|
1
|
Wang S, Li B, Solomon V, Fonteh A,
Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Sullivan PM and
Yassine HN: Calcium-dependent cytosolic phospholipase A2 activation
is implicated in neuroinflammation and oxidative stress associated
with ApoE4. Mol Neurodegener. 17:422022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu
Y, Tong F, Tan Y, Zhou J and Kang C: Neuronal STAT3/HIF-1α/PTRF
axis-mediated bioenergetic disturbance exacerbates cerebral
ischemia-reperfusion injury via PLA2G4A. Theranostics.
12:3196–3216. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Song CY, Singh P, Motiwala M, Shin JS, Lew
J, Dutta SR, Gonzalez FJ, Bonventre JV and Malik KU:
2-methoxyestradiol ameliorates angiotensin II-induced hypertension
by inhibiting cytosolic phospholipase A2α activity in female mice.
Hypertension. 78:1368–1381. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jing H, Reed A, Ulanovskaya OA, Grigoleit
JS, Herbst DM, Henry CL, Li H, Barbas S, Germain J, Masuda K and
Cravatt BF: Phospholipase Cγ2 regulates endocannabinoid and
eicosanoid networks in innate immune cells. Proc Natl Acad Sci USA.
118:e21129711182021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sun GY, Geng X, Teng T, Yang B, Appenteng
MK, Greenlief CM and Lee JC: Dynamic role of phospholipases A2 in
health and diseases in the central nervous system. Cells.
10:29632021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dabral D and van den Bogaart G: The roles
of phospholipase A2 in phagocytes. Front Cell Dev Biol.
9:6735022021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY,
Ni WF and Zhou KL: Functions and mechanisms of cytosolic
phospholipase A2 in central nervous system trauma. Neural Regen
Res. 18:258–266. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li Y, Jones JW, Choi HMC, Sarkar C, Kane
MA, Koh EY, Lipinski MM and Wu J: cPLA2 activation contributes to
lysosomal defects leading to impairment of autophagy after spinal
cord injury. Cell Death Dis. 10:5312019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sarkar C, Jones JW, Hegdekar N, Thayer JA,
Kumar A, Faden AI, Kane MA and Lipinski MM: PLA2G4A/cPLA2-mediated
lysosomal membrane damage leads to inhibition of autophagy and
neurodegeneration after brain trauma. Autophagy. 16:466–485. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hayashi D, Mouchlis VD and Dennis EA: Each
phospholipase A2 type exhibits distinct selectivity toward sn-1
ester, alkyl ether, and vinyl ether phospholipids. Biochim Biophys
Acta Mol Cell Biol Lipids. 1867:1590672022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kita Y, Shindou H and Shimizu T: Cytosolic
phospholipase A2 and lysophospholipid acyltransferases. Biochim
Biophys Acta Mol Cell Biol Lipids. 1864:838–845. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang H, Chen Y, Li F, Wu C, Cai W, Ye H,
Su H, He M, Yang L, Wang X, et al: Elamipretide alleviates
pyroptosis in traumatically injured spinal cord by inhibiting
cPLA2-induced lysosomal membrane permeabilization. J
Neuroinflammation. 20:62023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Frąk W, Wojtasińska A, Lisińska W,
Młynarska E, Franczyk B and Rysz J: Pathophysiology of
cardiovascular diseases: New insights into molecular mechanisms of
atherosclerosis, arterial hypertension, and coronary artery
disease. Biomedicines. 10:19382022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hasan S, Ghani N, Zhao X, Good J, Huang A,
Wrona HL, Liu J and Liu CJ: Dietary pyruvate targets cytosolic
phospholipase A2 to mitigate inflammation and obesity in mice.
Protein Cell. 15:661–685. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Huwiler A, Feuerherm AJ, Sakem B,
Pastukhov O, Filipenko I, Nguyen T and Johansen B: The
ω3-polyunsaturated fatty acid derivatives AVX001 and AVX002
directly inhibit cytosolic phospholipase A(2) and suppress PGE(2)
formation in mesangial cells. Br J Pharmacol. 167:1691–1701. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bacher S, Meier-Soelch J, Kracht M and
Schmitz ML: Regulation of transcription factor NF-κB in its natural
habitat: The nucleus. Cells. 10:7532021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Aslani M, Mortazavi-Jahromi SS and
Mirshafiey A: Cytokine storm in the pathophysiology of COVID-19:
Possible functional disturbances of miRNAs. Int Immunopharmacol.
101:1081722021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Donohoe F, Wilkinson M, Baxter E and
Brennan DJ: Mitogen-Activated protein kinase (MAPK) and
obesity-related cancer. Int J Mol Sci. 21:12412020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sahana TG and Zhang K: Mitogen-activated
protein kinase pathway in amyotrophic lateral sclerosis.
Biomedicines. 9:9692021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ye J, Zhai L, Zhang S, Zhang Y, Chen L, Hu
L, Zhang S and Ding Z: DL-3-n-butylphthalide inhibits platelet
activation via inhibition of cPLA2-mediated TXA2 synthesis and
phosphodiesterase. Platelets. 26:736–744. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu H, Li X, Xie J, Lv C, Lian F, Zhang S,
Duan Y, Zeng Y and Piao X: Gypenoside L and Gypenoside LI Inhibit
proliferation in renal cell carcinoma via regulation of the MAPK
and arachidonic acid metabolism pathways. Front Pharmacol.
13:8206392022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lou J, Wang X, Zhang H, Yu G, Ding J, Zhu
X, Li Y, Wu Y, Xu H, Xu H, et al: Inhibition of PLA2G4E/cPLA2
promotes survival of random skin flaps by alleviating lysosomal
membrane permeabilization-induced necroptosis. Autophagy.
18:1841–1863. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peng Z, Chang Y, Fan J, Ji W and Su C:
Phospholipase A2 superfamily in cancer. Cancer Lett. 497:165–177.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen Y, Zhang H, Jiang L, Cai W, Kuang J,
Geng Y, Xu H, Li Y, Yang L, Cai Y, et al: DADLE promotes motor
function recovery by inhibiting cytosolic phospholipase
A2 mediated lysosomal membrane permeabilization after
spinal cord injury. Br J Pharmacol. 181:712–734. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chang Y, Hsia CW, Chiou KR, Yen TL,
Jayakumar T, Sheu JR and Huang WC: Eugenol: A potential modulator
of human platelet activation and mouse mesenteric vascular
thrombosis via an innovative cPLA2-NF-κB signaling axis.
Biomedicines. 12:16892024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Khan SA and Ilies MA: The phospholipase A2
superfamily: Structure, isozymes, catalysis, physiologic and
pathologic roles. Int J Mol Sci. 24:13532023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Elinder LS, Dumitrescu A, Larsson P, Hedin
U, Frostegård J and Claesson HE: Expression of phospholipase A2
isoforms in human normal and atherosclerotic arterial wall.
Arterioscler Thromb Vasc Biol. 17:2257–2263. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Badimon L, Vilahur G, Rocca B and Patrono
C: The key contribution of platelet and vascular arachidonic acid
metabolism to the pathophysiology of atherothrombosis. Cardiovasc
Res. 117:2001–2015. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Szczuko M, Kozioł I, Kotlęga D, Brodowski
J and Drozd A: The role of thromboxane in the course and treatment
of ischemic stroke: Review. Int J Mol Sci. 22:116442021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hong HJ, Nam GS and Nam KS: Daidzein
inhibits human platelet activation by downregulating thromboxane
A2 production and granule release, regardless of COX-1
activity. Int J Mol Sci. 24:119852023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu G, Yuan Z, Tian X, Xiong X, Guo F, Lin
Z and Qin Z: Pimpinellin inhibits collagen-induced platelet
aggregation and activation through inhibiting granule secretion and
PI3K/Akt pathway. Front Pharmacol. 12:7063632021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rodríguez JP, Leiguez E, Guijas C, Lomonte
B, Gutiérrez JM, Teixeira C, Balboa MA and Balsinde J: A lipidomic
perspective of the action of group IIA secreted phospholipase A2 on
human monocytes: LIPID droplet biogenesis and activation of
cytosolic phospholipase A2α. Biomolecules. 10:8912020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Paloschi MV, Lopes JA, Boeno CN, Silva
MDS, Evangelista JR, Pontes AS, da Silva Setúbal S, Rego CMA, Néry
NM, Ferreira AA, et al: Cytosolic phospholipase A2-α participates
in lipid body formation and PGE2 release in human neutrophils
stimulated with an l-amino acid oxidase from calloselasma
rhodostoma venom. Sci Rep. 10:109762020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Boi R, Ebefors K, Henricsson M, Johansson
A, Borén J and Nyström J: MO614: Modified lipid metabolism and
cytosolic phospholipase A2 activation in mesangial cells under
pro-inflammatory conditions. Nephrol Dial Transplant. May
3–2022.(Epub ahead of print). doi: 10.1093/ndt/gfac076.007, 2022.
View Article : Google Scholar
|
|
36
|
Bayır H, Anthonymuthu TS, Tyurina YY,
Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott
CC and Kagan VE: Achieving life through death: Redox biology of
lipid peroxidation in ferroptosis. Cell Chem Biol. 27:387–408.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li D, Chen A, Lan T, Zou Y, Zhao L, Yang
P, Qu H, Wei L, Varghese Z, Moorhead JF, et al: SCAP knockdown in
vascular smooth muscle cells alleviates atherosclerosis plaque
formation via up-regulating autophagy in ApoE-/- mice. FASEB J.
33:3437–3450. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Canty JM Jr: Myocardial injury, troponin
release, and cardiomyocyte death in brief ischemia, failure, and
ventricular remodeling. Am J Physiol Heart Circ Physiol.
323:H1–H15. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pesce M, Duda GN, Forte G, Girao H, Raya
A, Roca-Cusachs P, Sluijter JPG, Tschöpe C and Van Linthout S:
Cardiac fibroblasts and mechanosensation in heart development,
health and disease. Nat Rev Cardiol. 20:309–324. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dong Y, Chen H, Gao J, Liu Y, Li J and
Wang J: Molecular machinery and interplay of apoptosis and
autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Naik MU, Patel P, Derstine R, Turaga R,
Chen X, Golla K, Neeves KB, Ichijo H and Naik UP: Ask1 regulates
murine platelet granule secretion, thromboxane A2 generation, and
thrombus formation. Blood. 129:1197–1209. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yue J and López JM: Understanding MAPK
signaling pathways in apoptosis. Int J Mol Sci. 21:23462020.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xuan C, Jin C, Jin Z and Chi Y: The
protective effects of glutamine against bronchopulmonary dysplasia
are associated with MKP-1/MAPK/cPLA2 signalingmediated NF-kappaB
pathway. Gen Physiol Biophys. 42:229–239. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Davidovich P, Higgins CA, Najda Z, Longley
DB and Martin SJ: cFLIPL acts as a suppressor of TRAIL- and
Fas-initiated inflammation by inhibiting assembly of
caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep.
42:1134762023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W,
Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S and
Islam S: Apoptosis: A comprehensive overview of signaling pathways,
morphological changes, and physiological significance and
therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Whitaker RH and Cook JG: Stress relief
techniques: p38 MAPK determines the balance of cell cycle and
apoptosis pathways. Biomolecules. 11:14442021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang A, Jiang H, Liu Y, Chen J, Zhou X,
Zhao C, Chen X and Lin M: Rhein induces liver cancer cells
apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling
pathway. J Cancer. 11:500–507. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ke Z, Lu J, Zhu J, Yang Z, Jin Z and Yuan
L: Down-regulation of lincRNA-EPS regulates apoptosis and autophagy
in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling
pathway. Infect Genet Evol. 77:1040772020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zheng N, Li H, Wang X, Zhao Z and Shan D:
Oxidative stress-induced cardiomyocyte apoptosis is associated with
dysregulated Akt/p53 signaling pathway. J Recept Signal Transduct
Res. 40:599–604. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zou H and Liu G: Inhibition of endoplasmic
reticulum stress through activation of MAPK/ERK signaling pathway
attenuates hypoxia-mediated cardiomyocyte damage. J Recept Signal
Transduct Res. 41:532–537. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu F, Na L, Li Y and Chen L: Roles of the
PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and
tumours. Cell Biosci. 11:1572020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qin W, Cao L and Massey IY: Role of
PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem.
476:4045–4059. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Peng Y, Wang Y, Zhou C, Mei W and Zeng C:
PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we
making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen J, Tang H, Hay N, Xu J and Ye RD: Akt
isoforms differentially regulate neutrophil functions. Blood.
115:4237–4246. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin WC, Chuang YC, Chang YS, Lai MD, Teng
YN, Su IJ, Wang CC, Lee KH and Hung JH: Endoplasmic reticulum
stress stimulates p53 expression through NF-κB activation. PLoS
One. 7:e391202012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cheng W, Cui C, Liu G, Ye C, Shao F,
Bagchi AK, Mehta JL and Wang X: NF-κB, A potential therapeutic
target in cardiovascular diseases. Cardiovasc Drugs Ther.
37:571–584. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu S, Yao S, Yang H, Liu S and Wang Y:
Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang XW, Lv XX, Zhou JC, Jin CC, Qiao LY
and Hu ZW: Autophagic flux detection: Significance and methods
involved. Adv Exp Med Biol. 1208:131–173. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mi S, Huang F, Jiao M, Qian Z, Han M, Miao
Z and Zhan H: Inhibition of MEG3 ameliorates cardiomyocyte
apoptosis and autophagy by regulating the expression of
miRNA-129-5p in a mouse model of heart failure. Redox Rep.
28:22246072023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wu X, Liu Z, Yu XY, Xu S and Luo J:
Autophagy and cardiac diseases: Therapeutic potential of natural
products. Med Res Rev. 41:314–341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Che Y, Wang Z, Yuan Y, Zhou H, Wu H, Wang
S and Tang Q: By restoring autophagic flux and improving
mitochondrial function, corosolic acid protects against Dox-induced
cardiotoxicity. Cell Biol Toxicol. 38:451–467. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Q, Su H and Liu J: Protective effect
of natural medicinal plants on cardiomyocyte injury in heart
failure: Targeting the dysregulation of mitochondrial homeostasis
and mitophagy. Oxid Med Cell Longev. 2022:36170862022.PubMed/NCBI
|
|
63
|
Gao J, Chen X, Shan C, Wang Y, Li P and
Shao K: Autophagy in cardiovascular diseases: Role of noncoding
RNAs. Mol Ther Nucleic Acids. 23:101–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang L, Wang J, Cretoiu D, Li G and Xiao
J: Exercise-mediated regulation of autophagy in the cardiovascular
system. J Sport Health Sci. 9:203–210. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Miao J, Zang X, Cui X and Zhang J:
Autophagy, hyperlipidemia, and atherosclerosis. Adv Exp Med Biol.
1207:237–264. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yun HR, Jo YH, Kim J, Shin Y, Kim SS and
Choi TG: Roles of autophagy in oxidative stress. Int J Mol Sci.
21:32892020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Frias MA, Hatipoglu A and Foster DA:
Regulation of mTOR by phosphatidic acid. Trends Endocrinol Metab.
34:170–180. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sukumaran P, Da Conceicao VN, Sun Y,
Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium signaling
regulates autophagy and apoptosis. Cells. 10:21252021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu Y, Yang Q, Chen S, Li Z and Fu L:
Targeting VPS34 in autophagy: An update on pharmacological
small-molecule compounds. Eur J Med Chem. 256:1154672023.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Foster KG and Fingar DC: Mammalian target
of rapamycin (mTOR): Conducting the cellular signaling symphony. J
Biol Chem. 285:14071–14077. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gao G, Chen W, Yan M, Liu J, Luo H, Wang C
and Yang P: Rapamycin regulates the balance between cardiomyocyte
apoptosis and autophagy in chronic heart failure by inhibiting mTOR
signaling. Int J Mol Med. 45:195–209. 2020.PubMed/NCBI
|
|
72
|
Jiang S, Yang H and Li M: Emerging roles
of lysophosphatidic acid in macrophages and inflammatory diseases.
Int J Mol Sci. 24:125242023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang ML, Zhang YJ, He DL, Li T, Zhao MM
and Zhao LM: Inhibition of PLA2G4A attenuated valproic acid-induced
lysosomal membrane permeabilization and restored impaired
autophagic flux: Implications for hepatotoxicity. Biochem
Pharmacol. 227:1164382024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang HL, Lai ZZ, Shi JW, Zhou WJ, Mei J,
Ye JF, Zhang T, Wang J, Zhao JY, Li DJ and Li MQ: A defective
lysophosphatidic acid-autophagy axis increases miscarriage risk by
restricting decidual macrophage residence. Autophagy. 18:2459–2480.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ballabio A and Bonifacino JS: Lysosomes as
dynamic regulators of cell and organismal homeostasis. Nat Rev Mol
Cell Biol. 21:101–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kotlyarov S: Immune function of
endothelial cells: Evolutionary aspects, molecular biology and role
in atherogenesis. Int J Mol Sci. 23:97702022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gusev E and Sarapultsev A: Atherosclerosis
and inflammation: Insights from the theory of general pathological
processes. Int J Mol Sci. 24:79102023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Singh P, Song CY, Dutta SR, Pingili A,
Shin JS, Gonzalez FJ, Bonventre JV and Malik KU:
6β-Hydroxytestosterone promotes angiotensin II-induced hypertension
via enhanced cytosolic phospholipase A2α activity. Hypertension.
78:1053–1066. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Passos LSA, Nunes MCP and Aikawa E:
Rheumatic heart valve disease pathophysiology and underlying
mechanisms. Front Cardiovasc Med. 7:6127162021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang H, Gao Y, Wu D and Zhang D: The
relationship of lipoprotein-associated phospholipase A2 activity
with the seriousness of coronary artery disease. BMC Cardiovasc
Disord. 20:2952020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Verdoia M, Rolla R, Gioscia R, Rognoni A
and De Luca G; Novara Atherosclerosis Study Group (NAS), :
Lipoprotein associated- phospholipase A2 in STEMI vs. NSTE-ACS
patients: A marker of cardiovascular atherosclerotic risk rather
than thrombosis. J Thromb Thrombolysis. 56:37–44. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yigit E, Deger O, Korkmaz K, Yigit MH,
Uydu HA, Mercantepe T and Demir S: Propolis reduces inflammation
and dyslipidemia caused by high-cholesterol diet in mice by
lowering ADAM10/17 activities. Nutrients. 16:18612024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ashcroft FJ, Mahammad N, Flatekvål HM,
Feuerherm AJ and Johansen B: cPLA2α enzyme inhibition attenuates
inflammation and keratinocyte proliferation. Biomolecules.
10:14022020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Schanstra JP, Luong TTD, Makridakis M, Van
Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski
N, Von Lewinski D, et al: Systems biology identifies cytosolic PLA2
as a target in vascular calcification treatment. JCI Insight.
4:e1256382019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huang JP, Cheng ML, Wang CH, Huang SS,
Hsieh PS, Chang CC, Kuo CY, Chen KH and Hung LM: Therapeutic
potential of cPLA2 inhibitor to counteract dilated-cardiomyopathy
in cholesterol-treated H9C2 cardiomyocyte and MUNO rat. Pharmacol
Res. 160:1052012020. View Article : Google Scholar : PubMed/NCBI
|