Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Heat shock protein 22: A new direction for cardiovascular disease (Review)

Corrigendum in: /10.3892/mmr.2025.13535
  • Authors:
    • Yi Chen
    • Meng Li
    • Yanqing Wu
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 82
    |
    Published online on: January 27, 2025
       https://doi.org/10.3892/mmr.2025.13447
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Small heat shock proteins (sHSPs) are common molecular chaperone proteins that function in various biological processes, and serve indispensable roles in maintaining cellular protein homeostasis and regulating the hydrolysis of unfolded proteins. HSP22 is a member of the sHSP family that is primarily expressed in the heart and skeletal muscle, as well as in various types of cancer. There have been important findings concerning the role of HSP22 in cardiovascular diseases. The aim of the present study was to provide insights into the various molecular mechanisms by which HSP22 functions in the heart, including oxidative stress, autophagy, apoptosis, the subcellular distribution of proteins and the promoting effect of proteasomes. In addition, drugs and cytokines, including geranylgeranylacetone, can exert protective effects on the heart by regulating the expression of HSP22. Based on increasingly abundant research, HSP22 may be considered a potential therapeutic target in cardiovascular diseases.
View Figures

Figure 1

View References

1 

Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G and Chen J: Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Prog Neurobiol. 92:184–211. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, et al: The growing world of small heat shock proteins: From structure to functions. Cell Stress Chaperones. 22:601–611. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Yun CW, Kim HJ, Lim JH and Lee SH: Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI

4 

Benjamin IJ and McMillan DR: Stress (heat shock) proteins: Molecular chaperones in cardiovascular biology and disease. Circ Res. 83:117–132. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Deniset JF and Pierce GN: Heat shock proteins: Mediators of atherosclerotic development. Curr Drug Targets. 16:816–826. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Nayak Rao S: The role of heat shock proteins in kidney disease. J Transl Int Med. 4:114–117. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Xu Q, Metzler B, Jahangiri M and Mandal K: Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol. 302:H506–H514. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JA and de Jong WW: The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 8:53–61. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Kappé G, Verschuure P, Philipsen RL, Staalduinen AA, Van de Boogaart P, Boelens WC and De Jong WW: Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta. 1520:1–6. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Morrow G, Hightower LE and Tanguay RM: Small heat shock proteins: Big folding machines. Cell Stress Chaperones. 20:207–212. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Haslbeck M, Franzmann T, Weinfurtner D and Buchner J: Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol. 12:842–846. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Vos MJ, Hageman J, Carra S and Kampinga HH: Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 47:7001–7011. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Smith CC, Yu YX, Kulka M and Aurelian L: A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem. 275:25690–25699. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Benndorf R, Sun X, Gilmont RR, Biederman KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC and Welsh MJ: HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem. 276:26753–26761. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Li XS, Xu Q, Fu XY and Luo WS: Heat shock protein 22 overexpression is associated with the progression and prognosis in gastric cancer. J Cancer Res Clin Oncol. 140:1305–1313. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Sun X, Fontaine JM, Bartl I, Behnam B, Welsh MJ and Benndorf R: Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells. Cell Stress Chaperones. 12:307–319. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Suzuki M, Matsushima-Nishiwaki R, Kuroyanagi G, Suzuki N, Takamatsu R, Furui T, Yoshimi N, Kozawa O and Morishige K: Regulation by heat shock protein 22 (HSPB8) of transforming growth factor-α-induced ovary cancer cell migration. Arch Biochem Biophys. 571:40–49. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Matsushima-Nishiwaki R, Toyoda H, Takamatsu R, Yasuda E, Okuda S, Maeda A, Kaneoka Y, Yoshimi N, Kumada T and Kozawa O: Heat shock protein 22 (HSPB8) reduces the migration of hepatocellular carcinoma cells through the suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Biochim Biophys Acta Mol Basis Dis. 1863:1629–1639. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Modem S, Chinnakannu K, Bai U, Reddy GP and Reddy TR: Hsp22 (HspB8/H11) knockdown induces Sam68 expression and stimulates proliferation of glioblastoma cells. J Cell Physiol. 226:2747–2751. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Zhang K, Yin W, Ma L, Liu Z and Li Q: HSPB8 facilitates prostate cancer progression via activating the JAK/STAT3 signaling pathway. Biochem Cell Biol. 101:1–11. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Cristofani R, Piccolella M, Montagnani Marelli M, Tedesco B, Poletti A and Moretti RM: HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis. 13:9732022. View Article : Google Scholar : PubMed/NCBI

22 

Yang Y, Ma S, Ye Z, Zheng Y, Zheng Z, Liu X and Zhou X: Oncogenic DNA methyltransferase 1 activates the PI3K/AKT/mTOR signalling by blocking the binding of HSPB8 and BAG3 in melanoma. Epigenetics. 18:22396072023. View Article : Google Scholar : PubMed/NCBI

23 

Chowdary TK, Raman B, Ramakrishna T and Rao CM: Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J. 381((Pt 2)): 379–387. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, et al: The regulation of the small heat shock protein B8 in misfolding protein diseases causing motoneuronal and muscle cell death. Front Neurosci. 13:7962019. View Article : Google Scholar : PubMed/NCBI

25 

Rusmini P, Cristofani R, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E, Piccolella M, et al: The role of the heat shock protein B8 (HSPB8) in motoneuron diseases. Front Mol Neurosci. 10:1762017. View Article : Google Scholar : PubMed/NCBI

26 

Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, et al: A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol. 135:131–148. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, et al: Program of cell survival underlying human and experimental hibernating myocardium. Circ Res. 95:433–440. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN and Vatner SF: Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci USA. 98:9336–9341. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Hase M, Depre C, Vatner SF and Sadoshima J: H11 has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J. 388:475–483. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Chen L, Lizano P, Zhao X, Sui X, Dhar SK, Shen YT, Vatner DE, Vatner SF and Depre C: Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase. Am J Physiol Heart Circ Physiol. 300:H1303–H1310. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Sui X, Li D, Qiu H, Gaussin V and Depre C: Activation of the bone morphogenetic protein receptor by H11kinase/Hsp22 promotes cardiac cell growth and survival. Circ Res. 104:887–895. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Laure L, Long R, Lizano P, Zini R, Berdeaux A, Depre C and Morin D: Cardiac H11 kinase/Hsp22 stimulates oxidative phosphorylation and modulates mitochondrial reactive oxygen species production: Involvement of a nitric oxide-dependent mechanism. Free Radic Biol Med. 52:2168–2176. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Depre C, Wang L, Sui X, Qiu H, Hong C, Hedhli N, Ginion A, Shah A, Pelat M, Bertrand L, et al: H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circ Res. 98:280–288. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Qiu H, Lizano P, Laure L, Sui X, Rashed E, Park JY, Hong C, Gao S, Holle E, Morin D, et al: H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation. 124:406–415. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Wu W, Sun X, Shi X, Lai L, Wang C, Xie M, Qin G and Qiu H: Hsp22 deficiency induces age-dependent cardiac dilation and dysfunction by impairing autophagy, metabolism, and oxidative response. Antioxidants (Basel). 10:15502021. View Article : Google Scholar : PubMed/NCBI

36 

Gober MD, Smith CC, Ueda K, Toretsky JA and Aurelian L: Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem. 278:37600–37609. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Verschuure P, Tatard C, Boelens WC, Grongnet JF and David JC: Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol. 82:523–530. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Taylor RP and Benjamin IJ: Small heat shock proteins: A new classification scheme in mammals. J Mol Cell Cardiol. 38:433–444. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Knowlton AA and Sun L: Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol. 280:H455–H464. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Eriksson M, Jokinen E, Sistonen L and Leppä S: Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol. 44:471–477. 2000.PubMed/NCBI

41 

Voellmy R: On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones. 9:122–133. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22:1427–1438. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Lizano P, Rashed E, Kang H, Dai H, Sui X, Yan L, Qiu H and Depre C: The valosin-containing protein promotes cardiac survival through the inducible isoform of nitric oxide synthase. Cardiovasc Res. 99:685–693. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

45 

D'Autréaux B and Toledano MB: ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Cheung EC and Vousden KH: The role of ROS in tumour development and progression. Nat Rev Cancer. 22:280–297. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Morin D, Long R, Panel M, Laure L, Taranu A, Gueguen C, Pons S, Leoni V, Caccia C, Vatner SF, et al: Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress. Free Radic Biol Med. 137:194–200. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Bou-Teen D, Kaludercic N, Weissman D, Turan B, Maack C, Di Lisa F and Ruiz-Meana M: Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med. 167:109–124. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Boulgakoff L, D'Amato G and Miquerol L: Molecular regulation of cardiac conduction system development. Curr Cardiol Rep. 26:943–952. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI

53 

Miller DR and Thorburn A: Autophagy and organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI

55 

Tedesco B, Vendredy L, Adriaenssens E, Cozzi M, Asselbergh B, Crippa V, Cristofani R, Rusmini P, Ferrari V, Casarotto E, et al: HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies. Autophagy. 19:2217–2239. 2023. View Article : Google Scholar : PubMed/NCBI

56 

Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Sciarretta S, Maejima Y, Zablocki D and Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol. 80:1–26. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH and Kandimalla R: Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev. 68:1013382021. View Article : Google Scholar : PubMed/NCBI

59 

Rabinovich-Nikitin I, Kirshenbaum E and Kirshenbaum LA: Autophagy, clock genes, and cardiovascular disease. Can J Cardiol. 39:1772–1780. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Titus AS, Sung EA, Zablocki D and Sadoshima J: Mitophagy for cardioprotection. Basic Res Cardiol. 118:422023. View Article : Google Scholar : PubMed/NCBI

61 

Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, et al: Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 20:143–148. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, et al: Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol. 23:430–435. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Carra S, Seguin SJ and Landry J: HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy. 4:237–239. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Liang Z, Zhang S, Zou Z, Li J, Wu R, Xia L, Shi G, Cai J, Tang J and Jian J: Functional characterization of BAG3 in orange-spotted grouper (Epinephelus coioides) during viral infection. Fish Shellfish Immunol. 122:465–475. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Peng S, Yu Y, Li J, Jiang D, Xu G, Wu L and Hu J: Hsp22 pretreatment protects against LPS-induced hippocampal injury by alleviating neuroinflammation and apoptosis by regulating the NLRP3/Caspase1/IL-1β signaling pathway in mice. Aging (Albany NY). 15:1977–2004. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Lan Y, Wang Y, Huang K and Zeng Q: Heat shock protein 22 attenuates doxorubicin-induced cardiotoxicity via regulating inflammation and apoptosis. Front Pharmacol. 11:2572020. View Article : Google Scholar : PubMed/NCBI

67 

Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, et al: H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res. 91:1007–1014. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Rashed E, Lizano P, Dai H, Thomas A, Suzuki CK, Depre C and Qiu H: Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One. 10:e01195372015. View Article : Google Scholar : PubMed/NCBI

69 

Bolli R: Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: An overview of a decade of research. J Mol Cell Cardiol. 33:1897–1918. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Yamagami K, Yamamoto Y, Ishikawa Y, Yonezawa K, Toyokuni S and Yamaoka Y: Effects of geranyl-geranyl-acetone administration before heat shock preconditioning for conferring tolerance against ischemia-reperfusion injury in rat livers. J Lab Clin Med. 135:465–475. 2000. View Article : Google Scholar : PubMed/NCBI

71 

Ooie T, Kajimoto M, Takahashi N, Shinohara T, Taniguchi Y, Kouno H, Wakisaka O, Yoshimatsu H and Saikawa T: Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci. 77:869–881. 2005. View Article : Google Scholar : PubMed/NCBI

72 

He D, Song X and Li L: Geranylgeranylacetone protects against cerebral ischemia and reperfusion injury: HSP90 and eNOS phosphorylation involved. Brain Res. 1599:150–157. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Sysa-Shah P, Xu Y, Guo X, Pin S, Bedja D, Bartock R, Tsao A, Hsieh A, Wolin MS, Moens A, et al: Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity and reduces cancer cell growth and invasion through RHO pathway inhibition. Mol Cancer Ther. 13:1717–1728. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Brundel BJ, Henning RH, Ke L, van Gelder IC, Crijns HJ and Kampinga HH: Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J Mol Cell Cardiol. 41:555–562. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Brundel BJ, Shiroshita-Takeshita A, Qi X, Yeh YH, Chartier D, van Gelder IC, Henning RH, Kampinga HH and Nattel S: Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 99:1394–1402. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Sakabe M, Shiroshita-Takeshita A, Maguy A, Brundel BJ, Fujiki A, Inoue H and Nattel S: Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia. Cardiovasc Res. 78:63–70. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Zhang D, Ke L, Mackovicova K, Van Der Want JJ, Sibon OC, Tanguay RM, Morrow G, Henning RH, Kampinga HH and Brundel BJ: Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol. 51:381–389. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Chang SL, Chen YC, Hsu CP, Kao YH, Lin YK, Lai YJ, Yeh HI, Higa S, Chen SA and Chen YJ: Heat shock protein inducer modifies arrhythmogenic substrate and inhibits atrial fibrillation in the failing heart. Int J Cardiol. 168:4019–4026. 2013. View Article : Google Scholar : PubMed/NCBI

79 

van Marion DM, Hu X, Zhang D, Hoogstra-Berends F, Seerden JG, Loen L, Heeres A, Steen H, Henning RH and Brundel BJ: Screening of novel HSP-inducing compounds to conserve cardiomyocyte function in experimental atrial fibrillation. Drug Des Devel Ther. 13:345–364. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Hu X, Li J, van Marion DMS, Zhang D and Brundel BJJM: Heat shock protein inducer GGA*-59 reverses contractile and structural remodeling via restoration of the microtubule network in experimental atrial fibrillation. J Mol Cell Cardiol. 134:86–97. 2019. View Article : Google Scholar : PubMed/NCBI

81 

van Marion DMS, Dorsch L, Hoogstra-Berends F, Kakuchaya T, Bockeria L, de Groot NMS and Brundel BJJM: Oral geranylgeranylacetone treatment increases heat shock protein expression in human atrial tissue. Heart Rhythm. 17:115–122. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Waddingham MT, Sequeira V, Kuster DWD, Dal Canto E, Handoko ML, de Man FS, da Silva Gonçalves Bós D, Ottenheijm CA, Shen S, van der Pijl RJ, et al: Geranylgeranylacetone reduces cardiomyocyte stiffness and attenuates diastolic dysfunction in a rat model of cardiometabolic syndrome. Physiol Rep. 11:e157882023. View Article : Google Scholar : PubMed/NCBI

83 

Sanbe A, Daicho T, Mizutani R, Endo T, Miyauchi N, Yamauchi J, Tanonaka K, Glabe C and Tanoue A: Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS One. 4:e53512009. View Article : Google Scholar : PubMed/NCBI

84 

Marunouchi T, Inomata S, Sanbe A, Takagi N and Tanonaka K: Protective effect of geranylgeranylacetone via enhanced induction of HSPB1 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats. Eur J Pharmacol. 730:140–147. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J and Wu YQ: Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong Z, Lv Q, Liu M and Xiao X: MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget. 8:94172–94187. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Ren AJ, Chen C, Zhang S, Liu M, Wei C, Wang K, Ma X, Song Y, Wang R, Zhang H, et al: Zbtb20 deficiency causes cardiac contractile dysfunction in mice. FASEB J. 34:13862–13876. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Martin TG, Delligatti CE, Muntu NA, Stachowski-Doll MJ and Kirk JA: Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes. J Cell Biochem. 123:128–141. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Cheng J, Ji M, Jing H and Lin H: DUSP12 ameliorates myocardial ischemia-reperfusion injury through HSPB8-induced mitophagy. J Biochem Mol Toxicol. 37:e233102023. View Article : Google Scholar : PubMed/NCBI

90 

Vieri M, Geng H, Patterson JB, Panse J, Wilop S, Samali A, Chevet E and Kharabi Masouleh B: Deregulated expression of the HSP40 family members Auxilin-1 and −2 is indicative of proteostasis imbalance and predicts patient outcome in Ph(+) leukemia. Exp Hematol Oncol. 5:52015. View Article : Google Scholar : PubMed/NCBI

91 

Criado-Marrero M, Gebru NT, Blazier DM, Gould LA, Baker JD, Beaulieu-Abdelahad D and Blair LJ: Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Acta Neuropathol Commun. 9:652021. View Article : Google Scholar : PubMed/NCBI

92 

Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D and Evgen'ev M: Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperones. 25:305–315. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Li M and Wu Y: Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535. Mol Med Rep 31: 82, 2025.
APA
Chen, Y., Li, M., & Wu, Y. (2025). Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535. Molecular Medicine Reports, 31, 82. https://doi.org/10.3892/mmr.2025.13447
MLA
Chen, Y., Li, M., Wu, Y."Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535". Molecular Medicine Reports 31.3 (2025): 82.
Chicago
Chen, Y., Li, M., Wu, Y."Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535". Molecular Medicine Reports 31, no. 3 (2025): 82. https://doi.org/10.3892/mmr.2025.13447
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Li M and Wu Y: Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535. Mol Med Rep 31: 82, 2025.
APA
Chen, Y., Li, M., & Wu, Y. (2025). Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535. Molecular Medicine Reports, 31, 82. https://doi.org/10.3892/mmr.2025.13447
MLA
Chen, Y., Li, M., Wu, Y."Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535". Molecular Medicine Reports 31.3 (2025): 82.
Chicago
Chen, Y., Li, M., Wu, Y."Heat shock protein 22: A new direction for cardiovascular disease (Review) Corrigendum in /10.3892/mmr.2025.13535". Molecular Medicine Reports 31, no. 3 (2025): 82. https://doi.org/10.3892/mmr.2025.13447
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team