|
1
|
Ragusa A, Svelato A, Santacroce C,
Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA,
Baiocco F, Draghi S, et al: Plasticenta: First evidence of
microplastics in human placenta. Environ Int. 146:1062742021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rochman CM, Hoh E, Hentschel BT and Kaye
S: Long-term field measurement of sorption of organic contaminants
to five types of plastic pellets: Implications for plastic marine
debris. Environ Sci Technol. 47:1646–1654. 2013.PubMed/NCBI
|
|
3
|
Wang W, Ge J, Yu X and Li H: Environmental
fate and impacts of microplastics in soil ecosystems: Progress and
perspective. Sci Total Environ. 708:1348412020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Prata JC, da Costa JP, Lopes I, Duarte AC
and Rocha-Santos T: Environmental exposure to microplastics: An
overview on possible human health effects. Sci Total Environ.
702:1344552020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pironti C, Ricciardi M, Motta O, Miele Y,
Proto A and Montano L: Microplastics in the environment: intake
through the food web, human exposure and toxicological effects.
Toxics. 9:2242021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Thomas PJ, Perono G, Tommasi F, Pagano G,
Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M and Lyons DM:
Resolving the effects of environmental micro- and nanoplastics
exposure in biota: A knowledge gap analysis. Sci Total Environ.
780:1465342021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Amereh F, Amjadi N, Mohseni-Bandpei A,
Isazadeh S, Mehrabi Y, Eslami A, Naeiji Z and Rafiee M: Placental
plastics in young women from general population correlate with
reduced foetal growth in IUGR pregnancies. Environ Pollut.
314:1201742022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Leslie HA, van Velzen MJM, Brandsma SH,
Vethaak AD, Garcia-Vallejo JJ and Lamoree MH: Discovery and
quantification of plastic particle pollution in human blood.
Environ Int. 163:1071992022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schwabl P, Köppel S, Königshofer P,
Bucsics T, Trauner M, Reiberger T and Liebmann B: Detection of
various microplastics in human stool: A prospective case series.
Ann Intern Med. 171:453–457. 2019. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tong X, Li B, Li J, Li L, Zhang R, Du Y
and Zhang Y: Polyethylene microplastics cooperate with Helicobacter
pylori to promote gastric injury and inflammation in mice.
Chemosphere. 288((Pt 2)): 1325792022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Luo T, Wang C, Pan Z, Jin C, Fu Z and Jin
Y: Maternal polystyrene microplastic exposure during gestation and
lactation altered metabolic homeostasis in the dams and their F1
and F2 offspring. Environ Sci Technol. 53:10978–10992. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang L, Wang Y, Xu M, Ma J, Zhang S, Liu
S, Wang K, Tian H and Cui J: Enhanced hepatic cytotoxicity of
chemically transformed polystyrene microplastics by simulated
gastric fluid. J Hazard Mater. 410:1245362021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yee MS, Hii LW, Looi CK, Lim WM, Wong SF,
Kok YY, Tan BK, Wong CY and Leong CO: Impact of microplastics and
nanoplastics on human health. Nanomaterials (Basel). 11:4962021.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hesler M, Aengenheister L, Ellinger B,
Drexel R, Straskraba S, Jost C, Wagner S, Meier F, von Briesen H,
Büchel C, et al: Multi-endpoint toxicological assessment of
polystyrene nano- and microparticles in different biological models
in vitro. Toxicol In Vitro. 61:1046102019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cortés C, Domenech J, Salazar M, Pastor S,
Marcos R and Hernández A: Nanoplastics as a potential environmental
health factor: Effects of polystyrene nanoparticles on human
intestinal epithelial Caco-2 cells. Environ Sci Nano. 7:272–285.
2020. View Article : Google Scholar
|
|
16
|
Dong X, Liu X, Hou Q and Wang Z: From
natural environment to animal tissues: A review of
microplastics(nanoplastics) translocation and hazards studies. Sci
Total Environ. 855:1586862023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Campanale C, Massarelli C, Savino I,
Locaputo V and Uricchio VF: A detailed review study on potential
effects of microplastics and additives of concern on human health.
Int J Environ Res Public Health. 17:12122020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Barboza LGA, Dick Vethaak A, Lavorante
BRBO, Lundebye AK and Guilhermino L: Marine microplastic debris: An
emerging issue for food security, food safety and human health. Mar
Pollut Bull. 133:336–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bouwmeester H, Hollman PC and Peters RJ:
Potential health impact of environmentally released micro- and
nanoplastics in the human food production chain: Experiences from
nanotoxicology. Environ Sci Technol. 49:8932–8947. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Domenech J, Hernández A, Rubio L, Marcos R
and Cortés C: Interactions of polystyrene nanoplastics with in
vitro models of the human intestinal barrier. Arch Toxicol.
94:2997–3012. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hussain N, Jaitley V and Florence AT:
Recent advances in the understanding of uptake of microparticulates
across the gastrointestinal lymphatics. Adv Drug Deliv Rev.
50:107–142. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Eldridge JH, Meulbroek JA, Staas JK, Tice
TR and Gilley RM: Vaccine-containing biodegradable microspheres
specifically enter the gut-associated lymphoid tissue following
oral administration and induce a disseminated mucosal immune
response. Adv Exp Med Biol. 251:191–202. 1989.PubMed/NCBI
|
|
23
|
Jani PU, McCarthy DE and Florence AT:
Nanosphere and microsphere uptake via Peyer's patches: Observation
of the rate of uptake in the rat after a single oral dose. Int J
Pharm. 86:239–246. 1992. View Article : Google Scholar
|
|
24
|
Volkheimer G: Hematogenous dissemination
of ingested polyvinyl chloride particles. Ann N Y Acad Sci.
246:164–171. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Banerjee A and Shelver WL: Micro- and
nanoplastic induced cellular toxicity in mammals: A review. Sci
Total Environ. 755((Pt 2)): 1425182021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Varela JA, Bexiga MG, Åberg C, Simpson JC
and Dawson KA: Quantifying size-dependent interactions between
fluorescently labeled polystyrene nanoparticles and mammalian
cells. J Nanobiotechnology. 10:392012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nowak M, Brown TD, Graham A, Helgeson ME
and Mitragotri S: Size, shape, and flexibility influence
nanoparticle transport across brain endothelium under flow. Bioeng
Transl Med. 5:e101532020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Firdessa R, Oelschlaeger TA and Moll H:
Identification of multiple cellular uptake pathways of polystyrene
nanoparticles and factors affecting the uptake: Relevance for drug
delivery systems. Eur J Cell Biol. 93:323–337. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gratton SE, Ropp PA, Pohlhaus PD, Luft JC,
Madden VJ, Napier ME and DeSimone JM: The effect of particle design
on cellular internalization pathways. Proc Natl Acad Sci USA.
105:11613–11618. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Carr KE, Smyth SH, McCullough MT, Morris
JF and Moyes SM: Morphological aspects of interactions between
microparticles and mammalian cells: Intestinal uptake and onward
movement. Prog Histochem Cytochem. 46:185–252. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Schmidt C, Lautenschlaeger C, Collnot EM,
Schumann M, Bojarski C, Schulzke JD, Lehr CM and Stallmach A: Nano-
and microscaled particles for drug targeting to inflamed intestinal
mucosa: A first in vivo study in human patients. J Control Release.
165:139–145. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li S and Malmstadt N: Deformation and
poration of lipid bilayer membranes by cationic nanoparticles. Soft
Matter. 9:4969–4976. 2013. View Article : Google Scholar
|
|
33
|
Xie W, You J, Zhi C and Li L: The toxicity
of ambient fine particulate matter (PM2.5) to vascular endothelial
cells. J Appl Toxicol. 41:713–723. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gopinath PM, Saranya V, Vijayakumar S,
Mythili Meera M, Ruprekha S, Kunal R, Pranay A, Thomas J, Mukherjee
A and Chandrasekaran N: Assessment on interactive prospectives of
nanoplastics with plasma proteins and the toxicological impacts of
virgin, coronated and environmentally released-nanoplastics. Sci
Rep. 9:88602019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hollóczki O and Gehrke S: Nanoplastics can
change the secondary structure of proteins. Sci Rep. 9:160132019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Goodman KE, Hare JT, Khamis ZI, Hua T and
Sang QA: Exposure of human lung cells to polystyrene microplastics
significantly retards cell proliferation and triggers morphological
changes. Chem Res Toxicol. 34:1069–1081. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li
Y, Li Y and Zhang H: Internalization and toxicity: A preliminary
study of effects of nanoplastic particles on human lung epithelial
cell. Sci Total Environ. 694:1337942019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hirt N and Body-Malapel M: Immunotoxicity
and intestinal effects of nano- and microplastics: A review of the
literature. Part Fibre Toxicol. 17:572020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cheng W, Li X, Zhou Y, Yu H, Xie Y, Guo H,
Wang H, Li Y, Feng Y and Wang Y: Polystyrene microplastics induce
hepatotoxicity and disrupt lipid metabolism in the liver organoids.
Sci Total Environ. 806((Pt 1)): 1503282022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong
Q, Wu Y, Zhao H, Ji X and Zhang Y: Polyethylene microplastics
affect the distribution of gut microbiota and inflammation
development in mice. Chemosphere. 244:1254922020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu S, Li H, Wang J, Wu B and Guo X:
Polystyrene microplastics aggravate inflammatory damage in mice
with intestinal immune imbalance. Sci Total Environ.
833:1551982022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Deng Y, Yan Z, Shen R, Wang M, Huang Y,
Ren H, Zhang Y and Lemos B: Microplastics release phthalate esters
and cause aggravated adverse effects in the mouse gut. Environ Int.
143:1059162020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shi C, Han X, Guo W, Wu Q, Yang X, Wang Y,
Tang G, Wang S, Wang Z, Liu Y, et al: Disturbed Gut-liver axis
indicating oral exposure to polystyrene microplastic potentially
increases the risk of insulin resistance. Environ Int.
164:1072732022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jin Y, Lu L, Tu W, Luo T and Fu Z: Impacts
of polystyrene microplastic on the gut barrier, microbiota and
metabolism of mice. Sci Total Environ. 649:308–317. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hwang J, Choi D, Han S, Choi J and Hong J:
An assessment of the toxicity of polypropylene microplastics in
human derived cells. Sci Total Environ. 684:657–669. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ding Y, Zhang R, Li B, Du Y, Li J, Tong X,
Wu Y, Ji X and Zhang Y: Tissue distribution of polystyrene
nanoplastics in mice and their entry, transport, and cytotoxicity
to GES-1 cells. Environ Pollut. 280:1169742021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Domenech J, de Britto M, Velázquez A,
Pastor S, Hernández A, Marcos R and Cortés C: Long-term effects of
polystyrene nanoplastics in human intestinal caco-2 cells.
Biomolecules. 11:14422021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Eleutherio ECA, Silva Magalhães RS, de
Araújo Brasil A, Monteiro Neto JR and de Holanda Paranhos L: SOD1,
more than just an antioxidant. Arch Biochem Biophys.
697:1087012021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Johnson P: Antioxidant enzyme expression
in health and disease: Effects of exercise and hypertension. Comp
Biochem Physiol C Toxicol Pharmacol. 133:493–505. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jakubczyk K, Dec K, Kałduńska J, Kawczuga
D, Kochman J and Janda K: Reactive oxygen species-sources,
functions, oxidative damage. Pol Merkur Lekarski. 48:124–127.
2020.PubMed/NCBI
|
|
51
|
Wang X, Zheng H, Zhao J, Luo X, Wang Z and
Xing B: Photodegradation elevated the toxicity of polystyrene
microplastics to grouper (Epinephelus moara) through disrupting
hepatic lipid homeostasis. Environ Sci Technol. 54:6202–6212. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
DeLoid GM, Cao X, Bitounis D, Singh D,
Llopis PM, Buckley B and Demokritou P: Toxicity, uptake, and
nuclear translocation of ingested micro-nanoplastics in an in vitro
model of the small intestinal epithelium. Food Chem Toxicol.
158:1126092021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y
and Li S: Polystyrene nanoplastics deteriorate LPS-modulated
duodenal permeability and inflammation in mice via ROS
drived-NF-κB/NLRP3 pathway. Chemosphere. 307((Pt 1)): 1356622022.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Deng Y, Zhang Y, Lemos B and Ren H: Tissue
accumulation of microplastics in mice and biomarker responses
suggest widespread health risks of exposure. Sci Rep. 7:466872017.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rubio L, Marcos R and Hernández A:
Potential adverse health effects of ingested micro- and
nanoplastics on humans. Lessons learned from in vivo and in vitro
mammalian models. J Toxicol Environ Health B Crit Rev. 23:51–68.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Powell JJ, Thoree V and Pele LC: Dietary
microparticles and their impact on tolerance and immune
responsiveness of the gastrointestinal tract. Br J Nutr. 98 (Suppl
1):S59–S63. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Huang D, Zhang Y, Long J, Yang X, Bao L,
Yang Z, Wu B, Si R, Zhao W, Peng C, et al: Polystyrene microplastic
exposure induces insulin resistance in mice via dysbacteriosis and
pro-inflammation. Sci Total Environ. 838((Pt 1)): 1559372022.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Forte M, Iachetta G, Tussellino M,
Carotenuto R, Prisco M, De Falco M, Laforgia V and Valiante S:
Polystyrene nanoparticles internalization in human gastric
adenocarcinoma cells. Toxicol In Vitro. 31:126–136. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Reuter S, Gupta SC, Chaturvedi MM and
Aggarwal BB: Oxidative stress, inflammation, and cancer: How are
they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yan X, Zhang Y, Lu Y, He L, Qu J, Zhou C,
Hong P, Sun S, Zhao H, Liang Y, et al: The complex toxicity of
tetracycline with polystyrene spheres on gastric cancer cells. Int
J Environ Res Public Health. 17:28082020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen Z, Wang C, Yu N, Si L, Zhu L, Zeng A,
Liu Z and Wang X: INF2 regulates oxidative stress-induced apoptosis
in epidermal HaCaT cells by modulating the HIF1 signaling pathway.
Biomed Pharmacother. 111:151–161. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Vethaak AD and Legler J: Microplastics and
human health. Science. 371:672–674. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lu L, Wan Z, Luo T, Fu Z and Jin Y:
Polystyrene microplastics induce gut microbiota dysbiosis and
hepatic lipid metabolism disorder in mice. Sci Total Environ.
631-632:449–458. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu
Z and Jin Y: Effects of polystyrene microplastics on the
composition of the microbiome and metabolism in larval zebrafish.
Chemosphere. 217:646–658. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao Y, Bao Z, Wan Z, Fu Z and Jin Y:
Polystyrene microplastic exposure disturbs hepatic glycolipid
metabolism at the physiological, biochemical, and transcriptomic
levels in adult zebrafish. Sci Total Environ. 710:1362792020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shi L and Tu BP: Acetyl-CoA and the
regulation of metabolism: mechanisms and consequences. Curr Opin
Cell Biol. 33:125–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou P, Santoro A, Peroni OD, Nelson AT,
Saghatelian A, Siegel D and Kahn BB: PAHSAs enhance hepatic and
systemic insulin sensitivity through direct and indirect
mechanisms. J Clin Invest. 129:4138–4150. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Syed I, Lee J, Moraes-Vieira PM, Donaldson
CJ, Sontheimer A, Aryal P, Wellenstein K, Kolar MJ, Nelson AT,
Siegel D, et al: Palmitic acid hydroxystearic acids activate GPR40,
which is involved in their beneficial effects on glucose
homeostasis. Cell Metab. 27:419–427.e4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Vijayakumar A, Aryal P, Wen J, Syed I,
Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ,
Peroni OD, et al: Absence of carbohydrate response element binding
protein in adipocytes causes systemic insulin resistance and
impairs glucose transport. Cell Rep. 21:1021–1035. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wen B, Zhang N, Jin SR, Chen ZZ, Gao JZ,
Liu Y, Liu HP and Xu Z: Microplastics have a more profound impact
than elevated temperatures on the predatory performance, digestion
and energy metabolism of an Amazonian cichlid. Aquat Toxicol.
195:67–76. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Schlein C, Talukdar S, Heine M, Fischer
AW, Krott LM, Nilsson SK, Brenner MB, Heeren J and Scheja L: FGF21
lowers plasma triglycerides by accelerating lipoprotein catabolism
in white and brown adipose tissues. Cell Metab. 23:441–453. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Iizuka K, Takeda J and Horikawa Y: Glucose
induces FGF21 mRNA expression through ChREBP activation in rat
hepatocytes. FEBS Lett. 583:2882–2886. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bi Y, Chang Y, Liu Q, Mao Y, Zhai K, Zhou
Y, Jiao R and Ji G: ERp44/CG9911 promotes fat storage in Drosophila
adipocytes by regulating ER Ca(2+) homeostasis. Aging (Albany NY).
13:15013–15031. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Simha V and Garg A: Lipodystrophy: Lessons
in lipid and energy metabolism. Curr Opin Lipidol. 17:162–169.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Iizuka K, Takao K and Yabe D:
ChREBP-mediated regulation of lipid metabolism: Involvement of the
gut microbiota, liver, and adipose tissue. Front Endocrinol
(Lausanne). 11:5871892020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nunes-Nesi A, Araújo WL, Obata T and
Fernie AR: Regulation of the mitochondrial tricarboxylic acid
cycle. Curr Opin Plant Biol. 16:335–343. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bougarne N, Weyers B, Desmet SJ, Deckers
J, Ray DW, Staels B and De Bosscher K: Molecular actions of
PPARalpha in lipid metabolism and inflammation. Endocr Rev.
39:760–802. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang Q, Wu Y, Zhang W, Shen T, Li H, Wu J,
Zhang L, Qin L, Chen R, Gu W, et al: Lipidomics and transcriptomics
insight into impacts of microplastics exposure on hepatic lipid
metabolism in mice. Chemosphere. 308((Pt 3)): 1365912022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fan X, Wei X, Hu H, Zhang B, Yang D, Du H,
Zhu R, Sun X, Oh Y and Gu N: Effects of oral administration of
polystyrene nanoplastics on plasma glucose metabolism in mice.
Chemosphere. 288((Pt 3)): 1326072022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Islinger M, Cardoso MJ and Schrader M: Be
different-the diversity of peroxisomes in the animal kingdom.
Biochim Biophys Acta. 1803:881–897. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Marion-Letellier R, Savoye G and Ghosh S:
Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol.
785:44–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bhatt-Wessel B, Jordan TW, Miller JH and
Peng L: Role of DGAT enzymes in triacylglycerol metabolism. Arch
Biochem Biophys. 655:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Stone SJ, Myers HM, Watkins SM, Brown BE,
Feingold KR, Elias PM and Farese RV Jr: Lipopenia and skin barrier
abnormalities in DGAT2-deficient mice. J Biol Chem.
279:11767–11776. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Stock V, Fahrenson C, Thuenemann A, Dönmez
MH, Voss L, Böhmert L, Braeuning A, Lampen A and Sieg H: Impact of
artificial digestion on the sizes and shapes of microplastic
particles. Food Chem Toxicol. 135:1110102020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhao L, Shi W, Hu F, Song X, Cheng Z and
Zhou J: Prolonged oral ingestion of microplastics induced
inflammation in the liver tissues of C57BL/6J mice through
polarization of macrophages and increased infiltration of natural
killer cells. Ecotoxicol Environ Saf. 227:1128822021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Qiao J, Chen R, Wang M, Bai R, Cui X, Liu
Y, Wu C and Chen C: Perturbation of gut microbiota plays an
important role in micro/nanoplastics-induced gut barrier
dysfunction. Nanoscale. 13:8806–8816. 2021. View Article : Google Scholar : PubMed/NCBI
|