|
1
|
Han HJ, Choi BY and Surh YJ: Dual roles of
Pin1 in cancer development and progression. Curr Pharm Des.
23:4422–4425. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jeong J, Usman M, Li Y, Zhou XZ and Lu KP:
Pin1-catalyzed conformation changes regulate protein ubiquitination
and degradation. Cells. 13:7312024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gurung D, Danielson JA, Tasnim A, Zhang
JT, Zou Y and Liu JY: Proline isomerization: From the chemistry and
biology to therapeutic opportunities. Biology (Basel).
12:10082023.PubMed/NCBI
|
|
4
|
Lanni C, Masi M, Racchi M and Govoni S:
Cancer and Alzheimer's disease inverse relationship: an
age-associated diverging derailment of shared pathways. Mol
Psychiatry. 26:280–295. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Marcolino TF, Pimenta CAM, Artigiani Neto
R, Castelo P, Silva MS, Forones NM and Oshima CTF: p53, Cyclin-D1,
β-catenin, APC and c-myc in tumor tissue from colorectal and
gastric cancer patients with suspected lynch syndrome by the
bethesda criteria. Asian Pac J Cancer Prev. 21:343–348. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Born A, Henen MA and Vogeli B: Activity
and affinity of Pin1 variants. Molecules. 25:362019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G,
Zhou XZ, Shilton B and Lu KP: The role of the master cancer
regulator Pin1 in the development and treatment of cancer. Front
Cell Dev Biol. 12:13439382024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu C, Dan L, Li Q, Bajinka O and Yuan X:
The mechanisms of Pin1 as targets for cancer therapy. Front
Immunol. 15:14820882024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yu JH, Im CY and Min SH: Function of PIN1
in Cancer development and its inhibitors as cancer therapeutics.
Front Cell Dev Biol. 8:1202020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ma JQ, Yang Y, Juan J, Guo CF, Tuerxun M,
Ting W and Hasim A: Over-expression of prolyl isomerase Pin1
promotes cervical tumorigenesis and metastasis. Int J Clin Exp
Pathol. 11:664–674. 2018.PubMed/NCBI
|
|
11
|
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z,
Li Y and Zhang S: The role of CDC25C in cell cycle regulation and
clinical cancer therapy: A systematic review. Cancer Cell Int.
20:2132020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang JN, Zhang ZR, Che Y, Yuan ZY, Lu ZL,
Li Y, Li N, Wan J, Sun HD, Sun N, et al: Acetyl-macrocalin B, an
ent-kaurane diterpenoid, initiates apoptosis through the
ROS-p38-caspase 9-dependent pathway and induces G2/M phase arrest
via the Chk1/2-Cdc25C-Cdc2/cyclin B axis in non-small cell lung
cancer. Cancer Biol Ther. 19:609–621. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xia Z, Ou-Yang W, Hu T and Du K:
Prognostic significance of CDC25C in lung adenocarcinoma: An
analysis of TCGA data. Cancer Genet. 233–234. 67–74.
2019.PubMed/NCBI
|
|
14
|
Wu C, Lyu J, Yang EJ, Liu Y, Zhang B and
Shim JS: Targeting AURKA-CDC25C axis to induce synthetic lethality
in ARID1A-deficient colorectal cancer cells. Nat Commun.
9:32122018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li Y, Yuan Z, Wang L, Yang J, Pu P, Le Y,
Chen X, Wang C, Gao Y, Liu Y, et al: Prolyl isomerase Pin1 sculpts
the immune microenvironment of colorectal cancer. Cell Signal.
115:1110412024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Maegawa S and Gopalakrishnan V: PLK
inhibitors come of age in pediatric brain tumors. Neuro Oncol.
24:427–428. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Crenshaw DG, Yang J, Means AR and
Kornbluth S: The mitotic peptidyl-prolyl isomerase, Pin1, interacts
with Cdc25 and Plx1. EMBO J. 17:1315–1327. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shen M, Stukenberg PT, Kirschner MW and Lu
KP: The essential mitotic peptidyl-prolyl isomerase Pin1 binds and
regulates mitosis-specific phosphoproteins. Genes Dev. 12:706–720.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhou XZ, Kops O, Werner A, Lu PJ, Shen M,
Stoller G, Küllertz G, Stark M, Fischer G and Lu KP: Pin1-dependent
prolyl isomerization regulates dephosphorylation of Cdc25C and tau
proteins. Mol Cell. 6:873–883. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Stukenberg PT and Kirschner MW: Pin1 acts
catalytically to promote a conformational change in Cdc25. Mol
Cell. 7:1071–1083. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fei F, Qu J, Liu K, Li C, Wang X, Li Y and
Zhang S: The subcellular location of cyclin B1 and CDC25 associated
with the formation of polyploid giant cancer cells and their
clinicopathological significance. Lab Invest. 99:483–498. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dakilah I, Harb A, Abu-Gharbieh E,
El-Huneidi W, Taneera J, Hamoudi R, Semreen MH and Bustanji Y:
Potential of CDC25 phosphatases in cancer research and treatment:
Key to precision medicine. Front Pharmacol. 15:13240012024.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang C, Zeng J, Li LJ, Xue M and He SL:
Cdc25A inhibits autophagy-mediated ferroptosis by upregulating
ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell
Death Dis. 12:10552021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen YC, Hsieh HH, Chang HC, Wang HC, Lin
WJ and Lin JJ: CDC25B induces cellular senescence and correlates
with tumor suppression in a p53-dependent manner. J Biol Chem.
296:1005642021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Khoei SG, Mohammadi C, Mohammadi Y, Sameri
S and Najafi R: Prognostic value of peptidyl-prolyl cis-trans
isomerase 1 (PIN1) in human malignant tumors. Clin Transl Oncol.
22:1067–1077. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Montalto FI and De Amicis F: Cyclin D1 in
cancer: A molecular connection for cell cycle control, adhesion and
invasion in tumor and stroma. Cells. 9:26482020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cai Z, Wang J, Li Y, Shi Q, Jin L, Li S,
Zhu M, Wang Q, Wong LL, Yang W, et al: Overexpressed Cyclin D1 and
CDK4 proteins are responsible for the resistance to CDK4/6
inhibitor in breast cancer that can be reversed by PI3K/mTOR
inhibitors. Sci China Life Sci. 66:94–109. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lundberg A, Lindstrom LS, Li J, Harrell
JC, Darai-Ramqvist E, Sifakis EG, Foukakis T, Perou CM, Czene K,
Bergh J and Tobin NP: The long-term prognostic and predictive
capacity of cyclin D1 gene amplification in 2305 breast tumours.
Breast Cancer Res. 21:342019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shi Q, Li Y, Li S, Jin L, Lai H, Wu Y, Cai
Z, Zhu M, Li Q, Li Y, et al: LncRNA DILA1 inhibits Cyclin D1
degradation and contributes to tamoxifen resistance in breast
cancer. Nat Commun. 11:55132020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tchakarska G and Sola B: The double
dealing of cyclin D1. Cell Cycle. 19:163–178. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Song D, Lian Y and Zhang L: The potential
of activator protein 1 (AP-1) in cancer targeted therapy. Front
Immunol. 14:12248922023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mst Nazneen Nahar Rina D, Dr. Naba Kumar
Saha P and Mostafa Kamal D: Significance of cyclin D1
immunoexpression in breast carcinoma. J Cancer Sci Clin Ther.
8:321–326. 2024. View Article : Google Scholar
|
|
33
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He
Y, Chen G, Lv F, Jiang P, Li Y, et al: E3 ligase MG53 suppresses
tumor growth by degrading cyclin D1. Signal Transduct Target Ther.
8:2632023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nashaat S, Henen MA, El-Messery SM and
Eisa H: Synthesis, state-of-the-art NMR-binding and molecular
modeling study of new benzimidazole core derivatives as Pin1
inhibitors: Targeting breast cancer. Bioorg Med Chem.
28:1154952020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang C, Liu J, Xu D, Zhang T, Hu W and
Feng Z: Gain-of-function mutant p53 in cancer progression and
therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu J, Cao J, Topatana W, Juengpanich S, Li
S, Zhang B, Shen J, Cai L, Cai X and Chen M: Targeting mutant p53
for cancer therapy: Direct and indirect strategies. J Hematol
Oncol. 14:1572021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Engeland K: Cell cycle regulation:
p53-p21-RB signaling. Cell Death Differ. 29:946–960. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vaddavalli PL and Schumacher B: The p53
network: cellular and systemic DNA damage responses in cancer and
aging. Trends Genet. 38:598–612. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Marei HE, Althani A, Afifi N, Hasan A,
Caceci T, Pozzoli G, Morrione A, Giordano A and Cenciarelli C: p53
signaling in cancer progression and therapy. Cancer Cell Int.
21:7032021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tomazini A and Shifman JM: Targeting Ras
with protein engineering. Oncotarget. 14:672–687. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ullah R, Yin Q, Snell AH and Wan L:
RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer
Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cheng CW and Tse E: PIN1 in cell cycle
control and cancer. Front Pharmacol. 9:13672018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen Y, Wu YR, Yang HY, Li XZ, Jie MM, Hu
CJ, Wu YY, Yang SM and Yang YB: Prolyl isomerase Pin1: A promoter
of cancer and a target for therapy. Cell Death Dis. 9:8832018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sciacchitano S, Sacconi A, De Vitis C,
Blandino G, Piaggio G, Salvati V, Napoli C, Marchetti P, Taurelli
BS, Coluzzi F, et al: H-Ras gene takes part to the host immune
response to COVID-19. Cell Death Discov. 7:1582021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Luo J: KRAS mutation in pancreatic cancer.
Semin Oncol. 48:10–18. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhu G, Pei L, Xia H, Tang Q and Bi F: Role
of oncogenic KRAS in the prognosis, diagnosis and treatment of
colorectal cancer. Mol Cancer. 20:1432021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shalom B, Farago M, Salaymeh Y, Sebban S,
Risling M, Pikarsky E and Katzav S: Vav1 accelerates Ras-driven
lung cancer and modulates its tumor microenvironment. Cell Signal.
97:1103952022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q,
Xu X, Guo K, Shi Q, Zhang X, Huo L, et al: Butyrate reverses
ferroptosis resistance in colorectal cancer by inducing
c-Fos-dependent xCT suppression. Redox Biol. 65:1028222023.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Degirmenci U, Wang M and Hu J: Targeting
aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells.
9:1982020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu J, Wang Y, Mu C, Li M, Li K, Li S, Wu
W, Du L, Zhang X, Li C, et al: Pancreatic tumor eradication via
selective Pin1 inhibition in cancer-associated fibroblasts and T
lymphocytes engagement. Nat Commun. 13:43082022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lu KP and Zhou XZ: The prolyl isomerase
PIN1: A pivotal new twist in phosphorylation signalling and
disease. Nat Rev Mol Cell Biol. 8:904–916. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Luo ML, Gong C, Chen CH, Lee DY, Hu H,
Huang P, Yao Y, Guo W, Reinhardt F, Wulf G, et al: Prolyl isomerase
Pin1 acts downstream of miR200c to promote cancer stem-like cell
traits in breast cancer. Cancer Res. 74:3603–3616. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/beta-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Koelman EMR, Yeste-Vazquez A and Grossmann
TN: Targeting the interaction of β-catenin and TCF/LEF
transcription factors to inhibit oncogenic Wnt signaling. Bioorg
Med Chem. 70:1169202022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Delgado-Bellido D, Zamudio-Martinez E,
Fernandez-Cortes M, Herrera-Campos AB, Olmedo-Pelayo J, Perez CJ,
Expósito J, de Álava E, Amaral AT, Valle FO, et al: VE-Cadherin
modulates β-catenin/TCF-4 to enhance vasculogenic mimicry. Cell
Death Dis. 14:1352023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ji Y, Liu Y, Sun C, Yu L, Wang Z, Du X,
Yang W, Zhang C, Tao C, Wang J, et al: ADCK1 activates the
β-catenin/TCF signaling pathway to promote the growth and migration
of colon cancer cells. Cell Death Dis. 12:3542021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang WJ, Tian XP, Bi SX, Zhang SR, He TS,
Song LY, Yun JP, Zhou ZG, Yu RM and Li M: The
β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes
hepatocellular carcinoma metastasis. Oncogene. 39:4538–4550. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhu L, Tian Q, Gao H, Wu K, Wang B, Ge G,
Jiang S, Wang K, Zhou C, He J, et al: PROX1 promotes breast cancer
invasion and metastasis through WNT/β-catenin pathway via
interacting with hnRNPK. Int J Biol Sci. 18:2032–2046. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang JZ, Du WT, Bai J, Cheng SZ and Zhang
YH: The association of rs2233679 in the PIN1 gene promoter with the
risk of Coronary Artery Disease in Chinese female individuals. J
Stroke Cerebrovasc Dis. 29:1049352020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yu S, Wang Y, Gong X, Fan Z, Wang Z, Liang
Z, Wu R, Cao B, Wang N, Bi C, et al: LncRNA AGPG confers endocrine
resistance in breast cancer by promoting E2F1 activity. Cancer Res.
83:3220–3236. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Krishnan N, Titus MA and Thapar R: The
prolyl isomerase pin1 regulates mRNA levels of genes with short
half-lives by targeting specific RNA binding proteins. PLoS One.
9:e854272014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Choi YJ, Kim I, Lee JE and Park JW: PIN1
transcript variant 2 acts as a long non-coding RNA that controls
the HIF-1-driven hypoxic response. Sci Rep. 9:105992019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kassab A, Gupta I and Moustafa AA: Role of
E2F transcription factor in oral cancer: Recent insight and
advancements. Semin Cancer Biol. 92:28–41. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim S, Armand J, Safonov A, Zhang M, Soni
RK, Schwartz G, McGuinness JE, Hibshoosh H, Razavi P, Kim M, et al:
Sequential activation of E2F via Rb degradation and c-Myc drives
resistance to CDK4/6 inhibitors in breast cancer. Cell Rep.
42:1131982023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen D, Wang L and Lee TH:
Post-translational modifications of the peptidyl-prolyl isomerase
Pin1. Front Cell Dev Biol. 8:1292020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Maggio J, Armando R, Balcone L, Vilarullo
RN, Casco MDP, Gomez DLM and Gomez DE: Role of PIN1 in human
pathology: Cellular regulation, pathogenesis and therapeutic
implications (Review). World Acad Sci J. 6:52023. View Article : Google Scholar
|
|
68
|
Zhou Y, Nakajima R, Shirasawa M,
Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K
and Ohtani K: Expanding roles of the E2F-RB-p53 pathway in tumor
suppression. Biology (Basel). 12:15112023.PubMed/NCBI
|
|
69
|
Chuang HH, Zhen YY, Tsai YC, Chuang CH,
Huang MS, Hsiao M and Yang CJ: Targeting Pin1 for modulation of
cell motility and cancer therapy. Biomedicines. 9:3592021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bao L, Kimzey A, Sauter G, Sowadski JM, Lu
KP and Wang DG: Prevalent overexpression of prolyl isomerase Pin1
in human cancers. Am J Pathol. 164:1727–1737. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Caligiuri I, Vincenzo C, Asano T, Kumar V
and Rizzolio F: The metabolic crosstalk between PIN1 and the tumour
microenvironment. Semin Cancer Biol. 91:143–157. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yao G, Lee TJ, Mori S, Nevins JR and You
L: A bistable Rb-E2F switch underlies the restriction point. Nat
Cell Biol. 10:476–482. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dannenberg JH, van Rossum A, Schuijff L
and te Riele H: Ablation of the retinoblastoma gene family
deregulates G(1) control causing immortalization and increased cell
turnover under growth-restricting conditions. Genes Dev.
14:3051–3064. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tong Y, Ying H, Liu R, Li L, Bergholz J
and Xiao ZX: Pin1 inhibits PP2A-mediated Rb dephosphorylation in
regulation of cell cycle and S-phase DNA damage. Cell Death Dis.
6:e16402015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wulf G, Garg P, Liou YC, Iglehart D and Lu
KP: Modeling breast cancer in vivo and ex vivo reveals an essential
role of Pin1 in tumorigenesis. EMBO J. 23:3397–3407. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zannini A, Rustighi A, Campaner E and Del
Sal G: Oncogenic hijacking of the PIN1 signaling network. Front
Oncol. 9:942019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lepore A, Choy PM, Lee NCW, Carella MA,
Favicchio R, Briones-Orta MA, Glaser SS, Alpini G, D'Santos C,
Tooze RM, et al: Phosphorylation and stabilization of PIN1 by JNK
promote intrahepatic cholangiocarcinoma growth. Hepatology.
74:2561–2579. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Poudel M, Bhattarai PY, Shrestha P and
Choi HS: Regulation of Interleukin-36ү/IL-36R Signaling Axis by
PIN1 in epithelial cell transformation and breast tumorigenesis.
Cancers (Basel). 14:36542022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jawanjal P, Salhan S, Dhawan I, Tripathi R
and Rath G: Peptidyl-prolyl isomerase Pin1-mediated abrogation of
APC-β-catenin interaction in squamous cell carcinoma of cervix. Rom
J Morphol Embryol. 55:83–90. 2014.PubMed/NCBI
|
|
80
|
Ma ZQ, Feng YT, Guo K, Liu D, Shao CJ, Pan
MH, Zhang YM, Zhang YX, Lu D, Huang D, et al: Melatonin inhibits
ESCC tumor growth by mitigating the HDAC7/beta-catenin/c-Myc
positive feedback loop and suppressing the USP10-maintained HDAC7
protein stability. Mil Med Res. 9:542022.PubMed/NCBI
|
|
81
|
Pu W, Zheng Y and Peng Y: Prolyl isomerase
Pin1 in human cancer: Function, mechanism, and significance. Front
Cell Dev Biol. 8:1682020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zheng M, Xu H, Liao XH, Chen CP, Zhang AL,
Lu W, Wang L, Yang D, Wang J, Liu H, et al: Inhibition of the
prolyl isomerase Pin1 enhances the ability of sorafenib to induce
cell death and inhibit tumor growth in hepatocellular carcinoma.
Oncotarget. 8:29771–29784. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Khanal P, Yeung B, Zhao Y and Yang X:
Identification of Prolyl isomerase Pin1 as a novel positive
regulator of YAP/TAZ in breast cancer cells. Sci Rep. 9:63942019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wulf GM, Liou YC, Ryo A, Lee SW and Lu KP:
Role of Pin1 in the regulation of p53 stability and p21
transactivation, and cell cycle checkpoints in response to DNA
damage. J Biol Chem. 277:47976–47979. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zheng H, You H, Zhou XZ, Murray SA, Uchida
T, Wulf G, Gu L, Tang X, Lu KP and Xiao ZX: The prolyl isomerase
Pin1 is a regulator of p53 in genotoxic response. Nature.
419:849–853. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zacchi P, Gostissa M, Uchida T, Salvagno
C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C and Del
Sal G: The prolyl isomerase Pin1 reveals a mechanism to control p53
functions after genotoxic insults. Nature. 419:853–857. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ryo A, Uemura H, Ishiguro H, Saitoh T,
Yamaguchi A, Perrem K, Kubota Y, Lu KP and Aoki I: Stable
suppression of tumorigenicity by Pin1-targeted RNA interference in
prostate cancer. Clin Cancer Res. 11:7523–7531. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim JA, Kim MR, Kim O, Phuong NT, Yun J,
Oh WK, Bae K and Kang KW: Amurensin G inhibits angiogenesis and
tumor growth of tamoxifen-resistant breast cancer via Pin1
inhibition. Food Chem Toxicol. 50:3625–3634. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Polonio-Vallon T, Krüger D and Hofmann TG:
ShaPINg cell fate upon DNA damage: Role of Pin1 isomerase in DNA
damage-induced cell death and repair. Front Oncol. 4:1482014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Steger M, Murina O, Hühn D, Ferretti LP,
Walser R, Hänggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak
P, et al: Prolyl isomerase PIN1 regulates DNA double-strand break
repair by counteracting DNA end resection. Mol Cell. 50:333–343.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lee YM, Teoh DE, Yeung K and Liou YC: The
kingdom of the prolyl-isomerase Pin1: The structural and functional
convergence and divergence of Pin1. Front Cell Dev Biol.
10:9560712022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jirawatnotai S, Dalton S and
Wattanapanitch M: Role of cyclins and cyclin-dependent kinases in
pluripotent stem cells and their potential as a therapeutic target.
Semin Cell Dev Biol. 107:63–71. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang N, Chai T, Wang XR, Zheng YD, Sang CY
and Yang JL: Pin1: Advances in pancreatic cancer therapeutic
potential and inhibitors research. Bioorg Chem. 153:1078692024.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kondo A, Albayram O, Zhou XZ and Lu KP:
Pin1 knockout mice: A model for the study of tau pathology in
Alzheimer's disease. Methods Mol Biol. 1523:415–425. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nakatsu Y, Matsunaga Y, Ueda K, Yamamotoya
T, Inoue Y, Inoue MK, Mizuno Y, Kushiyama A, Ono H, Fujishiro M, et
al: Development of Pin1 inhibitors and their potential as
therapeutic agents. Curr Med Chem. 27:3314–3329. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
He S, Li L, Jin R and Lu X: Biological
function of Pin1 in vivo and its inhibitors for preclinical study:
Early development, current strategies, and future directions. J Med
Chem. 66:9251–9277. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Pinch BJ, Doctor ZM, Nabet B, Browne CM,
Seo HS, Mohardt ML, Kozono S, Lian X, Manz TD, Chun Y, et al:
Identification of a potent and selective covalent Pin1 inhibitor.
Nat Chem Biol. 16:979–987. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dos S, Moreira C, Santos TB, Freitas RHCN,
Pacheco PAF and da Rocha DR: Juglone: A versatile natural platform
for obtaining new bioactive compounds. Curr Top Med Chem.
21:2018–2045. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Cai Y, Zou G, Xi M, Hou Y, Shen H, Ao J,
Li M, Wang J and Luo A: Juglone inhibits listeria monocytogenes
ATCC 19115 by targeting cell membrane and protein. Foods.
11:25582022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li F, Li Y, Deng ZP, Zhu XJ, Zhang ZG,
Zhang XD, Tian JL, Li W and Zhao P: Traditional uses,
phytochemistry, pharmacology and clinical applications of Cortex
Juglandis Mandshuricae: A comprehensive review. J Ethnopharmacol.
285:1148872022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang Z, Hu Q, Ye S and Xiang L:
Inhibition of the PIN1-NRF2/GPX4 axis imparts sensitivity to
cisplatin in cervical cancer cells. Acta Biochim Biophys Sin
(Shanghai). 54:1325–1335. 2022.PubMed/NCBI
|
|
102
|
Guo YT, Lu Y, Jia YY, Qu HN, Qi D, Wang
XQ, Song PY, Jin XS, Xu WH, Dong Y, Liang YY and Quan CS:
Predictive Value of Pin1 in cervical low-grade squamous
intraepithelial lesions and inhibition of Pin1 exerts potent
anticancer activity against human cervical cancer. Aging Dis.
11:44–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dubiella C, Pinch BJ, Koikawa K, Zaidman
D, Poon E, Manz TD, Nabet B, He S, Resnick E, Rogel A, et al:
Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven
tumors in vivo. Nat Chem Biol. 17:954–963. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liang C, Qiao G, Liu Y, Tian L, Hui N, Li
J, Ma Y, Li H, Zhao Q, Cao W, et al: Overview of all-trans-retinoic
acid (ATRA) and its analogues: Structures, activities, and
mechanisms in acute promyelocytic leukaemia. Eur J Med Chem.
220:1134512021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Giuli MV, Hanieh PN, Forte J, Fabiano MG,
Mancusi A, Natiello B, Rinaldi F, Del Favero E, Ammendolia MG,
Marianecci C, et al: pH-sensitive niosomes for ATRA delivery: A
promising approach to inhibit Pin1 in high-grade serous ovarian
cancer. Int J Pharm. 649:1236722024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Schaefer D and Cheng X: Recent advances in
covalent drug discovery. Pharmaceuticals (Basel). 16:6632023.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bjij I, Olotu FA, Agoni C, Adeniji E, Khan
S, El Rashedy A, Cherqaoui D and Soliman MES: Covalent inhibition
in drug discovery: Filling the void in literature. Curr Top Med
Chem. 18:1135–1145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Adès L, Guerci A, Raffoux E, Sanz M,
Chevallier P, Lapusan S, Recher C, Thomas X, Rayon C, Castaigne S,
et al: Very long-term outcome of acute promyelocytic leukemia after
treatment with all-trans retinoic acid and chemotherapy: The
European APL Group experience. Blood. 115:1690–1696. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fenaux P, Chastang C, Chevret S, Sanz M,
Dombret H, Archimbaud E, Fey M, Rayon C, Huguet F, Sotto JJ, et al:
A randomized comparison of all transretinoic acid (ATRA) followed
by chemotherapy and ATRA plus chemotherapy and the role of
maintenance therapy in newly diagnosed acute promyelocytic
leukemia. The European APL Group. Blood. 94:1192–1200. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang F, Zhang A, Xie Y, Wen H, Kankala
RK, Huang J, Zhang A, Wang Q, Chen B, Dong H, et al: Nanocarrier of
Pin1 inhibitor based on supercritical fluid technology inhibits
cancer metastasis by blocking multiple signaling pathways. Regen
Biomater. 10:rbad0142023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wu W, Xue X, Chen Y, Zheng N and Wang J:
Targeting prolyl isomerase Pin1 as a promising strategy to overcome
resistance to cancer therapies. Pharmacol Res. 184:1064562022.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fagiani F, Vlachou M, Di Marino D,
Canobbio I, Romagnoli A, Racchi M, Govoni S and Lanni C: Pin1 as
molecular switch in vascular endothelium: Notes on its putative
role in age-associated vascular diseases. Cells. 10:32872021.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Poli G, Di Stefano M, Estevez JA, Minutolo
F, Granchi C, Giordano A, Parisi S, Mauceri M, Canzonieri V,
Macchia M, et al: New PIN1 inhibitors identified through a
pharmacophore-driven, hierarchical consensus docking strategy. J
Enzyme Inhib Med Chem. 37:145–150. 2022. View Article : Google Scholar : PubMed/NCBI
|