Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 31 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential of lactylation as a therapeutic target in cancer treatment (Review)

  • Authors:
    • Zhengfeng Zhu
    • Xinzhe Zheng
    • Pengfei Zhao
    • Cheng Chen
    • Gang Xu
    • Xixian Ke
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 91
    |
    Published online on: February 7, 2025
       https://doi.org/10.3892/mmr.2025.13456
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Post‑translational modifications (PTMs) of proteins influence their functionality by altering the structure of precursor proteins. These modifications are closely linked to tumor progression through the regulation of processes such as cell proliferation, apoptosis, angiogenesis and invasion. Tumors produce large amounts of lactic acid through aerobic glycolysis. Lactic acid not only serves an important role in cell metabolism, but also serves an important role in cell communication. Lactylation, a PTM involving lactate and lysine residues as substrates, serves as an epigenetic regulator that modulates intracellular signaling, gene expression and protein function, thereby serving a crucial role in tumorigenesis and progression. The identification of lactylation provides a key breakthrough in elucidating the interaction between tumor metabolic reprogramming and epigenetic modification. The present review primarily summarizes the occurrence of lactylation, its effect on tumor progression, drug resistance, the tumor microenvironment and gut microbiota, and its potential as a therapeutic target for cancer. The aim of the present review was to provide novel strategies for potential cancer therapies.
View Figures

Figure 1

Figure 2

View References

1 

Doyle HA and Mamula MJ: Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 22:443–449. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Ramazi S and Zahiri J: Posttranslational modifications in proteins: Resources, tools and prediction methods. Database (Oxford). 2021:baab0122021. View Article : Google Scholar : PubMed/NCBI

3 

Wang H, Yang L, Liu M and Luo J: Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 30:529–547. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Zhang H and Han W: Protein post-translational modifications in head and neck cancer. Front Oncol. 10:5719442020. View Article : Google Scholar : PubMed/NCBI

5 

Visconti A and Qiu H: Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol. 156:1074212024. View Article : Google Scholar : PubMed/NCBI

6 

Wang Z, Li M, Jiang H, Luo S, Shao F, Xia Y, Yang M, Ren X, Liu T, Yan M, et al: Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol. 24:1655–1665. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z and Dai L: Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (2020). 4:e2612023. View Article : Google Scholar : PubMed/NCBI

8 

Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI

9 

San-Millan I, Sparagna GC, Chapman HL, Warkins VL, Chatfield KC, Shuff SR, Martinez JL and Brooks GA: Chronic lactate exposure decreases mitochondrial function by inhibition of fatty acid uptake and cardiolipin alterations in neonatal rat cardiomyocytes. Front Nutr. 9:8094852022. View Article : Google Scholar : PubMed/NCBI

10 

Brooks GA: Lactate as a fulcrum of metabolism. Redox Biol. 35:1014542020. View Article : Google Scholar : PubMed/NCBI

11 

Zhu W, Guo S, Sun J, Zhao Y and Liu C: Lactate and lactylation in cardiovascular diseases: Current progress and future perspectives. Metabolism. 158:1559572024. View Article : Google Scholar : PubMed/NCBI

12 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Pérez-Tomás R and Pérez-Guillén I: Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers (Basel). 12:32442020. View Article : Google Scholar : PubMed/NCBI

14 

Yu X, Yang J, Xu J, Pan H, Wang W, Yu X and Shi S: Histone lactylation: From tumor lactate metabolism to epigenetic regulation. Int J Biol Sci. 20:1833–1854. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Heydari Z, Moeinvaziri F, Mirazimi SMA, Dashti F, Smirnova O, Shpichka A, Mirzaei H, Timashev P and Vosough M: Alteration in DNA methylation patterns: Epigenetic signatures in gastrointestinal cancers. Eur J Pharmacol. 973:1765632024. View Article : Google Scholar : PubMed/NCBI

16 

Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP and Song BJ: Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther. 251:1085472023. View Article : Google Scholar : PubMed/NCBI

17 

Wang J, Wang Z, Wang Q, Li X and Guo Y: Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett. 29:232024. View Article : Google Scholar : PubMed/NCBI

18 

Xu X, Zhang DD, Kong P, Gao YK, Huang XF, Song Y, Zhang WD, Guo RJ, Li CL, Chen BW, et al: Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep. 42:1128692023. View Article : Google Scholar : PubMed/NCBI

19 

Yang D, Yin J, Shan L, Yi X, Zhang W and Ding Y: Identification of lysine-lactylated substrates in gastric cancer cells. iScience. 25:1046302022. View Article : Google Scholar : PubMed/NCBI

20 

Chen M, Cen K, Song Y, Zhang X, Liou YC, Liu P, Huang J, Ruan J, He J, Ye W, et al: NUSAP1-LDHA-glycolysis-lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett. 567:2162852023. View Article : Google Scholar : PubMed/NCBI

21 

Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y: Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. J Exp Clin Cancer Res. 43:362024. View Article : Google Scholar : PubMed/NCBI

22 

Chu YD, Cheng LC, Lim SN, Lai MW, Yeh CT and Lin WR: Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis. 14:6602023. View Article : Google Scholar : PubMed/NCBI

23 

Gu X, Zhuang A, Yu J, Yang L, Ge S, Ruan J, Jia R, Fan X and Chai P: Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res. 52:2273–2289. 2024. View Article : Google Scholar : PubMed/NCBI

24 

Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J and Zhang H: Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2020). 4:e2922023. View Article : Google Scholar : PubMed/NCBI

25 

Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Y, Song H, Li M and Lu P: Histone lactylation bridges metabolic reprogramming and epigenetic rewiring in driving carcinogenesis: Oncometabolite fuels oncogenic transcription. Clin Transl Med. 14:e16142024. View Article : Google Scholar : PubMed/NCBI

28 

Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q and Cong X: Lactylation: The novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI

29 

Wu D, Spencer CB, Ortoga L, Zhang H and Miao C: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 74:1031942024. View Article : Google Scholar : PubMed/NCBI

30 

Wu F, Hua Y, Kaochar S, Nie S, Lin YL, Yao Y, Wu J, Wu X, Fu X, Schiff R, et al: Discovery, structure-activity relationship, and biological activity of histone-competitive inhibitors of histone acetyltransferases P300/CBP. J Med Chem. 63:4716–4731. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Antika TR, Chrestella DJ, Tseng YK, Yeh YH, Hsiao CD and Wang CC: A naturally occurring mini-alanyl-tRNA synthetase. Commun Biol. 6:3142023. View Article : Google Scholar : PubMed/NCBI

32 

Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F: Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 187:2375–2392.e33. 2024. View Article : Google Scholar : PubMed/NCBI

33 

Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI

34 

Yoo L, Mendoza D, Richard AJ and Stephens JM: KAT8 beyond acetylation: A survey of its epigenetic regulation, genetic variability, and implications for human health. Genes (Basel). 15:6392024. View Article : Google Scholar : PubMed/NCBI

35 

Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024. View Article : Google Scholar : PubMed/NCBI

36 

Dong H, Zhang J, Zhang H, Han Y, Lu C, Chen C, Tan X, Wang S, Bai X, Zhai G, et al: YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun. 13:66282022. View Article : Google Scholar : PubMed/NCBI

37 

Parks AR and Escalante-Semerena JC: Modulation of the bacterial CobB sirtuin deacylase activity by N-terminal acetylation. Proc Natl Acad Sci USA. 117:15895–15901. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Mutlu B and Puigserver P: GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim Biophys Acta Gene Regul Mech. 1864:1946262021. View Article : Google Scholar : PubMed/NCBI

39 

Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, Gill PS, Ha T, Liu L, Williams DL and Li C: Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 29:133–146. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI

41 

Micelli C and Rastelli G: Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discov Today. 20:718–735. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun H and Hao Q: Identification of SIRT3 as an eraser of H4K16la. iScience. 26:1077572023. View Article : Google Scholar : PubMed/NCBI

43 

Tao Z, Jin Z, Wu J, Cai G and Yu X: Sirtuin family in autoimmune diseases. Front Immunol. 14:11862312023. View Article : Google Scholar : PubMed/NCBI

44 

Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M and Miyakawa T: Protein lactylation induced by neural excitation. Cell Rep. 37:1098202021. View Article : Google Scholar : PubMed/NCBI

45 

Rho H, Terry AR, Chronis C and Hay N: Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35:1406–1423.e8. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E, et al: Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol. 27:206–213.e6. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI

48 

Lv X, Lv Y and Dai X: Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol. 25:e72023. View Article : Google Scholar : PubMed/NCBI

49 

Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F and He X: Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI

50 

Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI

51 

Qiao Z, Li Y, Li S, Liu S and Cheng Y: Hypoxia-induced SHMT2 protein lactylation facilitates glycolysis and stemness of esophageal cancer cells. Mol Cell Biochem. 479:3063–3076. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Miao Z, Zhao X and Liu X: Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway. Exp Cell Res. 422:1134392023. View Article : Google Scholar : PubMed/NCBI

53 

Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X and Jia R: Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22:852021. View Article : Google Scholar : PubMed/NCBI

54 

Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H, Li J, Qiu X, Pu M, Liu X, et al: Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity. J Cell Biol. 223:e2023080992024. View Article : Google Scholar : PubMed/NCBI

55 

Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI

56 

Yang J, Luo L, Zhao C, Li X, Wang Z, Zeng Z, Yang X, Zheng X, Jie H, Kang L, et al: A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci. 18:3470–3483. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Hou X, Ouyang J, Tang L, Wu P, Deng X, Yan Q, Shi L, Fan S, Fan C, Guo C, et al: KCNK1 promotes proliferation and metastasis of breast cancer cells by activating lactate dehydrogenase A (LDHA) and up-regulating H3K18 lactylation. PLoS Biol. 22:e30026662024. View Article : Google Scholar : PubMed/NCBI

58 

Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI

59 

Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N, Hu Z and Wang F: CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 22:1512023. View Article : Google Scholar : PubMed/NCBI

60 

Wang X, Ying T, Yuan J, Wang Y, Su X, Chen S, Zhao Y, Zhao Y, Sheng J, Teng L, et al: BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation. Endocr Relat Cancer. 30:e2203442023. View Article : Google Scholar : PubMed/NCBI

61 

Dai E, Wang W and Li Y, Ye D and Li Y: Lactate and lactylation: Behind the development of tumors. Cancer Lett. 591:2168962024. View Article : Google Scholar : PubMed/NCBI

62 

Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI

63 

Jing F, Zhang J, Zhang H and Li T: Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol Rev Camb Philos Soc. 100:172–189. 2025. View Article : Google Scholar : PubMed/NCBI

64 

Xia Y, Sun M, Huang H and Jin WL: Drug repurposing for cancer therapy. Signal Transduct Target Ther. 9:922024. View Article : Google Scholar : PubMed/NCBI

65 

Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, et al: Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 187:294–311.e21. 2024. View Article : Google Scholar : PubMed/NCBI

67 

Li G, Wang D, Zhai Y, Pan C, Zhang J, Wang C, Huang R, Yu M, Li Y, Liu X, et al: Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma. Cell Metab. 36:1696–1710.e10. 2024. View Article : Google Scholar : PubMed/NCBI

68 

Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, et al: Histone H3K9 lactylation confers temozolomide resistance in glioblastoma via LUC7L2-mediated MLH1 intron retention. Adv Sci (Weinh). 11:e23092902024. View Article : Google Scholar : PubMed/NCBI

69 

Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, et al: Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 73:1010592024. View Article : Google Scholar : PubMed/NCBI

70 

Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : PubMed/NCBI

71 

Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP and Shipunova VO: Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release. 365:317–330. 2024. View Article : Google Scholar : PubMed/NCBI

72 

Chen S, Xu Y, Zhuo W and Zhang L: The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett. 590:2168372024. View Article : Google Scholar : PubMed/NCBI

73 

Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X and Wu G: The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J. 23:491–505. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Li Y, Cao Q, Hu Y, He B, Cao T, Tang Y, Zhou XP, Lan XP and Liu SQ: Advances in the interaction of glycolytic reprogramming with lactylation. Biomed Pharmacother. 177:1169822024. View Article : Google Scholar : PubMed/NCBI

75 

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI

76 

Wang JX, Choi SYC, Niu X, Kang N, Xue H, Killam J and Wang Y: Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int J Mol Sci. 21:83632020. View Article : Google Scholar : PubMed/NCBI

77 

Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C and Rivoltini L: Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 43:74–89. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Qu J, Li P and Sun Z: Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI

79 

Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y, Du Y, Cui B, et al: Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 82:1660–1677.e10. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 40:1111222022. View Article : Google Scholar : PubMed/NCBI

81 

Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al: An immune atlas of clear cell renal cell carcinoma. Cell. 169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, et al: Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond). 44:1231–1260. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov E, et al: Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer. Clin Cancer Res. 29:1952–1968. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Sun L, Zhang H and Gao P: Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 13:877–919. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Jiang SS, Kang ZR, Chen YX and Fang JY: The gut microbiome modulate response to immunotherapy in cancer. Sci China Life Sci. 68:381–396. 2025. View Article : Google Scholar : PubMed/NCBI

86 

Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L and Zhou F: Microbiota in tumors: From understanding to application. Adv Sci (Weinh). 9:e22004702022. View Article : Google Scholar : PubMed/NCBI

87 

Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI

88 

Mischke M and Plösch T: The gut microbiota and their metabolites: Potential implications for the host epigenome. Adv Exp Med Biol. 902:33–44. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI

90 

Shock T, Badang L, Ferguson B and Martinez-Guryn K: The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem. 95:1086312021. View Article : Google Scholar : PubMed/NCBI

91 

Zhang Z, Chen Y, Zheng Y, Wang L, Shen S, Yang G, Yang Y and Wang T: Quxie capsule alleviates colitis-associated colorectal cancer through modulating the gut microbiota and suppressing A. fumigatus-induced aerobic glycolysis. Integr Cancer Ther. 21:153473542211385342022. View Article : Google Scholar : PubMed/NCBI

92 

Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, He Q, Liang H, Xin X, Wang L, et al: Lactic acid-producing probiotic saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Front Immunol. 12:7776652021. View Article : Google Scholar : PubMed/NCBI

93 

Wang J, Liu Z, Xu Y, Wang Y, Wang F, Zhang Q, Ni C, Zhen Y, Xu R, Liu Q, et al: Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration. Front Cell Infect Microbiol. 12:9138152022. View Article : Google Scholar : PubMed/NCBI

94 

Wang SP, Rubio LA, Duncan SH, Donachie GE, Holtrop G, Lo G, Farquharson FM, Wagner J, Parkhill J, Louis P, et al: Pivotal roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems. 5:e00645–20. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Koh A, De Vadder F, Kovatcheva-Datchary P and Bäckhed F: From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 165:1332–1345. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Li Z, Gong T, Wu Q, Zhang Y, Zheng X, Li Y, Ren B, Peng X and Zhou X: Lysine lactylation regulates metabolic pathways and biofilm formation in streptococcus mutans. Sci Signal. 16:eadg18492023. View Article : Google Scholar : PubMed/NCBI

97 

Wang Y, Liu Y, Xiang G, Jian Y, Yang Z, Chen T, Ma X, Zhao N, Dai Y, Lv Y, et al: Post-translational toxin modification by lactate controls staphylococcus aureus virulence. Nat Commun. 15:98352024. View Article : Google Scholar : PubMed/NCBI

98 

Lin J, Liu G, Chen L, Kwok HF and Lin Y: Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol. 86:1231–1243. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Fan H, Yang F, Xiao Z, Luo H, Chen H, Chen Z, Liu Q and Xiao Y: Lactylation: Novel epigenetic regulatory and therapeutic opportunities. Am J Physiol Endocrinol Metab. 324:E330–E338. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Zhang Q, Cao L and Xu K: Role and mechanism of lactylation in cancer. Zhongguo Fei Ai Za Zhi. 27:471–479. 2024.(In Chinese). PubMed/NCBI

101 

De Cesare M, Pratesi G, Giusti A, Polizzi D and Zunino F: Stimulation of the apoptotic response as a basis for the therapeutic synergism of lonidamine and cisplatin in combination in human tumour xenografts. Br J Cancer. 77:434–439. 1998. View Article : Google Scholar : PubMed/NCBI

102 

Shu Y, Yue J, Li Y, Yin Y, Wang J, Li T, He X, Liang S, Zhang G, Liu Z and Wang Y: Development of human lactate dehydrogenase a inhibitors: High-throughput screening, molecular dynamics simulation and enzyme activity assay. J Comput Aided Mol Des. 38:282024. View Article : Google Scholar : PubMed/NCBI

103 

Pan L, Feng F, Wu J, Fan S, Han J, Wang S, Yang L, Liu W, Wang C and Xu K: Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 181:1062702022. View Article : Google Scholar : PubMed/NCBI

104 

Su J, Zheng Z, Bian C, Chang S, Bao J, Yu H, Xin Y and Jiang X: Functions and mechanisms of lactylation in carcinogenesis and immunosuppression. Front Immunol. 14:12530642023. View Article : Google Scholar : PubMed/NCBI

105 

Smith LE and Rogowska-Wrzesinska A: The challenge of detecting modifications on proteins. Essays Biochem. 64:135–153. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Hao Y, Gu C, Luo W, Shen J, Xie F, Zhao Y, Song X, Han Z and He J: The role of protein post-translational modifications in prostate cancer. PeerJ. 12:e177682024. View Article : Google Scholar : PubMed/NCBI

107 

Xin Q, Wang H, Li Q, Liu S, Qu K, Liu C and Zhang J: Lactylation: A passing fad or the future of posttranslational modification. Inflammation. 45:1419–1429. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Gao X, Pang C, Fan Z, Wang Y, Duan Y and Zhan H: Regulation of newly identified lysine lactylation in cancer. Cancer Lett. 587:2166802024. View Article : Google Scholar : PubMed/NCBI

109 

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A and Arcaro G: Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 143:139–147. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Wu Z, Huang R and Yuan L: Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys. 676:1081382019. View Article : Google Scholar : PubMed/NCBI

112 

Tomasi ML and Ramani K: SUMOylation and phosphorylation cross-talk in hepatocellular carcinoma. Transl Gastroenterol Hepatol. 3:202018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Z, Zheng X, Zhao P, Chen C, Xu G and Ke X: Potential of lactylation as a therapeutic target in cancer treatment (Review). Mol Med Rep 31: 91, 2025.
APA
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., & Ke, X. (2025). Potential of lactylation as a therapeutic target in cancer treatment (Review). Molecular Medicine Reports, 31, 91. https://doi.org/10.3892/mmr.2025.13456
MLA
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., Ke, X."Potential of lactylation as a therapeutic target in cancer treatment (Review)". Molecular Medicine Reports 31.4 (2025): 91.
Chicago
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., Ke, X."Potential of lactylation as a therapeutic target in cancer treatment (Review)". Molecular Medicine Reports 31, no. 4 (2025): 91. https://doi.org/10.3892/mmr.2025.13456
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Z, Zheng X, Zhao P, Chen C, Xu G and Ke X: Potential of lactylation as a therapeutic target in cancer treatment (Review). Mol Med Rep 31: 91, 2025.
APA
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., & Ke, X. (2025). Potential of lactylation as a therapeutic target in cancer treatment (Review). Molecular Medicine Reports, 31, 91. https://doi.org/10.3892/mmr.2025.13456
MLA
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., Ke, X."Potential of lactylation as a therapeutic target in cancer treatment (Review)". Molecular Medicine Reports 31.4 (2025): 91.
Chicago
Zhu, Z., Zheng, X., Zhao, P., Chen, C., Xu, G., Ke, X."Potential of lactylation as a therapeutic target in cancer treatment (Review)". Molecular Medicine Reports 31, no. 4 (2025): 91. https://doi.org/10.3892/mmr.2025.13456
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team