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, Qi Y and Tsang SY: Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells. 10:24632021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Li Y, Chen G and Chen Q: Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci. 30:862023. View Article : Google Scholar : PubMed/NCBI | |
Popov LD: Mitochondrial biogenesis: An update. J Cell Mol Med. 24:4892–4899. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, Oldfors A, Westerblad H and Larsson NG: Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA. 99:15066–15071. 2002. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y and Yang Y: Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther. 9:502024. View Article : Google Scholar : PubMed/NCBI | |
Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, Schon EA, Lamperti C and Zeviani M: In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 14:80–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J and Moraes CT: Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet. 21:2288–2297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, Caporali L, Liguori R, Deceglie S, Roberti M, et al: Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain. 137:335–353. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li J, Feng B, Bi Z, Zhu G, Zhang Y and Li X: Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren Fail. 44:1545–1557. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, et al: Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 31:1078–1090.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Bai H, Guo F, Thai PN, Luo X, Zhang P, Yang C, Feng X, Zhu D, Guo J, et al: PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells. Aging (Albany NY). 12:7411–7430. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Jiang T, Duan N, Wu M, Yan C, Li Y, Cai M and Wang Q: Activation of CB1R-dependent PGC-1α is involved in the improved mitochondrial biogenesis induced by electroacupuncture pretreatment. Rejuvenation Res. 24:104–119. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama S, Shitara H, Nakada K, Ono T, Sato A, Suzuki H, Ogawa T, Masaki H, Hayashi J and Yonekawa H: Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system. Biochem Biophys Res Commun. 401:26–31. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, Bonekamp NA, Albarran-Gutierrez S, Stewart JB and Larsson NG: Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell Metab. 26:429–436.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T, Kubota T, Fujiwara T, Hamasaki N, Takeshita A, Sunagawa K and Tsutsui H: Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 112:683–690. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, Kanki T, Kang D, Sunagawa K, Tsutsui H and Nakanishi H: Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci. 28:8624–8634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oka S, Leon J, Sakumi K, Ide T, Kang D, LaFerla FM and Nakabeppu Y: Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease. Sci Rep. 6:378892016. View Article : Google Scholar : PubMed/NCBI | |
Ylikallio E, Tyynismaa H, Tsutsui H, Ide T and Suomalainen A: High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet. 19:2695–2705. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10:8512019. View Article : Google Scholar : PubMed/NCBI | |
Kubo Y, Tanaka K, Masuike Y, Takahashi T, Yamashita K, Makino T, Saito T, Yamamoto K, Tsujimoto T, Harino T, et al: Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med. 20:3832022. View Article : Google Scholar : PubMed/NCBI | |
Mei H, Sun S, Bai Y, Chen Y, Chai R and Li H: Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death Dis. 6:e17102015. View Article : Google Scholar : PubMed/NCBI |