|
1
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao
Y, Cao G and Chen J: Heat shock proteins: Cellular and molecular
mechanisms in the central nervous system. Prog Neurobiol.
92:184–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Carra S, Alberti S, Arrigo PA, Benesch JL,
Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J,
Bukau B, et al: The growing world of small heat shock proteins:
From structure to functions. Cell Stress Chaperones. 22:601–611.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yun CW, Kim HJ, Lim JH and Lee SH: Heat
shock proteins: Agents of cancer development and therapeutic
targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Benjamin IJ and McMillan DR: Stress (heat
shock) proteins: Molecular chaperones in cardiovascular biology and
disease. Circ Res. 83:117–132. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Deniset JF and Pierce GN: Heat shock
proteins: Mediators of atherosclerotic development. Curr Drug
Targets. 16:816–826. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nayak Rao S: The role of heat shock
proteins in kidney disease. J Transl Int Med. 4:114–117. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xu Q, Metzler B, Jahangiri M and Mandal K:
Molecular chaperones and heat shock proteins in atherosclerosis. Am
J Physiol Heart Circ Physiol. 302:H506–H514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kappé G, Franck E, Verschuure P, Boelens
WC, Leunissen JA and de Jong WW: The human genome encodes 10
alpha-crystallin-related small heat shock proteins: HspB1-10. Cell
Stress Chaperones. 8:53–61. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kappé G, Verschuure P, Philipsen RL,
Staalduinen AA, Van de Boogaart P, Boelens WC and De Jong WW:
Characterization of two novel human small heat shock proteins:
Protein kinase-related HspB8 and testis-specific HspB9. Biochim
Biophys Acta. 1520:1–6. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Morrow G, Hightower LE and Tanguay RM:
Small heat shock proteins: Big folding machines. Cell Stress
Chaperones. 20:207–212. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Haslbeck M, Franzmann T, Weinfurtner D and
Buchner J: Some like it hot: The structure and function of small
heat-shock proteins. Nat Struct Mol Biol. 12:842–846. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Vos MJ, Hageman J, Carra S and Kampinga
HH: Structural and functional diversities between members of the
human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry.
47:7001–7011. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Smith CC, Yu YX, Kulka M and Aurelian L: A
novel human gene similar to the protein kinase (PK) coding domain
of the large subunit of herpes simplex virus type 2 ribonucleotide
reductase (ICP10) codes for a serine-threonine PK and is expressed
in melanoma cells. J Biol Chem. 275:25690–25699. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Benndorf R, Sun X, Gilmont RR, Biederman
KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC and Welsh MJ:
HSP22, a new member of the small heat shock protein superfamily,
interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol
Chem. 276:26753–26761. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li XS, Xu Q, Fu XY and Luo WS: Heat shock
protein 22 overexpression is associated with the progression and
prognosis in gastric cancer. J Cancer Res Clin Oncol.
140:1305–1313. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sun X, Fontaine JM, Bartl I, Behnam B,
Welsh MJ and Benndorf R: Induction of Hsp22 (HspB8) by estrogen and
the metalloestrogen cadmium in estrogen receptor-positive breast
cancer cells. Cell Stress Chaperones. 12:307–319. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Suzuki M, Matsushima-Nishiwaki R,
Kuroyanagi G, Suzuki N, Takamatsu R, Furui T, Yoshimi N, Kozawa O
and Morishige K: Regulation by heat shock protein 22 (HSPB8) of
transforming growth factor-α-induced ovary cancer cell migration.
Arch Biochem Biophys. 571:40–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Matsushima-Nishiwaki R, Toyoda H,
Takamatsu R, Yasuda E, Okuda S, Maeda A, Kaneoka Y, Yoshimi N,
Kumada T and Kozawa O: Heat shock protein 22 (HSPB8) reduces the
migration of hepatocellular carcinoma cells through the suppression
of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Biochim
Biophys Acta Mol Basis Dis. 1863:1629–1639. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Modem S, Chinnakannu K, Bai U, Reddy GP
and Reddy TR: Hsp22 (HspB8/H11) knockdown induces Sam68 expression
and stimulates proliferation of glioblastoma cells. J Cell Physiol.
226:2747–2751. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang K, Yin W, Ma L, Liu Z and Li Q:
HSPB8 facilitates prostate cancer progression via activating the
JAK/STAT3 signaling pathway. Biochem Cell Biol. 101:1–11. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cristofani R, Piccolella M, Montagnani
Marelli M, Tedesco B, Poletti A and Moretti RM: HSPB8 counteracts
tumor activity of BRAF- and NRAS-mutant melanoma cells by
modulation of RAS-prenylation and autophagy. Cell Death Dis.
13:9732022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang Y, Ma S, Ye Z, Zheng Y, Zheng Z, Liu
X and Zhou X: Oncogenic DNA methyltransferase 1 activates the
PI3K/AKT/mTOR signalling by blocking the binding of HSPB8 and BAG3
in melanoma. Epigenetics. 18:22396072023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chowdary TK, Raman B, Ramakrishna T and
Rao CM: Mammalian Hsp22 is a heat-inducible small heat-shock
protein with chaperone-like activity. Biochem J. 381((Pt 2)):
379–387. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cristofani R, Rusmini P, Galbiati M,
Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M,
Messi E, Piccolella M, et al: The regulation of the small heat
shock protein B8 in misfolding protein diseases causing
motoneuronal and muscle cell death. Front Neurosci. 13:7962019.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rusmini P, Cristofani R, Galbiati M,
Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E,
Piccolella M, et al: The role of the heat shock protein B8 (HSPB8)
in motoneuron diseases. Front Mol Neurosci. 10:1762017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bouhy D, Juneja M, Katona I, Holmgren A,
Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ,
Libert C, et al: A knock-in/knock-out mouse model of
HSPB8-associated distal hereditary motor neuropathy and myopathy
reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol.
135:131–148. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Depre C, Kim SJ, John AS, Huang Y, Rimoldi
OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, et al:
Program of cell survival underlying human and experimental
hibernating myocardium. Circ Res. 95:433–440. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Depre C, Tomlinson JE, Kudej RK, Gaussin
V, Thompson E, Kim SJ, Vatner DE, Topper JN and Vatner SF: Gene
program for cardiac cell survival induced by transient ischemia in
conscious pigs. Proc Natl Acad Sci USA. 98:9336–9341. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hase M, Depre C, Vatner SF and Sadoshima
J: H11 has dose-dependent and dual hypertrophic and proapoptotic
functions in cardiac myocytes. Biochem J. 388:475–483. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen L, Lizano P, Zhao X, Sui X, Dhar SK,
Shen YT, Vatner DE, Vatner SF and Depre C: Preemptive conditioning
of the swine heart by H11 kinase/Hsp22 provides cardiac protection
through inducible nitric oxide synthase. Am J Physiol Heart Circ
Physiol. 300:H1303–H1310. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sui X, Li D, Qiu H, Gaussin V and Depre C:
Activation of the bone morphogenetic protein receptor by
H11kinase/Hsp22 promotes cardiac cell growth and survival. Circ
Res. 104:887–895. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Laure L, Long R, Lizano P, Zini R,
Berdeaux A, Depre C and Morin D: Cardiac H11 kinase/Hsp22
stimulates oxidative phosphorylation and modulates mitochondrial
reactive oxygen species production: Involvement of a nitric
oxide-dependent mechanism. Free Radic Biol Med. 52:2168–2176. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Depre C, Wang L, Sui X, Qiu H, Hong C,
Hedhli N, Ginion A, Shah A, Pelat M, Bertrand L, et al: H11 kinase
prevents myocardial infarction by preemptive preconditioning of the
heart. Circ Res. 98:280–288. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qiu H, Lizano P, Laure L, Sui X, Rashed E,
Park JY, Hong C, Gao S, Holle E, Morin D, et al: H11 kinase/heat
shock protein 22 deletion impairs both nuclear and mitochondrial
functions of STAT3 and accelerates the transition into heart
failure on cardiac overload. Circulation. 124:406–415. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu W, Sun X, Shi X, Lai L, Wang C, Xie M,
Qin G and Qiu H: Hsp22 deficiency induces age-dependent cardiac
dilation and dysfunction by impairing autophagy, metabolism, and
oxidative response. Antioxidants (Basel). 10:15502021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gober MD, Smith CC, Ueda K, Toretsky JA
and Aurelian L: Forced expression of the H11 heat shock protein can
be regulated by DNA methylation and trigger apoptosis in human
cells. J Biol Chem. 278:37600–37609. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Verschuure P, Tatard C, Boelens WC,
Grongnet JF and David JC: Expression of small heat shock proteins
HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal
developing pig. Eur J Cell Biol. 82:523–530. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Taylor RP and Benjamin IJ: Small heat
shock proteins: A new classification scheme in mammals. J Mol Cell
Cardiol. 38:433–444. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Knowlton AA and Sun L: Heat-shock
factor-1, steroid hormones, and regulation of heat-shock protein
expression in the heart. Am J Physiol Heart Circ Physiol.
280:H455–H464. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Eriksson M, Jokinen E, Sistonen L and
Leppä S: Heat shock factor 2 is activated during mouse heart
development. Int J Dev Biol. 44:471–477. 2000.PubMed/NCBI
|
|
41
|
Voellmy R: On mechanisms that control heat
shock transcription factor activity in metazoan cells. Cell Stress
Chaperones. 9:122–133. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Morimoto RI: Proteotoxic stress and
inducible chaperone networks in neurodegenerative disease and
aging. Genes Dev. 22:1427–1438. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lizano P, Rashed E, Kang H, Dai H, Sui X,
Yan L, Qiu H and Depre C: The valosin-containing protein promotes
cardiac survival through the inducible isoform of nitric oxide
synthase. Cardiovasc Res. 99:685–693. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
D'Autréaux B and Toledano MB: ROS as
signalling molecules: Mechanisms that generate specificity in ROS
homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Prasad S, Gupta SC and Tyagi AK: Reactive
oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cheung EC and Vousden KH: The role of ROS
in tumour development and progression. Nat Rev Cancer. 22:280–297.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Morin D, Long R, Panel M, Laure L, Taranu
A, Gueguen C, Pons S, Leoni V, Caccia C, Vatner SF, et al: Hsp22
overexpression induces myocardial hypertrophy, senescence and
reduced life span through enhanced oxidative stress. Free Radic
Biol Med. 137:194–200. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bou-Teen D, Kaludercic N, Weissman D,
Turan B, Maack C, Di Lisa F and Ruiz-Meana M: Mitochondrial ROS and
mitochondria-targeted antioxidants in the aged heart. Free Radic
Biol Med. 167:109–124. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA,
Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates
lipopolysaccharide-induced myocardial injury by inhibiting
inflammation, oxidative stress, and apoptosis. Bioengineered.
12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Boulgakoff L, D'Amato G and Miquerol L:
Molecular regulation of cardiac conduction system development. Curr
Cardiol Rep. 26:943–952. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu S, Yao S, Yang H, Liu S and Wang Y:
Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Miller DR and Thorburn A: Autophagy and
organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Klionsky DJ, Petroni G, Amaravadi RK,
Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K,
Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO
J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tedesco B, Vendredy L, Adriaenssens E,
Cozzi M, Asselbergh B, Crippa V, Cristofani R, Rusmini P, Ferrari
V, Casarotto E, et al: HSPB8 frameshift mutant aggregates weaken
chaperone-assisted selective autophagy in neuromyopathies.
Autophagy. 19:2217–2239. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shirakabe A, Ikeda Y, Sciarretta S,
Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ
Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sciarretta S, Maejima Y, Zablocki D and
Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol.
80:1–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dewanjee S, Vallamkondu J, Kalra RS, John
A, Reddy PH and Kandimalla R: Autophagy in the diabetic heart: A
potential pharmacotherapeutic target in diabetic cardiomyopathy.
Ageing Res Rev. 68:1013382021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rabinovich-Nikitin I, Kirshenbaum E and
Kirshenbaum LA: Autophagy, clock genes, and cardiovascular disease.
Can J Cardiol. 39:1772–1780. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Titus AS, Sung EA, Zablocki D and
Sadoshima J: Mitophagy for cardioprotection. Basic Res Cardiol.
118:422023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Arndt V, Dick N, Tawo R, Dreiseidler M,
Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, et
al: Chaperone-assisted selective autophagy is essential for muscle
maintenance. Curr Biol. 20:143–148. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ulbricht A, Eppler FJ, Tapia VE, van der
Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, et
al: Cellular mechanotransduction relies on tension-induced and
chaperone-assisted autophagy. Curr Biol. 23:430–435. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Carra S, Seguin SJ and Landry J: HspB8 and
Bag3: A new chaperone complex targeting misfolded proteins to
macroautophagy. Autophagy. 4:237–239. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liang Z, Zhang S, Zou Z, Li J, Wu R, Xia
L, Shi G, Cai J, Tang J and Jian J: Functional characterization of
BAG3 in orange-spotted grouper (Epinephelus coioides) during viral
infection. Fish Shellfish Immunol. 122:465–475. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Peng S, Yu Y, Li J, Jiang D, Xu G, Wu L
and Hu J: Hsp22 pretreatment protects against LPS-induced
hippocampal injury by alleviating neuroinflammation and apoptosis
by regulating the NLRP3/Caspase1/IL-1β signaling pathway in mice.
Aging (Albany NY). 15:1977–2004. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lan Y, Wang Y, Huang K and Zeng Q: Heat
shock protein 22 attenuates doxorubicin-induced cardiotoxicity via
regulating inflammation and apoptosis. Front Pharmacol. 11:2572020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Depre C, Hase M, Gaussin V, Zajac A, Wang
L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, et al: H11
kinase is a novel mediator of myocardial hypertrophy in vivo. Circ
Res. 91:1007–1014. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rashed E, Lizano P, Dai H, Thomas A,
Suzuki CK, Depre C and Qiu H: Heat shock protein 22 (Hsp22)
regulates oxidative phosphorylation upon its mitochondrial
translocation with the inducible nitric oxide synthase in mammalian
heart. PLoS One. 10:e01195372015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bolli R: Cardioprotective function of
inducible nitric oxide synthase and role of nitric oxide in
myocardial ischemia and preconditioning: An overview of a decade of
research. J Mol Cell Cardiol. 33:1897–1918. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yamagami K, Yamamoto Y, Ishikawa Y,
Yonezawa K, Toyokuni S and Yamaoka Y: Effects of
geranyl-geranyl-acetone administration before heat shock
preconditioning for conferring tolerance against
ischemia-reperfusion injury in rat livers. J Lab Clin Med.
135:465–475. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ooie T, Kajimoto M, Takahashi N, Shinohara
T, Taniguchi Y, Kouno H, Wakisaka O, Yoshimatsu H and Saikawa T:
Effects of insulin resistance on geranylgeranylacetone-induced
expression of heat shock protein 72 and cardioprotection in
high-fat diet rats. Life Sci. 77:869–881. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
He D, Song X and Li L:
Geranylgeranylacetone protects against cerebral ischemia and
reperfusion injury: HSP90 and eNOS phosphorylation involved. Brain
Res. 1599:150–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sysa-Shah P, Xu Y, Guo X, Pin S, Bedja D,
Bartock R, Tsao A, Hsieh A, Wolin MS, Moens A, et al:
Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity
and reduces cancer cell growth and invasion through RHO pathway
inhibition. Mol Cancer Ther. 13:1717–1728. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Brundel BJ, Henning RH, Ke L, van Gelder
IC, Crijns HJ and Kampinga HH: Heat shock protein upregulation
protects against pacing-induced myolysis in HL-1 atrial myocytes
and in human atrial fibrillation. J Mol Cell Cardiol. 41:555–562.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Brundel BJ, Shiroshita-Takeshita A, Qi X,
Yeh YH, Chartier D, van Gelder IC, Henning RH, Kampinga HH and
Nattel S: Induction of heat shock response protects the heart
against atrial fibrillation. Circ Res. 99:1394–1402. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sakabe M, Shiroshita-Takeshita A, Maguy A,
Brundel BJ, Fujiki A, Inoue H and Nattel S: Effects of a heat shock
protein inducer on the atrial fibrillation substrate caused by
acute atrial ischaemia. Cardiovasc Res. 78:63–70. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang D, Ke L, Mackovicova K, Van Der Want
JJ, Sibon OC, Tanguay RM, Morrow G, Henning RH, Kampinga HH and
Brundel BJ: Effects of different small HSPB members on contractile
dysfunction and structural changes in a Drosophila melanogaster
model for atrial fibrillation. J Mol Cell Cardiol. 51:381–389.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang SL, Chen YC, Hsu CP, Kao YH, Lin YK,
Lai YJ, Yeh HI, Higa S, Chen SA and Chen YJ: Heat shock protein
inducer modifies arrhythmogenic substrate and inhibits atrial
fibrillation in the failing heart. Int J Cardiol. 168:4019–4026.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
van Marion DM, Hu X, Zhang D,
Hoogstra-Berends F, Seerden JG, Loen L, Heeres A, Steen H, Henning
RH and Brundel BJ: Screening of novel HSP-inducing compounds to
conserve cardiomyocyte function in experimental atrial
fibrillation. Drug Des Devel Ther. 13:345–364. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hu X, Li J, van Marion DMS, Zhang D and
Brundel BJJM: Heat shock protein inducer GGA*-59 reverses
contractile and structural remodeling via restoration of the
microtubule network in experimental atrial fibrillation. J Mol Cell
Cardiol. 134:86–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
van Marion DMS, Dorsch L, Hoogstra-Berends
F, Kakuchaya T, Bockeria L, de Groot NMS and Brundel BJJM: Oral
geranylgeranylacetone treatment increases heat shock protein
expression in human atrial tissue. Heart Rhythm. 17:115–122. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Waddingham MT, Sequeira V, Kuster DWD, Dal
Canto E, Handoko ML, de Man FS, da Silva Gonçalves Bós D,
Ottenheijm CA, Shen S, van der Pijl RJ, et al:
Geranylgeranylacetone reduces cardiomyocyte stiffness and
attenuates diastolic dysfunction in a rat model of cardiometabolic
syndrome. Physiol Rep. 11:e157882023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sanbe A, Daicho T, Mizutani R, Endo T,
Miyauchi N, Yamauchi J, Tanonaka K, Glabe C and Tanoue A:
Protective effect of geranylgeranylacetone via enhancement of HSPB8
induction in desmin-related cardiomyopathy. PLoS One. 4:e53512009.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Marunouchi T, Inomata S, Sanbe A, Takagi N
and Tanonaka K: Protective effect of geranylgeranylacetone via
enhanced induction of HSPB1 and HSPB8 in mitochondria of the
failing heart following myocardial infarction in rats. Eur J
Pharmacol. 730:140–147. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gong R, Li XY, Chen HJ, Xu CC, Fang HY,
Xiang J and Wu YQ: Role of heat shock protein 22 in the protective
effect of geranylgeranylacetone in response to oxidized-LDL. Drug
Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong
Z, Lv Q, Liu M and Xiao X: MicroRNA-126a-5p enhances myocardial
ischemia-reperfusion injury through suppressing Hspb8 expression.
Oncotarget. 8:94172–94187. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ren AJ, Chen C, Zhang S, Liu M, Wei C,
Wang K, Ma X, Song Y, Wang R, Zhang H, et al: Zbtb20 deficiency
causes cardiac contractile dysfunction in mice. FASEB J.
34:13862–13876. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Martin TG, Delligatti CE, Muntu NA,
Stachowski-Doll MJ and Kirk JA: Pharmacological inhibition of
BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for
cardiomyocytes. J Cell Biochem. 123:128–141. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cheng J, Ji M, Jing H and Lin H: DUSP12
ameliorates myocardial ischemia-reperfusion injury through
HSPB8-induced mitophagy. J Biochem Mol Toxicol. 37:e233102023.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Vieri M, Geng H, Patterson JB, Panse J,
Wilop S, Samali A, Chevet E and Kharabi Masouleh B: Deregulated
expression of the HSP40 family members Auxilin-1 and −2 is
indicative of proteostasis imbalance and predicts patient outcome
in Ph(+) leukemia. Exp Hematol Oncol. 5:52015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Criado-Marrero M, Gebru NT, Blazier DM,
Gould LA, Baker JD, Beaulieu-Abdelahad D and Blair LJ: Hsp90
co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged
wild-type mice. Acta Neuropathol Commun. 9:652021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Shilova V, Zatsepina O, Zakluta A, Karpov
D, Chuvakova L, Garbuz D and Evgen'ev M: Age-dependent expression
profiles of two adaptogenic systems and thermotolerance in
Drosophila melanogaster. Cell Stress Chaperones. 25:305–315. 2020.
View Article : Google Scholar : PubMed/NCBI
|