Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Modic changes: From potential molecular mechanisms to future research directions (Review)

  • Authors:
    • Weijian Zhu
    • Zhou Yang
    • Sirui Zhou
    • Jinming Zhang
    • Zhihao Xu
    • Wei Xiong
    • Ping Liu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Hongxin Harmony Hospital, Li Chuan, Hubei 445400 P.R. China, Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Hepatobiliary Surgery, Huaqiao Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China, Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 90
    |
    Published online on: February 6, 2025
       https://doi.org/10.3892/mmr.2025.13455
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Low back pain (LBP) is a leading cause of disability worldwide. Although not all patients with Modic changes (MCs) experience LBP, MC is often closely associated with LBP and disc degeneration. In clinical practice, the focus is usually on symptoms related to MC, which are hypothesized to be associated with LBP; however, the link between MC and nerve compression remains unclear. In cases of intervertebral disc herniation, nerve compression is often the definitive cause of symptoms. Recent advances have shed light on the pathophysiology of MC, partially elucidating its underlying mechanisms. The pathogenesis of MC involves complex bone marrow‑disc interactions, resulting in bone marrow inflammation and edema. Over time, hematopoietic cells are gradually replaced by adipocytes, ultimately resulting in localized bone marrow sclerosis. This process creates a barrier between the intervertebral disc and the bone marrow, thereby enhancing the stability of the vertebral body. The latest understanding of the pathophysiology of MC suggests that chronic inflammation plays a significant role in its development and hypothesizes that the complement system may contribute to its pathological progression. However, this hypothesis requires further research to be confirmed. The present review we proposed a pathological model based on current research, encompassing the transition from Modic type 1 changes (MC1) to Modic type 2 changes (MC2). It discussed key cellular functions and their alterations in the pathogenesis of MC and outlined potential future research directions to further elucidate its mechanisms. Additionally, it reviewed the current clinical staging and pathogenesis of MC, recommended the development of an updated staging system and explored the prospects of integrating emerging artificial intelligence technologies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Modic MT, Steinberg PM, Ross JS, Masaryk TJ and Carter JR: Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology. 166((1 Pt 1)): 193–199. 1988. View Article : Google Scholar : PubMed/NCBI

2 

Thompson KJ, Dagher AP, Eckel TS, Clark M and Reinig JW: Modic changes on MR images as studied with provocative diskography: Clinical relevance-a retrospective study of 2457 disks. Radiology. 250:849–855. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Carrino JA, Lurie JD, Tosteson AN, Tosteson TD, Carragee EJ, Kaiser J, Grove MR, Blood E, Pearson LH, Weinstein JN and Herzog R: Lumbar spine: Reliability of MR imaging findings. Radiology. 250:161–170. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Perilli E, Parkinson IH, Truong LH, Chong KC, Fazzalari NL and Osti OL: Modic (endplate) changes in the lumbar spine: Bone micro-architecture and remodelling. Eur Spine J. 24:1926–1934. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Tarukado K, Ono T, Tono O, Tanaka H, Ikuta K, Harimaya K and Doi T: Does modic change progresss with age? Spine (Phila Pa 1976). 42:1805–1809. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH and Luetmer PH: MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: A systematic review and meta-analysis. AJNR Am J Neuroradiol. 36:2394–2399. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Heggli I, Laux CJ, Mengis T, Karol A, Cornaz F, Herger N, Aradi-Vegh B, Widmer J, Burkhard MD, Farshad-Amacker NA, et al: Modic type 2 changes are fibroinflammatory changes with complement system involvement adjacent to degenerated vertebral endplates. JOR Spine. 6:e12372022. View Article : Google Scholar : PubMed/NCBI

8 

Heggli I, Epprecht S, Juengel A, Schuepbach R, Farshad-Amacker N, German C, Mengis T, Herger N, Straumann L, Baumgartner S, et al: Pro-fibrotic phenotype of bone marrow stromal cells in Modic type 1 changes. Eur Cell Mater. 41:648–667. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Lu X, Zhu Z, Pan J, Feng Z, Lv X, Battié MC and Wang Y: Traumatic vertebra and endplate fractures promote adjacent disc degeneration: Evidence from a clinical MR follow-up study. Skeletal Radiol. 51:1017–1026. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Dudli S, Heggli I, Laux CJ, Spirig JM, Wanivenhaus F, Betz M, Germann C, Farshad-Amacker NA, Herger N, Mengis T, et al: Role of C-reactive protein in the bone marrow of Modic type 1 changes. J Orthop Res. 41:1115–1122. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Dudli S, Liebenberg E, Magnitsky S, Miller S, Demir-Deviren S and Lotz JC: Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic changes. J Orthop Res. 34:1447–1455. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Biczo A, Szita J, McCall I and Varga PP; Genodisc Consortium; Lazary A, : Association of vitamin D receptor gene polymorphisms with disc degeneration. Eur Spine J. 29:596–604. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Eksi MS, Kara M, Ozcan-Eksi EE, Aytar MH, Güngör A, Özgen S and Pamir MN: Is diabetes mellitus a risk factor for modic changes?: A novel model to understand the association between intervertebral disc degeneration and end-plate changes. J Orthop Sci. 25:571–575. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Schmid G, Witteler A, Willburger R, Kuhnen C, Jergas M and Koester O: Lumbar disk herniation: Correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology. 231:352–358. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Roberts S, Evans H, Trivedi J and Menage J: Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 88 (Suppl 2):S10–S14. 2006. View Article : Google Scholar

16 

Feng P, Che Y, Gao C, Zhu L, Gao J and Vo NV: Immune exposure: How macrophages interact with the nucleus pulposus. Front Immunol. 14:11557462023. View Article : Google Scholar : PubMed/NCBI

17 

Adams MA, Freeman BJ, Morrison HP, Nelson IW and Dolan P: Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976). 25:1625–1636. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Ferguson SJ, Ito K and Nolte LP: Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 37:213–221. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Torkki M, Majuri ML, Wolff H, Koskelainen T, Haapea M, Niinimäki J, Alenius H, Lotz J and Karppinen J: Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. Eur Spine J. 25:207–216. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Dudli S, Ferguson SJ and Haschtmann D: Severity and pattern of post-traumatic intervertebral disc degeneration depend on the type of injury. Spine J. 14:1256–1264. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Dudli S, Haschtmann D and Ferguson SJ: Fracture of the vertebral endplates, but not equienergetic impact load, promotes disc degeneration in vitro. J Orthop Res. 30:809–816. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Jensen TS, Bendix T, Sorensen JS, Manniche C, Korsholm L and Kjaer P: Characteristics and natural course of vertebral endplate signal (Modic) changes in the Danish general population. BMC Musculoskelet Disord. 10:812009. View Article : Google Scholar : PubMed/NCBI

23 

Kerttula L, Luoma K, Vehmas T, Gronblad M and Kaapa E: Modic type I change may predict rapid progressive, deforming disc degeneration: A prospective 1-year follow-up study. Eur Spine J. 21:1135–1142. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Dudli S, Sing DC, Hu SS, Berven SH, Burch S, Deviren V, Cheng I, Tay BKB, Alamin TF, Ith MAM, et al: Issls prize in basic science 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. Eur Spine J. 26:1362–1373. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Dudli S, Karol A, Giudici L, Heggli I, Laux CJ, Spirig JM, Wanivenhaus F, Betz M, Germann C, Farshad-Amacker N, et al: CD90-positive stromal cells associate with inflammatory and fibrotic changes in modic changes. Osteoarthr Cartil Open. 4:1002872022. View Article : Google Scholar : PubMed/NCBI

26 

Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X and Link TM: Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 35:117–124. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Thomas GP, Hemmrich K, Abberton KM, McCombe D, Penington AJ, Thompson EW and Morrison WA: Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes (Lond). 32:239–248. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Monden M, Koyama H, Otsuka Y, Morioka T, Mori K, Shoji T, Mima Y, Motoyama K, Fukumoto S, Shioi A, et al: Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: Involvement of Toll-like receptor 2. Diabetes. 62:478–489. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Haapasalo K and Meri S: Regulation of the complement system by pentraxins. Front Immunol. 10:17502019. View Article : Google Scholar : PubMed/NCBI

30 

Sjöberg A, Onnerfjord P Mörgelin M, Heinegård D, Heinegård D and Blom AM: The extracellular matrix and inflammation: Fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem. 280:32301–23208. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Webster GF, Leyden JJ and Nilsson UR: Complement activation in acne vulgaris: Consumption of complement by comedones. Infect Immun. 26:183–186. 1979. View Article : Google Scholar : PubMed/NCBI

32 

Piccinini AM and Midwood KS: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010:6723952010. View Article : Google Scholar : PubMed/NCBI

33 

Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD and Huber-Lang M: Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem. 112:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Llorian-Salvador M, Byrne EM, Szczepan M, Little K, Chen M and Xu H: Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation. 19:1822022. View Article : Google Scholar : PubMed/NCBI

35 

Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ and Ambati J: Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA. 103:2328–2333. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Takahashi K, Miyazaki T, Ohnari H, Takino T and Tomita K: Schmorl's nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J. 4:56–59. 1995. View Article : Google Scholar : PubMed/NCBI

37 

Dudli S, Fields AJ, Samartzis D, Karppinen J and Lotz JC: Pathobiology of modic changes. Eur Spine J. 25:3723–3734. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Galán-Díez M and Kousteni S: A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 32:324–326. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Zhou BO, Yue R, Murphy MM, Peyer JG and Morrison SJ: Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 15:154–168. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J and Ding L: Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 19:677–688. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Papayannopoulos V: Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 18:134–147. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F and Daley GQ: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 460:259–263. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Wan Y, Chong LW and Evans RM: PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 13:1496–1503. 2007. View Article : Google Scholar : PubMed/NCBI

44 

He N, Liu M and Wu Y: Adipose tissue and hematopoiesis: Friend or foe? J Clin Lab Anal. 37:e248722023. View Article : Google Scholar : PubMed/NCBI

45 

Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S, Mensà E, Pascarella R, Vivarelli M, Olivieri A, et al: Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol. 233:1500–1511. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Wilson A, Fu H, Schiffrin M, Winkler C, Koufany M, Jouzeau JY, Bonnet N, Gilardi F, Renevey F, Luther SA, et al: Lack of adipocytes alters hematopoiesis in lipodystrophic mice. Front Immunol. 9:25732018. View Article : Google Scholar : PubMed/NCBI

47 

Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Borregaard N: Neutrophils, from marrow to microbes. Immunity. 33:657–670. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Heggli I, Mengis T, Laux CJ, Opitz L, Herger N, Menghini D, Schuepbach R, Farshad-Amacker NA, Brunner F, Fields AJ, et al: Low back pain patients with Modic type 1 changes exhibit distinct bacterial and non-bacterial subtypes. Osteoarthr Cartil Open. 6:1004342024. View Article : Google Scholar : PubMed/NCBI

50 

Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Fournier BM and Parkos CA: The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5:354–366. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Thålin C, Hisada Y, Lundström S, Mackman N and Wallén H: Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 39:1724–1738. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Wang H, Wang C, Zhao MH and Chen M: Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol. 181:518–527. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Christoffersson G, Vagesjo E, Vandooren J, Lidén M, Massena S, Reinert RB, Brissova M, Powers AC, Opdenakker G and Phillipson M: VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 120:4653–4662. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Shi J, Gilbert GE, Kokubo Y and Ohashi T: Role of the liver in regulating numbers of circulating neutrophils. Blood. 98:1226–1230. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Okabe Y and Medzhitov R: Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI

58 

Nakazawa KR, Walter BA, Laudier DM, Krishnamoorthy D, Mosley GE, Spiller KL and Iatridis JC: Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 18:343–356. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Murai K, Sakai D, Nakamura Y, Nakai T, Igarashi T, Seo N, Murakami T, Kobayashi E and Mochida J: Primary immune system responders to nucleus pulposus cells: Evidence for immune response in disc herniation. Eur Cell Mater. 19:13–21. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Daneshvar A, Nemati P, Azadi A, Amid R and Kadkhodazadeh M: M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol. 166:1060342024. View Article : Google Scholar : PubMed/NCBI

61 

Fan S, Zhang C, Sun X, Su C, Xue Y, Song X and Deng R: Metformin enhances osteogenic differentiation of BMSC by modulating macrophage M2 polarization. Sci Rep. 14:202672024. View Article : Google Scholar : PubMed/NCBI

62 

Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q and Feng X: TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci. 20:1992–2007. 2024. View Article : Google Scholar : PubMed/NCBI

63 

Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J and Liu J: Macrophage-derived extracellular vesicles: Diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11:9242020. View Article : Google Scholar : PubMed/NCBI

64 

Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS and Gillespie MT: Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res. 19:1873–1881. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Yang Y, Qin J, Lan L, Li N, Wang C, He P, Liu F, Ni H and Wang Y: M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther. 15:99–107. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al: Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 561:195–200. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z and Goodman SB: Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 196:80–89. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Ni S, Ling Z, Wang X, Cao Y, Wu T, Deng R, Crane JL, Skolasky R, Demehri S, Zhen G, et al: Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat Commun. 10:56432019. View Article : Google Scholar : PubMed/NCBI

69 

Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M and Boos N: Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci. 1096:44–54. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Wallach D: The TNF family: Only the surface has been scratched. Semin Immunol. 26:181–182. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Aggarwal BB, Gupta SC and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 119:651–665. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Wang J, Tian Y, Phillips KL, Chiverton N, Haddock G, Bunning RA, Cross AK, Shapiro IM, Le Maitre CL and Risbud MV: Tumor necrosis factor alpha- and interleukin-1beta-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis Rheum. 65:832–842. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Nakawaki M, Uchida K, Miyagi M, Inoue G, Kawakubo A, Kuroda A, Satoh M and Takaso M: Sequential CCL2 expression profile after disc injury in mice. J Orthop Res. 38:895–901. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Chou PH, Chee A, Shi P, Lin CL, Zhao Y, Zhang L and An HS: Small molecule antagonist of C-C chemokine receptor 1 (CCR1) reduces disc inflammation in the rabbit model. Spine J. 20:2025–2036. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Li Z, Wang X, Pan H, Yang H, Li X, Zhang K, Wang H, Zheng Z, Liu H and Wang J: Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-ĸB signaling pathways: Implications for intervertebral disc degeneration. Osteoarthritis Cartilage. 25:341–350. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Hwang MH, Son HG, Lee JW, Yoo CM, Shin JH, Nam HG, Lim HJ, Baek SM, Park JH, Kim JH and Choi H: Photobiomodulation of extracellular matrix enzymes in human nucleus pulposus cells as a potential treatment for intervertebral disk degeneration. Sci Rep. 8:116542018. View Article : Google Scholar : PubMed/NCBI

77 

Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, Kimura T and Masuda K: Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine (Phila Pa 1976). 32:635–642. 2007. View Article : Google Scholar : PubMed/NCBI

78 

Dudli S, Liebenberg E, Magnitsky S, Lu B, Lauricella M and Lotz JC: Modic type 1 change is an autoimmune response that requires a proinflammatory milieu provided by the ‘Modic disc’. Spine J. 18:831–844. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Jia J, Nie L and Liu Y: Butyrate alleviates inflammatory response and NF-ĸB activation in human degenerated intervertebral disc tissues. Int Immunopharmacol. 78:1060042020. View Article : Google Scholar : PubMed/NCBI

80 

Ma Z, Tang P, Dong W, Lu Y, Tan B, Zhou N, Hao J, Shen J and Hu Z: SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration. Int Immunopharmacol. 107:1086712022. View Article : Google Scholar : PubMed/NCBI

81 

Zhang K, Ding W, Sun W, Sun XJ, Xie YZ, Zhao CQ and Zhao J: Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway. Apoptosis. 21:13–24. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Kang H, Dong Y, Peng R, Liu H, Guo Q, Song K, Zhu M, Yu K, Wu W and Li F: Inhibition of IRE1 suppresses the catabolic effect of IL-1β on nucleus pulposus cell and prevents intervertebral disc degeneration in vivo. Biochem Pharmacol. 197:1149322022. View Article : Google Scholar : PubMed/NCBI

83 

Zhao F, Guo Z, Hou F, Fan W, Wu B and Qian Z: Magnoflorine alleviates ‘M1’ polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-ĸB pathway and NLRP3 inflammasome. Front Pharmacol. 12:7010872021. View Article : Google Scholar : PubMed/NCBI

84 

Zhang S, Wang P, Hu B, Liu W, Lv X, Chen S and Shao Z: HSP90 inhibitor 17-AAG attenuates nucleus pulposus inflammation and catabolism induced by M1-polarized macrophages. Front Cell Dev Biol. 9:7969742022. View Article : Google Scholar : PubMed/NCBI

85 

Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S and Shao Z: Inhibiting heat shock protein 90 attenuates nucleus pulposus fibrosis and pathologic angiogenesis induced by macrophages via down-regulating cell migration-inducing protein. Am J Pathol. 193:960–976. 2023. View Article : Google Scholar : PubMed/NCBI

86 

England H, Summersgill HR, Edye ME, Rothwell NJ and Brough D: Release of interleukin-1alpha or interleukin-1beta depends on mechanism of cell death. J Biol Chem. 289:15942–15950. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Phillips KL, Jordan-Mahy N, Nicklin MJ and Le Maitre CL: Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Ann Rheum Dis. 72:1860–1867. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Hasvik E, Schjolberg T, Jacobsen DP, Haugen AJ, Grøvle L, Schistad EI and Gjerstad J: Up-regulation of circulating microRNA-17 is associated with lumbar radicular pain following disc herniation. Arthritis Res Ther. 21:1862019. View Article : Google Scholar : PubMed/NCBI

89 

Cui S and Zhang L: microRNA-129-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration via blockade of LRG1-mediated p38 MAPK activation. J Tissue Eng. 12:204173142110216792021. View Article : Google Scholar : PubMed/NCBI

90 

Zhao X, Sun Z, Xu B, Duan W, Chang L, Lai K and Ye Z: Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J Nanobiotechnology. 21:3172023. View Article : Google Scholar : PubMed/NCBI

91 

Murray PJ: Macrophage polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Yamamoto Y, Kokubo Y, Nakajima H, Honjoh K, Watanabe S and Matsumine A: Distribution and polarization of hematogenous macrophages associated with the progression of intervertebral disc degeneration. Spine (Phila Pa 1976). 47:E149–E158. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Greenlee-Wacker MC: Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 273:357–370. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Ip WKE, Hoshi N, Shouval DS, Snapper S and Medzhitov R: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 356:513–519. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW and Chawla A: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 447:1116–1120. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-Regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Kawakubo A, Miyagi M, Yokozeki Y, Nakawaki M, Takano S, Satoh M, Itakura M, Inoue G, Takaso M and Uchida K: Origin of M2 Mϕ and its macrophage polarization by TGF-β in a mice intervertebral injury model. Int J Immunopathol Pharmacol. 36:39463202211037922022. View Article : Google Scholar : PubMed/NCBI

98 

Xu YQ, Zhang ZH, Zheng YF and Feng SQ: Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine (Phila Pa 1976). 41:E717–E724. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, Wen FQ, Abe S, Wang X, Atkinson JJ, et al: Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol. 306:L1006–L1015. 2014. View Article : Google Scholar : PubMed/NCBI

100 

van Caam A, Vonk M, van den Hoogen F, van Lent P and van der Kraan P: Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol. 9:24522018. View Article : Google Scholar : PubMed/NCBI

101 

Abbott RD, Purmessur D, Monsey RD, Brigstock DR, Laudier DM and Iatridis JC: Degenerative grade affects the responses of human nucleus pulposus cells to link-N, CTGF, and TGFβ3. J Spinal Disord Tech. 26:E86–E94. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Wei Q, Liu D, Chu G, Yu Q, Liu Z, Li J, Meng Q, Wang W, Han F and Li B: TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact Mater. 19:581–593. 2022.PubMed/NCBI

103 

Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L and Yang H: Controlled release of TGF-β3 for effective local endogenous repair in IDD using rat model. Int J Nanomedicine. 17:2079–2096. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Montgomery SR, Nargizyan T, Meliton V, Nachtergaele S, Rohatgi R, Stappenbeck F, Jung ME, Johnson JS, Aghdasi B, Tian H, et al: A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding. J Bone Miner Res. 29:1872–1885. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Jacobsen CM, Schwartz MA, Roberts HJ, Lim KE, Spevak L, Boskey AL, Zurakowski D, Robling AG and Warman ML: Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta. Bone. 90:127–132. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Heggli I, Teixeira GQ, Iatridis JC, Neidlinger-Wilke C and Dudli S: The role of the complement system in disc degeneration and Modic changes. JOR Spine. 7:e13122024. View Article : Google Scholar : PubMed/NCBI

108 

Komori T: Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 17:20452016. View Article : Google Scholar : PubMed/NCBI

109 

Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Nørgaard HS, Vernallis A, Busch F, Manniche C and Elliott T: Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J. 22:690–696. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Riegger J, Huber-Lang M and Brenner RE: Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage. 28:685–697. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Fatoba O, Itokazu T and Yamashita T: Complement cascade functions during brain development and neurodegeneration. FEBS J. 289:2085–2109. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Koivisto K, Jarvinen J, Karppinen J, Haapea M, Paananen M, Kyllönen E, Tervonen O and Niinimäki J: The effect of zoledronic acid on type and volume of Modic changes among patients with low back pain. BMC Musculoskelet Disord. 18:2742017. View Article : Google Scholar : PubMed/NCBI

113 

Xu L, Chu B, Feng Y, Xu F and Zou YF: Modic changes in lumbar spine: Prevalence and distribution patterns of end plate oedema and end plate sclerosis. Br J Radiol. 89:201506502016. View Article : Google Scholar : PubMed/NCBI

114 

Galbusera F, Casaroli G and Bassani T: Artificial intelligence and machine learning in spine research. JOR Spine. 2:e10442019. View Article : Google Scholar : PubMed/NCBI

115 

Gao KT, Tibrewala R, Hess M, Bharadwaj UU, Inamdar G, Link TM, Chin CT, Pedoia V and Majumdar S: Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning. JOR Spine. 5:e12042022. View Article : Google Scholar : PubMed/NCBI

116 

Rajasekaran S, Bt P, Murugan C, Mengesha MG, Easwaran M, Naik AS, Ks SVA, Kanna RM and Shetty AP: The disc-endplate-bone-marrow complex classification: progress in our understanding of Modic vertebral endplate changes and their clinical relevance. Spine J. 24:34–45. 2024. View Article : Google Scholar : PubMed/NCBI

117 

Laustsen AF and Bech-Azeddine R: Do Modic changes have an impact on clinical outcome in lumbar spine surgery? A systematic literature review. Eur Spine J. 25:3735–3745. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Määttä JH, Wadge S, MacGregor A, Karppinen J and Williams FM: ISSLS prize winner: Vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain. Spine (Phila Pa 1976). 40:1187–1193. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Jensen TS, Karppinen J, Sorensen JS, Niinimäki J and Leboeuf-Yde C: Vertebral endplate signal changes (Modic change): A systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J. 17:1407–1422. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Lambrechts MJ, Brush P, Issa TZ, Toci GR, Heard JC, Syal A, Schilken MM, Canseco JA, Kepler CK and Vaccaro AR: Evaluating the impact of modic changes on operative treatment in the cervical and Lumbar Spine: A systematic review and meta-analysis. Int J Environ Res Public Health. 19:101582022. View Article : Google Scholar : PubMed/NCBI

121 

Nian S, Li N, Kong F, Lu S and Chen J: Is discectomy effective for treating low back pain in patients with lumbar disc herniation and Modic changes? A systematic review and meta-analysis of cohort studies. Spine J. 23:533–549. 2023. View Article : Google Scholar : PubMed/NCBI

122 

Conger A, Burnham TR, Clark T, Teramoto M and McCormick ZL: The effectiveness of intraosseous basivertebral nerve radiofrequency ablation for the treatment of vertebrogenic low back pain: An updated systematic review with single-arm meta-analysis. Pain Med. 23 (Suppl 2):S50–S62. 2022. View Article : Google Scholar : PubMed/NCBI

123 

Ohtori S, Inoue G, Ito T, Koshi T, Ozawa T, Doya H, Saito T, Moriya H and Takahashi K: Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back pain and modic type 1 or type 2 changes on MRI. Spine (Phila Pa 1976). 31:1026–1031. 2006. View Article : Google Scholar : PubMed/NCBI

124 

DePalma MJ, Ketchum JM and Saullo T: What is the source of chronic low back pain and does age play a role? Pain Med. 12:224–233. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Depalma MJ, Ketchum JM, Trussell BS, Saullo TR and Slipman CW: Does the location of low back pain predict its source? PM R. 3:33–39. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Feng Z, Liu Y, Yang G, Battie MC and Wang Y: Lumbar vertebral endplate defects on magnetic resonance images: Classification, distribution patterns, and associations with modic changes and disc degeneration. Spine (Phila Pa 1976). 43:919–927. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Udby PM, Samartzis D, Carreon LY, Andersen MØ, Karppinen J and Modic M: A definition and clinical grading of Modic changes. J Orthop Res. 40:301–307. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu W, Yang Z, Zhou S, Zhang J, Xu Z, Xiong W and Liu P: Modic changes: From potential molecular mechanisms to future research directions (Review). Mol Med Rep 31: 90, 2025.
APA
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., & Liu, P. (2025). Modic changes: From potential molecular mechanisms to future research directions (Review). Molecular Medicine Reports, 31, 90. https://doi.org/10.3892/mmr.2025.13455
MLA
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., Liu, P."Modic changes: From potential molecular mechanisms to future research directions (Review)". Molecular Medicine Reports 31.4 (2025): 90.
Chicago
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., Liu, P."Modic changes: From potential molecular mechanisms to future research directions (Review)". Molecular Medicine Reports 31, no. 4 (2025): 90. https://doi.org/10.3892/mmr.2025.13455
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu W, Yang Z, Zhou S, Zhang J, Xu Z, Xiong W and Liu P: Modic changes: From potential molecular mechanisms to future research directions (Review). Mol Med Rep 31: 90, 2025.
APA
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., & Liu, P. (2025). Modic changes: From potential molecular mechanisms to future research directions (Review). Molecular Medicine Reports, 31, 90. https://doi.org/10.3892/mmr.2025.13455
MLA
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., Liu, P."Modic changes: From potential molecular mechanisms to future research directions (Review)". Molecular Medicine Reports 31.4 (2025): 90.
Chicago
Zhu, W., Yang, Z., Zhou, S., Zhang, J., Xu, Z., Xiong, W., Liu, P."Modic changes: From potential molecular mechanisms to future research directions (Review)". Molecular Medicine Reports 31, no. 4 (2025): 90. https://doi.org/10.3892/mmr.2025.13455
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team