Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review)

  • Authors:
    • Shiro Koizume
    • Yohei Miyagi
  • View Affiliations

    Affiliations: Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
  • Published online on: January 28, 2025     https://doi.org/10.3892/mmr.2025.13448
  • Article Number: 83
  • Copyright: © Koizume et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor tissues generally exist in a relatively hypovascular state, and cancer cells must adapt to severe tissue conditions with a limited molecular oxygen and nutrient supply for their survival. Lipid metabolism serves a role in this adaptation. Lipids are supplied not only through the bloodstream but also through autonomous synthesis by cancer cells, and they function as sources of adenosine triphosphate and cell components. Although cancer‑associated lipid metabolism has been widely reviewed, how this metabolism responds to the tumor environment with poor molecular oxygen and nutrient supply remains to be fully discussed. The main aim of the present review was to summarize the findings on this issue and to provide insights into how cancer cells adapt to better cope with metabolic stresses within tumors. It may be suggested that diverse types of lipid metabolism have a role in enabling cancer cells to adapt to both hypoxia and nutrient‑poor conditions. Gaining a deeper understanding of these molecular mechanisms may reveal novel possibilities of exploration for cancer treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Pavlova NN, Zhu J and Thompson CB: The hall marks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Li F and Simon MC: Cancer Cells don't live alone: Metabolic communication within tumor microenvironments. Dev Cell. 54:183–195. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Koizume S and Miyagi Y: Lipid droplets: A key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int. J Mol Sci. 17:14302016. View Article : Google Scholar

5 

Broadfield LA, Pane AA, Talebi A, Swinnen JV and Fendt SM: Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 56:1363–1393. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Riscal R, Skuli N and Simon MC: Even cancer cells watch their cholesterol! Mol Cell. 76:220–231. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Xiang W, Lv H, Xing F, Sun X, Ma Y, Wu L, Lv G, Zong Q, Wang L, Wu Z, et al: Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. Sci Adv. 9:eadi24652023. View Article : Google Scholar : PubMed/NCBI

8 

Vanauberg D, Schulz C and Lefebvre T: Involvement of the pro-oncogenic enzyme fatty avid synthase in the hallmarks of cancer: A promising target in anti-cancer therapies. Oncogenesis. 12:162023. View Article : Google Scholar : PubMed/NCBI

9 

Freitas FP, Alborzinia H, dos Santos AF, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, et al: 7-dehydrocholesterol is endogenous suppressor of ferroptosis. Nature. 626:401–410. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, Wang C, Zhu Z, Chen X, Weng L, et al: 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 626:411–418. 2024. View Article : Google Scholar : PubMed/NCBI

11 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J and Pugh CW: Recent advances in the biology of tumor hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol. 250:593–611. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Haga N, Saito S, Tsukumo Y, Sakurai J, Furuno A, Tsuruo T and Tomida A: Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions. Cancer Sci. 101:1125–1132. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Kwon SJ and Lee YJ: Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1a in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin. Cancer Res. 11:4694–4700. 2005.

15 

Kikuchi D, Tanimoto K and Nakayama K: CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochem. Biophys. Res Commun. 469:243–250. 2016.PubMed/NCBI

16 

Wang HF, Wang ZQ, Ding Y, Piao MH, Feng CS, Chi GF, Luo YN and Ge PF: Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci Ther. 24:29–38. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Natsuizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, et al: Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp Cell Res. 313:3337–3348. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Keith B, Johnson RS and Simon MC: HIF1α and HIF2α: Sibling rivalry in hypoxic tumor growth and progression. Nat Rev Cancer. 12:9–22. 2012. View Article : Google Scholar

19 

Wouters BG and Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 8:851–864. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Lee P, Chandel N and Simon MC: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 21:268–283. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Kondo S, Wang H, Wang H, Yeung SC, et al: Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. Am J Pathol. 175:400–411. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A and Phang JM: Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments. Cancer Res. 72:3677–3686. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Chen X, Ilipoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, et al: XBP1 promotes triple-negative breast cancer by controlling the HIF1a pathway. Nature. 508:103–107. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Huang C, Li Y, Li Z, Xu Y, Li N, Ge Y, Dong J, Chang A, Zhao T, Wang X, et al: LIMS1 promotes pancreatic cancer cell survival under oxygen-glucose deprivation conditions by enhancing HIF1A protein translation. Clin Cancer Res. 25:4091–4103. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Saggese P, Pandey A, Alcaraz M, Fung E, Hall A, Yanagawa J, Rodriguez EF, Grogan TR, Giurato G, Nassa G, et al: Glucose deprivation promotes pseudohypoxia and de-differentiation in lung adenocarcinoma. Cancer Res. 84:305–327. 2024. View Article : Google Scholar : PubMed/NCBI

26 

Zhao T, Jiang T, Li X, Chang S, Sun Q, Kong F, Kong X, Wei F, He J, Hao J, et al: Nuclear GRP78 promotes metabolic reprogramming and therapeutic resistance in pancreatic ductal adenocarcinoma. Clin Cancer Res. 29:5183–5195. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Nishimoto A, Kugiyama N, Hosoyama T, Enoki T, Li TS and Hamano K: HIF-1α activation under glucose deprivation plays a central role in the acquisition of anti-apoptosis in human colon cancer cells. Int J Oncol. 44:2077–2084. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Takai M, Takauchi M, Kuribayashi M and Tsujiuchi T: LPA receptor-mediated signaling regulates cell motility and survival to anticancer drug of pancreatic cancer cells under glucose-deprived and hypoxic conditions. Biochem Biophys Res Commun. 661:21–27. 2023. View Article : Google Scholar : PubMed/NCBI

29 

Davern M, Fitzgerald MC, Buckley CE, Heeran AB, Donlon NE, McGrath J, O'Connel F, Deshpande MR, Hayes C, MacDonald J, et al: PD-1 and TIGIT blockade differentially affect tumour cell survival under hypoxia and glucose deprived conditions in oesophageal adenocarcinoma; implications for overcoming resistance to PD-1 blockade in hypoxic tumors. Transl Oncol. 19:1013812022. View Article : Google Scholar : PubMed/NCBI

30 

Buzzai M, Bauer DE, Jones RG, DeBerardinis RJ, Hatzivassiliou G, Elstrom RL and Tompson CB: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene. 24:4165–4173. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Leithner K, Triebl A, Trotzmuller M, Hinteregger B, Leko P, Wieser BI, Grasmann G, Bertsch AL, Züllig T, Stacher E, et al: The glycerol backbone of phospholipids derives from noncarbohydrate precursors in staved lung cancer cells. Proc Natl Acad Sci USA. 115:6225–6230. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Cai M, He J, Xiong J, Tay LWR, Wang Z, Rog C, Wang J, Xie Y, Wang G, Banno Y, et al: Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells. Cell Death Dis. 7:e24482016. View Article : Google Scholar : PubMed/NCBI

33 

Khan AUH, Salehi H, Alexia C, Valdivielso JM, Bozic M, Lopez-Mejia IC, Fajas L, Gerbal-Chaloin S, DaujatChavanieu M, Gitenay D, et al: Glucose starvation or pyruvate dehydrogenase activation induce a broad, ERK5-mediated, metabolic remodeling leading to fatty acid oxidation. Cells. 11:13922022. View Article : Google Scholar : PubMed/NCBI

34 

Hoang-Minh LB, Siebzehnrubl FA, Yang C, Suzuki-Hatano S, Dajac K, Loche T, Andrews N, Massari MS, Patel J, Amin K, et al: Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 37:e987722018. View Article : Google Scholar : PubMed/NCBI

35 

Wang C, Haas MA, Yeo SK, Paul R, Yang F, Vallabhapurapu S, Qi X, Plas DR and Guan JL: Autophagy mediated lipid catabolism facilitates glioma progression to overcome bioenergetic crisis. Br J Cancer. 124:1711–1723. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Liu R, Lee JH, Li J, Yu R, Tan L, Xia Y, Zheng Y, Bian XL, Lorenzi PL, Chen Q, et al: Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol Cell. 81:2722–2735. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Chauhan SS, Casillas AL, Vizzerra AD, Liou H, Clements AN, Flores CE, Prevost CT, Kashatus DF, Snider AJ, Snider JM, et al: PIM1 drives lipid droplet accumulation to promote proliferation and survival in prostate cancer. Oncogene. 43:406–419. 2024. View Article : Google Scholar : PubMed/NCBI

38 

Cao B, Deng H, Cui H, Zhao R, Li H, Wei B and Chen L: Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation. Cancer Cell Int. 21:4812021. View Article : Google Scholar : PubMed/NCBI

39 

Monteiro-Cardoso VF, Silva AM, Oliveira MM, Peixoto F and Videira RA: Membrane lipid profile alterations are associated with the metabolic adaptation of the Caco-2 cells to a glycemic nutritional condition. J Bioenerg Biomembr. 46:45–57. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Spencer AG, Woods JW, Arakawa T, Singer II and Smith WI: Subcellular localization of prostaglandin endoperoxide H synthase-1 and −2 by immunoelectron microscopy. J Biol Chem. 273:9886–9893. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Roberts HR, Smartt HJM, Greenhough A, Moore AE, Williams AC and Paraskeva C: Colon tumor cells increase PGE2 by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis. 32:1741–1747. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Hwang SH, Yang Y, Jung JH and Kim Y: Oleic acid from cancer-associated fibroblast promotes cancer cell stemness by stearoyl-CoA desaturase under glucose-deficient condition. Cancer Cell Int. 22:4042022. View Article : Google Scholar : PubMed/NCBI

43 

Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Heiden MGV, Miller G, Drebin JA, Bar-Sagi D, et al: Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75:544–553. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z, Arreola A, Rathmell WK, Olumi A, López-Larrubia P, et al: In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17:372–385. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, Thompson CB and Rabinowitz JD: Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA. 110:8882–8887. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M, Saunders B, Howell M, Downward J, Felsher DW, et al: The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene. 37:5435–5450. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Byun JK, Choi YK, Kim JH, Jeong JY, Jeon HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK, et al: A positive feedback loop between Sestrin 2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep. 20:586–599. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Babbar M, Huang Y, An J, Landas SK and Sheikh MS: CHTM1, a novel metabolic marker deregulated in human malignancies. Oncogene. 37:2052–2066. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Juh JW, Yan JB, Lin ZH, Lin SC and Peng IC: SREBP1-induced glutamine synthetase triggers a feedforward loop to upregulate SREBP1 through Sp1 O-GlcNAcylation and augments lipid droplet formation in cancer cells. Int J Mol Sci. 22:98142021. View Article : Google Scholar

50 

Zhu R, Yang Y, Shao F, Wang J, Gao Y, He J and Lu Z: Choline kinase alpha2 promotes lipid droplet lipolysis in non-small-cell lung carcinoma. Front Oncol. 22:8484832022. View Article : Google Scholar : PubMed/NCBI

51 

Guo X, Wang A, Wang W, Wang Y, Chen H, Liu X, Xia T, Zhang A, Chen D, Qi H, et al: HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple negative breast cancer. Mol Oncol. 15:642–656. 2021. View Article : Google Scholar : PubMed/NCBI

52 

De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Gregorio ED, Mina E, Lorito N, Bacci M, et al: Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut. 72:360–371. 2023. View Article : Google Scholar : PubMed/NCBI

53 

Kong Y, Wu M, Wan X, Sun M, Zhang Y, Wu Z, Li C, Liang X, Gao L, Ma C, et al: Lipophagy-mediated cholesterol synthesis inhibition is required for the survival of hepatocellular carcinoma under glutamine deprivation. Redox Biol. 63:1027322023. View Article : Google Scholar : PubMed/NCBI

54 

Nedara K, Reinhardt C, Lebraud E, Arena G, Gracia C, Buard V, Pioche-Durieu C, Castelli F, Colsch B, Bénit P, et al: Relevance of the TRIAP1/p53 axis in colon cancer cell proliferation and adaptation to glutamine depletion. Front Oncol. 12:9581552022. View Article : Google Scholar : PubMed/NCBI

55 

Lorenz NI, Sittig ACM, Urban H, Luger AL, Engel AL, Munch C, Steinbach JP and Ronellenfitsch MW: Activating transcription factor 4 mediates adaptation of human glioblastoma cells to hypoxia and temozolomide. Sci Rep. 11:141612021. View Article : Google Scholar : PubMed/NCBI

56 

Pan M, Reid MA, Lowman XH, Kulkarni RP, Tran TQ, Liu X, Yang Y, Hernandez-Davies JE, Rosales KK, Li H, et al: Regional glutamine deficiency in tumors promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 18:1090–1101. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Jain M, Nilsson R, Sharma S, Madhusudhan N, Kiytami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Gao X, Lee K, Reid MA, Sanderson SM, Qiu C, Li S, Liu J and Locasale JW: Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 22:3507–3520. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E and Vousden KH: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, Pinto AFM, Badur MG, Kolar MJ, Wallace M, et al: Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 586:790–795. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Truman JP, Ruiz CF, Montal E, Garcia-Barros M, Mileva I, Snider AJ, Hannun YA, Obeid LM and Mao C: 1-Deoxysphinganine initiates adaptive responses to serine and glycine starvation in cancer cells via proteolysis of sphingosine kinase. J Lipid Res. 63:1001542022. View Article : Google Scholar : PubMed/NCBI

62 

Yun HJ, Li M, Guo D, Jeon SM, Park SH, Lim JS, Lee SB, Liu R, Du L, Kim SH, et al: AMPK-HIF-1α signaling enhances glucose-derived de novo serine biosynthesis to promote glioblastoma growth. J Exp Clin Cancer Res. 42:3402023. View Article : Google Scholar : PubMed/NCBI

63 

Bonifacio VDB, Pereira SA, Serpa J and Vicente JB: Cysteine metabolic circuitries: Druggable targets in cancer. Br J Cancer. 124:862–879. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Cunningham A, Oudejans LL, Geugien M, Pereira-Martins DA, Wierenga ATJ, Erdem A, Sternadt D, Huls G and Schuringa JJ: The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia. Blood Adv. 8:56–69. 2024. View Article : Google Scholar : PubMed/NCBI

65 

Upadhyayula PS, Higgins DM, Mela A, Banu M, Dovas A, Zandkarimi F, Patel P, Mahajan A, Humala N, Nguyen TTT, et al: Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nature Commun. 14:11872023. View Article : Google Scholar : PubMed/NCBI

66 

Kerimoglu B, Lamb C, McPherson RD, Ergen E, Stone EM and Ooi A: Cysteinase-rapamycin combination induces ferroptosis in both in vitro and in vivo models of hereditary leiomyomatosis and renal cell carcinoma. Mol Caner Ther. 21:419–426. 2022. View Article : Google Scholar

67 

Liu N, Lin X and Huang C: Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 122:279–92. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Armenta DA, Laqtom NN, Alchemy G, Dong W, Morrow D, Poltorack CD, Nathanson DA, Abu-Remaileh M and Dixon S: Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem Biol. 29:1588–1600. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Chen PH, Wu J, Ding CKC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi JT: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 27:1008–1022. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, Wang X, Du J, Tong X and Wang Y: CISD3 inhibition drives cysteine-deprivation induced ferroptosis. Cell Death Dis. 12:8392021. View Article : Google Scholar : PubMed/NCBI

71 

Liu D, Liang C, Huang B, Zhuang X, Cui W, Yang L, Yang Y, Zhang Y, Fu X, Zhang X, et al: Tryptophan metabolism acts as a new anti-ferroptotic pathway to mediate tumor growth. Adv Sci. 10:22040062023. View Article : Google Scholar

72 

Hong SE, Kim MR, Jang SK, Seong MK, Kim HA, Noh WC, Jin HO and Park IC: Hypoxia suppresses cysteine deprivation-induced cell death via ATF4 regulation in MDA-MB-231 breast cancer cells. Anticancer Res. 40:1387–1394. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, Gaur S, Forman HJ, Zhang H, Zheng S, et al: Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 7:ra312014. View Article : Google Scholar : PubMed/NCBI

74 

Hu Q, Dai J, Zhang Z, Yu H, Zhang J, Zhu X, Qin Y, Zhang L and Zhang P: ASS1-mediated reductive carboxylation of cytosolic glutamine confers ferroptosis resistance in cancer cells. Cancer Res. 83:1646–1665. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Brashears CB, Barlin M, Ehrhardt WR, Rathore R, Schultze M, Tzeng SC, Tine BAV and Held JM: Systems level profiling of arginine starvation reveals MYC and ERK adaptive metabolic reprogramming. Cell Death Dis. 11:6622020. View Article : Google Scholar : PubMed/NCBI

76 

Long Y, Tsai WB, Wangpaichitr M, Tsukamoto T, Savaraj N, Feun LG and Kuo MT: Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther. 12:2581–2590. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Burrows N, Cane G, Robson M, Gaude E, Howat WJ, Szlosarek PW, Pedley RB, Frezza C, Ashcroft M and Maxwell PH: Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20). Sci Rep. 6:229502016. View Article : Google Scholar : PubMed/NCBI

78 

Guenin S, Morvan D, Thivat E, Stepien G and Demidem A: Combined methionine deprivation and chloroethylnitrosourea have time-dependent therapeutic synergy on melanoma tumors that NMR spectroscopy-based metabolomics explains by methionine and phospholipid metabolism reprogramming. Nutr Cancer. 61:518–529. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Harada S, Taketomi Y, Aiba T, Kawaguchi M, Hirabayashi T, Uranbileg B, Kurano M, Yatomi Y and Murakami M: The lisophospholipase PNPLA7 controls hepatic choline and methionine metabolism. Biomolecules. 13:4172023. View Article : Google Scholar

80 

Yokogami K, Kikuchi T, Watanabe T, Nakatake Y, Yamashita S, Mizuguchi A and Takeshima H: Methionine regulates self-renewal pluripotency, and cell death of GIC through cholesterol-rRNA axis. BMC Cancer. 22:13512022. View Article : Google Scholar : PubMed/NCBI

81 

Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, Liu L, Giannoukos DN, Bobrovnikova-Marjon E, Diehl JA, Keith B, et al: Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 27:1115–1131. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Li Z, Ji BW, Dixit PD, Tchourine K, Lien EC, Hosios AM, Abbott KL, Rutter JC, Westermark AM, Gorodetsky EF, et al: Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nat Metab. 4:711–723. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Qiu B, Ackermann D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl A, Keith B and Simon C: HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 5:652–667. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, et al: HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 8:17692017. View Article : Google Scholar : PubMed/NCBI

85 

Chen C, Zhao W, Lu X, Ma Y, Zhang P, Wang Z, Cui Z and Xia Q: AUP1 regulates lipid metabolism and induces lipid accumulation to accelerate the progression of renal clear cell carcinoma. Cancer Sci. 113:2600–2615. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Brezis M and Rosen S: Hypoxia of the renal medulla-Its implications for disease. N Eng J Med. 332:647–655. 1995. View Article : Google Scholar : PubMed/NCBI

87 

Little RA, Jamin Y, Boult JKR, Naish JH, Watson Y, Cheung S, Holliday KF, Lu H, McHugh DJ, Irlam J, et al: Mapping hypoxia in renal carcinoma with oxygen-enhanced MRI. Radiology. 288:739–747. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Ackerman D, Tumanov S, Qiu B, Michalopoulou E, Spata M, Azzam A, Xie H, Simon MC and Kamphorst JJ: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell Rep. 24:2596–2605. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Ji JX, Wang YK, Cochrane DR and Huntsman DG: Clear cell carcinomas of the ovary and kidney: Clarity through genomics. J Pathol. 244:550–564. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Lee S, Garner EIO, Welch WR, Berkowitz RS and Mok SC: Over-expression of hypoxia-inducible factor 1 alpha in ovarian clear cell carcinoma. Gynecol Oncol. 106:311–317. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C, Power J, Coward J, Cowin PA, House CM, et al: IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell carcinoma. Clin Cancer Res. 17:2538–2548. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Spowart JE, Townsend KN, Huwait H, Eshragh S, West NR, Ries JN, Kalloger S, Anglesio M, Gorski SM, Watson PH, et al: The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer. J Pathol. 228:437–447. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Koizume S, Ito S, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, Osaka H, Takano Y, Ruf W and Miyagi Y: HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic condition in ovarian cancer cells. Nucleic Acid Res. 40:5389–5401. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Koizume S and Miyagi Y: Tissue factor in cancer-associated thromboembolism: Possible mechanisms and clinical applications. Br J Cancer. 127:2099–2107. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, Miyagi E, Hirahara F, Takano Y and Miyagi Y: Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 14:772015. View Article : Google Scholar : PubMed/NCBI

96 

Koizume S, Kanayama T, Kimura Y, Hirano H, Takahashi T, Ota Y, Miyazaki K, Yoshihara M, Nakamura Y, Yokose T, et al: Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci. 114:2485–2498. 2023. View Article : Google Scholar : PubMed/NCBI

97 

Trigatti BL and Gerber GE: A direct role for serum albumin in the cellular uptake of long-chain fatty acids. Biochem. J. 308:155–159. 1995.PubMed/NCBI

98 

Koizume S, Takahashi T, Nakamura Y, Yoshihara M, Ota Y, Sato S, Tadokoro H, Yokose T, Kato H, Miyagi E, et al: Lipophagy-ICAM-1 pathway associated with fatty acid and oxygen deficiencies is involved in poor prognoses of ovarian clear cell carcinoma. Br J Cancer. 127:462–473. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Koizume S, Takahashi T, Yoshihara M, Nakamura Y, Ruf W, Takenaka K, Miyagi E and Miyagi Y: Cholesterol starvation and hypoxia activate the FVII gene via the SREBP1-GILZ pathway in ovarian cancer cells to produce procoagulant microvesicles. Thromb Haemost. 119:1058–1071. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Lewis CA, Peck B, Bensaad K, Griffiths B, Mitter R, Chakravarty P, East P, Dankworth B, Alibhai D, Harris AL and Schulze A: SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene. 34:5128–5140. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, et al: Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 27:57–71. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Koizume S and Miyagi Y: Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Mol Med Rep 31: 83, 2025.
APA
Koizume, S., & Miyagi, Y. (2025). Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Molecular Medicine Reports, 31, 83. https://doi.org/10.3892/mmr.2025.13448
MLA
Koizume, S., Miyagi, Y."Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review)". Molecular Medicine Reports 31.4 (2025): 83.
Chicago
Koizume, S., Miyagi, Y."Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review)". Molecular Medicine Reports 31, no. 4 (2025): 83. https://doi.org/10.3892/mmr.2025.13448
Copy and paste a formatted citation
x
Spandidos Publications style
Koizume S and Miyagi Y: Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Mol Med Rep 31: 83, 2025.
APA
Koizume, S., & Miyagi, Y. (2025). Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Molecular Medicine Reports, 31, 83. https://doi.org/10.3892/mmr.2025.13448
MLA
Koizume, S., Miyagi, Y."Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review)". Molecular Medicine Reports 31.4 (2025): 83.
Chicago
Koizume, S., Miyagi, Y."Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review)". Molecular Medicine Reports 31, no. 4 (2025): 83. https://doi.org/10.3892/mmr.2025.13448
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team