|
1
|
Petracci E, Pasini L, Urbini M, Felip E,
Stella F, Davoli F, Salvi M, Beau-Faller M, Tebaldi M, Azzali I, et
al: Circulating cell-free and extracellular vesicles-derived
microRNA as prognostic biomarkers in patients with early-stage
NSCLC: Results from RESTING study. J Exp Clin Cancer Res.
43:2412024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xie Y and Chen X: Epidemiology, major
outcomes, risk factors, prevention and management of chronic kidney
disease in China. Am J Nephrol. 28:1–7. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hu J, Ke R, Teixeira W, Dong Y, Ding R,
Yang J, Ai X, Ye DW and Shang J: Global, regional, and national
burden of CKD due to glomerulonephritis from 1990 to 2019: A
systematic analysis from the global burden of disease study 2019.
Clin J Am Soc Nephrol. 18:60–71. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang PCT, Chan ASW, Zhang CB, García
Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY and Tang PM: TGF-β1
signaling: immune dynamics of chronic kidney diseases. Front Med
(Lausanne). 8:6285192021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Slaby O, Jancovicova J, Lakomy R, Svoboda
M, Poprach A, Fabian P, Kren L, Michalek J and Vyzula R: Expression
of miRNA-106b in conventional renal cell carcinoma is a potential
marker for prediction of early metastasis after nephrectomy. J Exp
Clin Cancer Res. 29:902010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fisher JN, Terao M, Fratelli M, Kurosaki
M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al:
MicroRNA networks regulated by all-trans retinoic acid and
Lapatinib control the growth, survival and motility of breast
cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chandrasekaran K, Karolina DS, Sepramaniam
S, Armugam A, Marelyn Wintour E, Bertram JF and Jeyaseelan K: Role
of microRNAs in kidney homeostasis and disease. Kidney Int.
81:617–627. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Machado IF, Teodoro JS, Palmeira CM and
Rolo AP: miR-378a: A new emerging microRNA in metabolism. Cell Mol
Life Sci. 77:1947–1958. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jopling CL, Yi M, Lancaster AM, Lemon SM
and Sarnow P: Modulation of hepatitis C virus RNA abundance by a
liver-specific MicroRNA. Science. 309:1577–1581. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vo NK, Cambronne XA and Goodman RH:
MicroRNA pathways in neural development and plasticity. Curr Opin
Neurobiol. 20:457–465. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Correia de Sousa M, Gjorgjieva M, Dolicka
D, Sobolewski C and Foti M: Deciphering miRNAs' action through
miRNA editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Colhoun HM and Marcovecchio ML: Biomarkers
of diabetic kidney disease. Diabetologia. 61:996–1011. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ruiz-Ortega M, Rayego-Mateos S, Lamas S,
Ortiz A and Rodrigues-Diez RR: Targeting the progression of chronic
kidney disease. Nat Rev Nephrol. 16:269–288. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Trionfini P, Benigni A and Remuzzi G:
MicroRNAs in kidney physiology and disease. Nat Rev Nephrol.
11:23–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li X and Yu HM: Overexpression of HOXA-AS2
inhibits inflammation and apoptosis in podocytes via sponging
miRNA-302b-3p to upregulate TIMP3. Eur Rev Med Pharmacol Sci.
24:4963–4970. 2020.PubMed/NCBI
|
|
17
|
Wang L and Li H: MiR-770-5p facilitates
podocyte apoptosis and inflammation in diabetic nephropathy by
targeting TIMP3. Biosci Rep. 40:BSR201936532020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen
C, Liu D, Zhang Y, Wang Y, Yuen PST, et al: miR-150-based RNA
interference attenuates tubulointerstitial fibrosis through the
SOCS1/JAK/STAT pathway in vivo and in vitro. Mol Ther Nucleic
Acids. 22:871–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu Y, Wang W, Zhang J, Gao S, Xu T and
Yin Y: JAK/STAT signaling in diabetic kidney disease. Front Cell
Dev Biol. 11:12332592023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Du Y, Liu P, Chen Z, He Y, Zhang B, Dai G,
Xia W, Liu Y and Chen X: PTEN improve renal fibrosis in vitro and
in vivo through inhibiting FAK/AKT signaling pathway. J Cell
Biochem. 120:17887–17897. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang
S, Ren S, Yang Y, Si Z, Wang L, et al: Inhibiting Rab27a in renal
tubular epithelial cells attenuates the inflammation of diabetic
kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life
Sci. 261:1183472020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang S, Xu L, Liang R, Yang C and Wang P:
Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB
axis in streptozotocin-induced diabetic nephropathy mice and high
glucose-treated human proximal tubule epithelial cells. J Physiol
Biochem. 76:407–416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang L, Wang X, He S, Zhang F and Li Y:
Gypenosides suppress fibrosis of the renal NRK-49F cells by
targeting miR-378a-5p through the PI3K/AKT signaling pathway. J
Ethnopharmacol. 311:1164662023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen LT, Xu SD, Xu H, Zhang JF, Ning JF
and Wang SF: MicroRNA-378 is associated with non-small cell lung
cancer brain metastasis by promoting cell migration, invasion and
tumor angiogenesis. Med Oncol. 29:1673–1680. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Welten SMJ, Goossens EAC, Quax PHA and
Nossent AY: The multifactorial nature of microRNAs in vascular
remodelling. Cardiovasc Res. 110:6–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dasari S and Bernard Tchounwou PB:
Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J
Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Florea AM and Büsselberg D: Cisplatin as
an anti-tumor drug: Cellular mechanisms of activity, drug
resistance and induced side effects. Cancers (Basel). 3:1351–1371.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Faig J, Haughton M, Taylor RC, D'Agostino
RB Jr, Whelen MJ, Porosnicu Rodriguez KA, Bonomi M, Murea M and
Porosnicu M: Retrospective analysis of cisplatin nephrotoxicity in
patients with head and neck cancer receiving outpatient treatment
with concurrent high-dose cisplatin and radiotherapy. Am J Clin
Oncol. 41:432–440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wolenski FS, Shah P, Sano T, Shinozawa T,
Bernard H, Gallacher MJ, Wyllie SD, Varrone G, Cicia LA, Carsillo
ME, et al: Identification of microRNA biomarker candidates in urine
and plasma from rats with kidney or liver damage. J Appl Toxicol.
37:278–286. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang C, Ma P, Zhao Z, Jiang N, Lian D,
Huo P and Yang H: miRNA-mRNA regulatory network analysis of
mesenchymal stem cell treatment in cisplatin-induced acute kidney
injury identifies roles for miR-210/Serpine1 and miR-378/Fos in
regulating inflammation. Mol Med Rep. 20:1509–1522. 2019.PubMed/NCBI
|
|
31
|
Moghadasali R, Mutsaers HAM, Azarnia M,
Aghdami N, Baharvand H, Torensma R, Wilmer MJG and Masereeuw R:
Mesenchymal stem cell-conditioned medium accelerates regeneration
of human renal proximal tubule epithelial cells after gentamicin
toxicity. Exp Toxicol Pathol. 65:595–600. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G,
Zhang Y, Sun P, Jia Z, Huang S, et al: MicroRNA-709 mediates acute
tubular injury through effects on mitochondrial function. J Am Soc
Nephrol. 29:449–461. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qin W, Xie W, Yang X, Xia N and Yang K:
Inhibiting microRNA-449 attenuates cisplatin-induced injury in
NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway.
Med Sci Monit. 22:818–823. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang YW, Wang X, Ren X and Zhang M:
Involvement of glucose-regulated protein 78 and spliced X-box
binding protein 1 in the protective effect of gliclazide in
diabetic nephropathy. Diabetes Res Clin Pract. 146:41–47. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Onozato ML, Tojo A, Goto A and Fujita T:
Radical scavenging effect of gliclazide in diabetic rats fed with a
high cholesterol diet. Kidney Int. 65:951–960. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wu Z, Pan J, Yang J and Zhang D:
LncRNA136131 suppresses apoptosis of renal tubular epithelial cells
in acute kidney injury by targeting the miR-378a-3p/Rab10 axis.
Aging (Albany NY). 14:3666–3686. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ding C, Ding X, Zheng J, Wang B, Li Y,
Xiang H, Dou M, Qiao Y, Tian P and Xue W: miR-182-5p and
miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell
Death Dis. 11:9292020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bhatt JR and Finelli A: Landmarks in the
diagnosis and treatment of renal cell carcinoma. Nat Rev Urol.
11:517–525. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gupta K, Miller JD, Li JZ, Russell MW and
Charbonneau C: Epidemiologic and socioeconomic burden of metastatic
renal cell carcinoma (mRCC): A literature review. Cancer Treat Rev.
34:193–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Inman BA, Harrison MR and George DJ: Novel
immunotherapeutic strategies in development for renal cell
carcinoma. Eur Urol. 63:881–889. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Redova M, Poprach A, Nekvindova J, Iliev
R, Radova L, Lakomy R, Svoboda M, Vyzula R and Slaby O: Circulating
miR-378 and miR-451 in serum are potential biomarkers for renal
cell carcinoma. J Transl Med. 10:552012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hauser S, Wulfken LM, Holdenrieder S,
Moritz R, Ohlmann CH, Jung V, Becker F, Herrmann E,
Walgenbach-Brünagel G, von Ruecker A, et al: Analysis of serum
microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as
potential biomarkers in renal cell carcinoma. Cancer Epidemiol.
36:391–394. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fedorko M, Stanik M, Iliev R,
Redova-Lojova M, Machackova T, Svoboda M, Pacik D, Dolezel J and
Slaby O: Combination of MiR-378 and MiR-210 serum levels enables
sensitive detection of renal cell carcinoma. Int J Mol Sci.
16:23382–23389. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen W, Wang W, Zhao Z, Wen Z, Li Y, Ge Z,
Lai Y and Ni L: A three miRNAs panel in paraffin tissue serves as
tool for predicting prognosis of renal cell carcinoma. Front Oncol.
14:13918442024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li H, Dai S, Zhen T, Shi H, Zhang F, Yang
Y, Kang L, Liang Y and Han A: Clinical and biological significance
of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer.
50:1207–1221. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Reddy MA, Tak Park J and Natarajan R:
Epigenetic modifications in the pathogenesis of diabetic
nephropathy. Semin Nephrol. 33:341–353. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
MacIsaac RJ, Ekinci EI and Jerums G:
Markers of and risk factors for the development and progression of
diabetic kidney disease. Am J Kidney Dis. 63 (Suppl 2):S39–S62.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ritz E, Zeng XX and Rychlík I: Clinical
manifestation and natural history of diabetic nephropathy.
Contributions to Nephrology. Lai KN and Tang SCW: Vol 170. S Karger
AG; Basel: pp. 19–27. 2011, View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sohn E, Kim J, Kim C-S, Kim YS, Jang DS
and Kim JS: Extract of the aerial parts of Aster koraiensis reduced
development of diabetic nephropathy via anti-apoptosis of podocytes
in streptozotocin-induced diabetic rats. Biochem Biophys Res
Commun. 391:733–738. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kato M and Natarajan R: MicroRNAs in
diabetic nephropathy: Functions, biomarkers, and therapeutic
targets. Ann N Y Acad Sci. 1353:72–88. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lei X, Zhang BD, Ren JG and Luo FL:
Astragaloside suppresses apoptosis of the podocytes in rats with
diabetic nephropathy via miR-378/TRAF5 signaling pathway. Life Sci.
206:77–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang B, Yao K, Wise AF, Lau R, Shen HH,
Tesch GH and Ricardo SD: miR-378 reduces mesangial hypertrophy and
kidney tubular fibrosis via MAPK signalling. Clin Sci (Lond).
131:411–423. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Assmann TS, Recamonde-Mendoza M, Costa AR,
Puñales M, Tschiedel B, Canani LH, Bauer AC and Crispim D:
Circulating miRNAs in diabetic kidney disease: Case-control study
and in silico analyses. Acta Diabetol. 56:55–65. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou R, Jia YP, Wang Y, Li Z, Qi J and
Yang Y: Elevating miR-378 strengthens the isoflurane-mediated
effects on myocardial ischemia-reperfusion injury in mice via
suppression of MAPK1. Am J Transl Res. 13:2350–2364.
2021.PubMed/NCBI
|
|
55
|
Sun H, Wang W, Han P, Shao M, Song G, Du
H, Yi T and Li S: Astragaloside IV ameliorates renal injury in
db/db mice. Sci Rep. 6:325452016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Guo H, Cao A, Chu S, Wang Y, Zang Y, Mao
X, Wang H, Wang Y, Liu C, Zhang X and Peng W: Astragaloside IV
attenuates podocyte apoptosis mediated by endoplasmic reticulum
stress through upregulating sarco/endoplasmic reticulum
Ca2+-ATPase 2 expression in diabetic nephropathy. Front
Pharmacol. 7:5002016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Geng W, Wei R, Liu S, Tang L, Zhu H, Chen
P, Wu J, Zhang X, Zhu F, Yin Z and Chen X: Shenhua tablet inhibits
mesangial cell proliferation in rats with chronic anti-Thy-1
nephritis. Biol Res. 49:172016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jin M, Yin Z, Wei K, Xie Y, Bai X, Fu B,
Feng Z, Li Q and Chen X: Metanephric mesenchyme-derived
Foxd1+ mesangial precursor cells alleviate mesangial
proliferative glomerulonephritis. J Mol Med (Berl). 97:553–561.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen B, Li Y, Liu Y and Xu Z: circLRP6
regulates high glucose-induced proliferation, oxidative stress, ECM
accumulation, and inflammation in mesangial cells. J Cell Physiol.
234:21249–21259. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
He JY, Peng F, Chang JK, Zhao Y, Qu Y, Liu
J, Liu R, Li P, Cai G, Hong Q and Chen X: The therapeutic effect of
Shenhua tablet against mesangial cell proliferation and renal
inflammation in mesangial proliferative glomerulonephritis. Biomed
PharmacotheR. 165:1152332023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang B, Xu X, Yang Z, Zhang L and Liu Y,
Ma A, Xu G, Tang M, Jing T, Wu L and Liu Y: POH1 contributes to
hyperactivation of TGF-β signaling and facilitates hepatocellular
carcinoma metastasis through deubiquitinating TGF-β receptors and
caveolin-1. EBioMedicine. 41:320–332. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kamejima S, Tatsumi N, Anraku A, Suzuki H,
Ohkido I, Yokoo T and Okabe M: Gcm1 is involved in cell
proliferation and fibrosis during kidney regeneration after
ischemia-reperfusion injury. Sci Rep. 9:78832019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ledeganck KJ, Gielis EM, Abramowicz D,
Stenvinkel P, Shiels PG and Van Craenenbroeck AH: MicroRNAs in AKI
and kidney transplantation. Clin J Am Soc Nephrol. 14:454–468.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xiong L, Ding S and Yang T: The protective
function of miR-378 in the ischemia-reperfusion injury during renal
transplantation and subsequent interstitial fibrosis of the renal
allograft. Int Urol Nephrol. 52:1791–1800. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wilflingseder J, Regele H, Perco P, Kainz
A, Soleiman A, Mühlbacher F, Mayer B and Oberbauer R: miRNA
profiling discriminates types of rejection and injury in human
renal allografts. Transplantation. 95:835–841. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ben-Dov IZ, Muthukumar T, Morozov P,
Mueller FB, Tuschl T and Suthanthiran M: MicroRNA sequence profiles
of human kidney allografts with or without tubulointerstitial
fibrosis. Transplantation. 94:1086–1094. 2012. View Article : Google Scholar : PubMed/NCBI
|