You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Panisello-Rosello A, Lopez A, Folch-Puy E, Carbonell T, Rolo A, Palmeira C, Adam R, Net M and Roselló-Catafau J: Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol. 24:2984–2994. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R and Yuan J: Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:122024. View Article : Google Scholar : PubMed/NCBI | |
|
Bai X, Zhang J, Yang H, Linghu K and Xu M: SNHG3/miR-330-5p/HSD11B1 alleviates myocardial ischemia-reperfusion injury by regulating the ERK/p38 signaling pathway. Protein Pept Lett. 30:699–708. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Xiong Y, Luo J, Hu Q, Lan J, Zou Y, Ma Q, Yao H, Liu Z, Zhong Z, et al: Aldehyde dehydrogenase 2 protects the kidney from Ischemia-reperfusion injury by suppressing the I κ B α/NF-κ B/IL-17C pathway. Oxid Med Cell Longev. 2023:22640302023. View Article : Google Scholar : PubMed/NCBI | |
|
Diao M, Xu J, Wang J, Zhang M, Wu C, Hu X, Zhu Y, Zhang M and Hu W: Alda-1, an activator of ALDH2, improves postresuscitation cardiac and neurological outcomes by inhibiting pyroptosis in swine. Neurochem Res. 47:1097–1099. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao R, Lv C, Qu Y, Yang H, Hao C, Sun X, Hu X, Yang Y and Tang Y: Remote ischemic conditioning mediates cardio-protection after myocardial ischemia/reperfusion injury by reducing 4-HNE levels and regulating autophagy via the ALDH2/SIRT3/HIF1alpha signaling pathway. J Cardiovasc Transl Res. 17:169–182. 2024.PubMed/NCBI | |
|
Kang P, Wang J, Fang D, Fang T, Yu Y, Zhang W, Shen L, Li Z, Wang H, Ye H and Gao Q: Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol Med. 146:198–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Xu M, Li J, Chen L, Xu D, Tong Y, Zhang J, Wu H, Kong X and Xia Q: Alda-1 ameliorates liver Ischemia-Reperfusion injury by activating aldehyde dehydrogenase 2 and enhancing autophagy in mice. J Immunol Res. 2018:98071392018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin D, Xiang T, Qiu Q, Leung J, Xu J, Zhou W, Hu Q, Lan J, Liu Z, Zhong Z, et al: Aldehyde dehydrogenase 2 regulates autophagy via the Akt-mTOR pathway to mitigate renal ischemia-reperfusion injury in hypothermic machine perfusion. Life Sci. 253:1177052020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Tao JP, Li M, Peng J, Zhou C, Ouyang J and Si YY: Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur Rev Med Pharmacol Sci. 26:2712–2720. 2022.PubMed/NCBI | |
|
Liu Z, Ye S, Zhong X, Wang W, Lai CH, Yang W, Yue P, Luo J, Huang X, Zhong Z, et al: Pretreatment with the ALDH2 activator Alda-1 protects rat livers from ischemia/reperfusion injury by inducing autophagy. Mol Med Rep. 22:2373–2385. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma LL, Ding ZW, Yin PP, Wu J, Hu K, Sun AJ, Zou YZ and Ge JB: Hypertrophic preconditioning cardioprotection after myocardial ischaemia/reperfusion injury involves ALDH2-dependent metabolism modulation. Redox Biol. 43:1019602021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan G, Roy B and Palaniyandi SS: Diabetic aldehyde dehydrogenase 2 Mutant (ALDH2*2) mice are more susceptible to cardiac Ischemic-Reperfusion injury due to 4-Hydroxy-2-Nonenal induced coronary endothelial cell damage. J Am Heart Assoc. 10:e0211402021. View Article : Google Scholar : PubMed/NCBI | |
|
Papatheodorou I, Galatou E, Panagiotidis GD, Ravingerova T and Lazou A: Cardioprotective effects of PPARbeta/delta activation against ischemia/reperfusion injury in rat heart are associated with ALDH2 upregulation, amelioration of oxidative stress and preservation of mitochondrial energy production. Int J Mol Sci. 22:e0211402021. View Article : Google Scholar | |
|
Qu Y, Liu Y and Zhang H: ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol. 25:3203–1326. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sidramagowda Patil S, Hernandez-Cuervo H, Fukumoto J, Krishnamurthy S, Lin M, Alleyn M, Breitzig M, Narala VR, Soundararajan R, Lockey RF, et al: Alda-1 attenuates hyperoxia-induced acute lung injury in mice. Front Pharmacol. 11:5979422020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Gao R, Li W, Zhao Y, Yang H, Chen H, Jiang H, Dong Z, Hu J, Liu J, et al: Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact Mater. 6:2058–2069. 2021.PubMed/NCBI | |
|
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, et al: ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med. 195:219–230. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Xu S, Diao M, Wang J, Zhang G and Xu J: Alda-1 treatment alleviates lung injury after cardiac arrest and resuscitation in swine. Shock. 58:464–469. 2022.PubMed/NCBI | |
|
Xu T, Guo J, Wei M, Wang J, Yang K, Pan C, Pang J, Xue L, Yuan Q, Xue M, et al: Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via the Beclin-1 pathway. JCI Insight. 6:e1381832021.PubMed/NCBI | |
|
Yoval-Sanchez B, Calleja LF, de la Luz Hernandez-Esquivel M and Rodriguez-Zavala JS: Piperlonguminine a new mitochondrial aldehyde dehydrogenase activator protects the heart from ischemia/reperfusion injury. Biochim Biophys Acta Gen Subj. 1864:1296842020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Q, Gao J, Shao X, Lu W, Chen L and Jin L: The Effects of Alda-1 treatment on renal and intestinal injuries after cardiopulmonary resuscitation in pigs. Front Med (Lausanne). 9:8924722022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Xue MY, Liu BS, Wang WJ, Fan XH, Zheng BY, Yuan QH, Xu F, Wang JL and Chen YG: Aldehyde dehydrogenase 2 preserves mitochondrial morphology and attenuates hypoxia/reoxygenation-induced cardiomyocyte injury. World J Emerg Med. 11:246–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang ZX, Li H, He JS, Chu HJ, Zhang XT and Yin L: Remote ischemic postconditioning alleviates myocardial ischemia/reperfusion injury by up-regulating ALDH2. Eur Rev Med Pharmacol Sci. 22:6475–6484. 2018.PubMed/NCBI | |
|
Zhou T, Wang X, Wang K, Lin Y, Meng Z, Lan Q, Jiang Z, Chen J, Lin Y, Liu X, et al: Activation of aldehyde dehydrogenase-2 improves ischemic random skin flap survival in rats. Front Immunol. 14:11276102023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Ferreira JC, Gross ER and Mochly-Rosen D: Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev. 94:1–34. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M and Madhani M: ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther. 259:1086662024. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida A, Hsu LC and Yasunami M: Genetics of human alcohol-metabolizing enzymes. Prog Nucleic Acid Res Mol Biol. 40:255–287. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Mali VR and Palaniyandi SS: Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res. 48:251–263. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider C, Porter NA and Brash AR: Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 283:15539–15543. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kimura M, Yokoyama A and Higuchi S: Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin Ther Targets. 23:955–966. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H and Jin W: The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol. 12:9160822022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Ardehali H, Min J and Wang F: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang Q, Yi X, Zhu XH, Wei X and Jiang DS: Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab. 35:219–234. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Pang J, Qin D, Li R, Zou D, Chi K, Wu W, Rui H, Yu H, Zhu W, et al: Deubiquitinase OTUD5 as a novel protector against 4-HNE-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv Sci (Weinh). 10:e23018522023. View Article : Google Scholar : PubMed/NCBI | |
|
Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J and Zhang Y: FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res. 55:45–60. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Feng D, Shi X, Wei Q and Yang L: The potential role of mitochondrial acetaldehyde dehydrogenase 2 in urological cancers from the perspective of ferroptosis and cellular senescence. Front Cell Dev Biol. 10:8501452022. View Article : Google Scholar : PubMed/NCBI | |
|
Droge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Sun L and Mochly-Rosen D: Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc Res. 88:51–57. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson DF and Matschinsky FM: Ethanol metabolism: The good, the bad, and the ugly. Med Hypotheses. 140:1096382020. View Article : Google Scholar : PubMed/NCBI | |
|
Hink U, Daiber A, Kayhan N, Trischler J, Kraatz C, Oelze M, Mollnau H, Wenzel P, Vahl CF, Ho KK, et al: Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels. J Am Coll Cardiol. 50:2226–2232. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Yuan Q, Cao S, Cui S, Xue L, Song X, Li Z, Xu R, Yuan Q and Li R: Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress. Biochem Biophys Res Commun. 529:998–1004. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Moldovan L and Moldovan NI: Oxygen free radicals and redox biology of organelles. Histochem Cell Biol. 122:395–412. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bielski BH, Arudi RL and Sutherland MW: A study of the reactivity of HO2/O2-with unsaturated fatty acids. J Biol Chem. 258:4759–4761. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Browne RW and Armstrong D: HPLC analysis of lipid-derived polyunsaturated fatty acid peroxidation products in oxidatively modified human plasma. Clin Chem. 46:829–836. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider C, Boeglin WE, Yin H, Porter NA and Brash AR: Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chem Res Toxicol. 21:895–903. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC and Vasiliou V: Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med. 56:89–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Hao Y, Piao X and Gu X: Aldehyde dehydrogenase 2 as a therapeutic target in oxidative stress-related diseases: Post-translational modifications deserve more attention. Int J Mol Sci. 23:26822022. View Article : Google Scholar : PubMed/NCBI | |
|
Breitzig M, Bhimineni C, Lockey R and Kolliputi N: 4-Hydroxy-2-nonenal: A critical target in oxidative stress? Am J Physiol Cell Physiol. 311:C537–C543. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schaur RJ, Siems W, Bresgen N and Eckl PM: 4-Hydroxy-nonenal-a bioactive lipid peroxidation product. Biomolecules. 5:2247–337. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Forman HJ: Reactive oxygen species and alpha, beta-unsaturated aldehydes as second messengers in signal transduction. Ann N Y Acad Sci. 1203:35–44. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shoeb M, Ansari NH, Srivastava SK and Ramana KV: 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem. 21:230–237. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H and Forman HJ: Signaling pathways involved in phase II gene induction by alpha, beta-unsaturated aldehydes. Toxicol Ind Health. 25:269–278. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dalleau S, Baradat M, Gueraud F and Huc L: Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 20:1615–1630. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Z, Zhao K, Sun Z, Wu C, Yu B, Kong D and Xu B: Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cepsilon/Nrf2/HO-1 signaling pathway. Brain Behav. 11:e021432021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li B, Liu G, Han Q, Diao Y and Liu J: Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction. Life Sci. 334:1221762023. View Article : Google Scholar : PubMed/NCBI | |
|
Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, et al: Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res. 105:1118–1127. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Esterbauer H, Schaur RJ and Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 11:81–128. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Giera M, Lingeman H and Niessen WM: Recent advancements in the LC- and GC-Based analysis of malondialdehyde (MDA): A brief overview. Chromatographia. 75:433–440. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Esterbauer H and Zollner H: Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med. 7:197–203. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Z, Zhang Y, Bu G and Fang L: Renal denervation improves mitochondrial oxidative stress and cardiac hypertrophy through inactivating SP1/BACH1-PACS2 signaling. Int Immunopharmacol. 141:1127782024. View Article : Google Scholar : PubMed/NCBI | |
|
Tsikas D: Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 524:13–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lankin VZ, Tikhaze AK and Melkumyants AM: Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development. Int J Mol Sci. 24:1282022. View Article : Google Scholar : PubMed/NCBI | |
|
Busch CJ and Binder CJ: Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:398–406. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Agadjanyan ZS, Dmitriev LF and Dugin SF: A new role of phosphoglucose isomerase. Involvement of the glycolytic enzyme in aldehyde metabolism. Biochemistry (Mosc). 70:1251–1255. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, et al: Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after Ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol. 10:24082019. View Article : Google Scholar : PubMed/NCBI | |
|
Qi D, Chen P, Bao H, Zhang L, Sun K, Song S and Li T: Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis. Cell Cycle. 22:818–828. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang IC, Lin JH, Lee WS, Liu CH, Lin TY and Yang KT: Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 375:74–86. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J and Gao Q: Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered. 13:4810–4820. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoval-Sanchez B and Rodriguez-Zavala JS: Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol. 25:722–729. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Zhao Q, Ye F, Huang CY, Chen WM and Huang WQ: Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic Res. 52:629–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y, et al: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HF, Tuo QZ, Yin QZ and Lei P: The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool Res. 41:220–230. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Li Y, Zhang S and Zhou X: Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 11:3052–3059. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Li Z, Li B, Liu W, Zhang S, Qiu K and Zhu W: Relationship between ferroptosis and mitophagy in cardiac ischemia reperfusion injury: A mini-review. PeerJ. 11:e149522023. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E49675. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Haeggstrom JZ and Funk CD: Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Braughler JM, Duncan LA and Chase RL: The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 261:10282–10289. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuyama M, Nakatani T, Hase T, Kawahito Y, Sano H, Kawamura M and Yoshimura R: The expression of cyclooxygenases and lipoxygenases in renal ischemia-reperfusion injury. Transplant Proc. 36:1939–1942. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang M, Jike Y, Liu K, Gan F, Zhang K, Xie M, Zhang J, Chen C, Zou X, Jiang X, et al: Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol Cancer. 22:1132023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Gao W, Wang Z, Jian H, Peng L, Yu X, Xue P, Peng W, Li K and Zeng P: Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis. Phytomedicine. 122:1551352024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Huang J, Yu C, Liu J, Gao W, Li J, Song X, Zhou Z, Li C, Xie Y, et al: A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun. 13:63182022. View Article : Google Scholar : PubMed/NCBI | |
|
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP and Chung HY: Src Tyrosine kinase activation by 4-hydroxynonenal upregulates p38, ERK/AP-1 signaling and COX-2 expression in YPEN-1 Cells. PLoS One. 10:e01292442015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI | |
|
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, et al: Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 7:800–819. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ito J, Omiya S, Rusu MC, Ueda H, Murakawa T, Tanada Y, Abe H, Nakahara K, Asahi M, Taneike M, et al: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. Elife. 10:e621742021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ and Peng J: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med. 162:339–352. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI and Cater MA: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14:100–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Li W, Wang Y, Leng Y and Xia Z: Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury. Cell Death Discov. 7:2672021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Z, Cai L, Wang S, Wang J and Chen B: Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 12:6289882021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, et al: Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ. 29:1705–1718. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bresgen N, Jaksch H, Lacher H, Ohlenschlager I, Uchida K and Eckl PM: Iron-mediated oxidative stress plays an essential role in ferritin-induced cell death. Free Radic Biol Med. 48:1347–1357. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Sun L, Wu W, Wu J, Sun Z and Ren J: USP22 Protects against myocardial Ischemia-Reperfusion Injury via the SIRT1-p53/SLC7A11-dependent inhibition of Ferroptosis-induced cardiomyocyte death. Front Physiol. 11:5513182020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y and Guo F: Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat. 27:33–43. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Jia M, Wang Y, Wang Q and Wu J: Cell death mechanisms in cerebral Ischemia-Reperfusion injury. Neurochem Res. 47:3525–3542. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Tuo QZ and Lei P: Iron, ferroptosis, and ischemic stroke. J Neurochem. 165:487–520. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Green DR and Llambi F: Cell death signaling. Cold Spring Harb Perspect Biol. 7:a0060802015. View Article : Google Scholar : PubMed/NCBI | |
|
Pang Q, Zhao Y, Chen X, Zhao K, Zhai Q and Tu F: Apigenin protects the brain against Ischemia/Reperfusion injury via Caveolin-1/VEGF in vitro and in vivo. Oxid Med Cell Longev. 2018:70172042018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Li J, Yang Y, Wang X, Zhang Z and Zhang L: Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regen Res. 9:727–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Teijido O and Dejean L: Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett. 584:3305–3310. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, Juhasz ED, Szekely L, Szelid Z, Turner MS, et al: Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Hear. 93:749–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guerrero-Mauvecin J, Villar-Gomez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A and Sanz AB: Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol. 14:13249962023. View Article : Google Scholar : PubMed/NCBI | |
|
Annibaldi A and Meier P: Checkpoints in TNF-Induced cell death: Implications in inflammation and cancer. Trends Mol Med. 24:49–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Seo J, Nam YW, Kim S, Oh DB and Song J: Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med. 53:1007–117. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Luedde T, Kaplowitz N and Schwabe RF: Cell death and cell death responses in liver disease: Mechanisms and clinical relevance. Gastroenterology. 147:765–83.e4. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Koike A, Hanatani M and Fujimori K: Pan-caspase inhibitors induce necroptosis via ROS-mediated activation of mixed lineage kinase domain-like protein and p38 in classically activated macrophages. Exp Cell Res. 380:171–179. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ravingerova T, Lewis M and Suleiman MS: Inhibition of cardiac RIP3 mitigates early reperfusion injury and Calcium-induced mitochondrial swelling without altering necroptotic signalling. Int J Mol Sci. 22:79832021. View Article : Google Scholar : PubMed/NCBI | |
|
Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Apaijai N, Liao S, Maneechote C, Chunchai T, Arunsak B, Benjanuwattra J, Yanpiset P, Chattipakorn SC and Chattipakorn N: Therapeutic potentials of cell death inhibitors in rats with cardiac ischaemia/reperfusion injury. J Cell Mol Med. 26:2462–2476. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R and Ren J: Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: Role of mitochondrial death pathway. PLoS One. 5:e87572010. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Xu Y, Hua S, Zhou S and Wang K: ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress. Int J Clin Exp Med. 8:6794–6803. 2015.PubMed/NCBI | |
|
Liu M, Li H, Yang R, Ji D and Xia X: GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation. 19:2622022. View Article : Google Scholar : PubMed/NCBI | |
|
Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, Wang P, Zhu H, Sun X, Ma X, et al: Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta Mol Basis Dis. 1863:1912–1918. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhai X, Wang W, Sun S, Han Y, Li J, Cao S, Li R, Xu T, Yuan Q, Wang J, et al: 4-Hydroxy-2-nonenal promotes cardiomyocyte necroptosis via stabilizing receptor-interacting serine/threonine-protein kinase 1. Front Cell Dev Biol. 9:7217952021. View Article : Google Scholar : PubMed/NCBI | |
|
Fang T, Cao R, Wang W, Ye H, Shen L, Li Z, Hu J and Gao Q: Alterations in necroptosis during ALDH2-mediated protection against high glucose-induced H9c2 cardiac cell injury. Mol Med Rep. 18:2807–2815. 2018.PubMed/NCBI | |
|
Zhang J, Wang R, Xie L, Ren H, Luo D, Yang Y, Xie H, Shang Z and Liu C: Pharmacological activation of aldehyde dehydrogenase 2 inhibits ferroptosis via SLC7A11/GPX4 axis to reduce kidney stone formation. Eur J Pharmacol. 986:1771322025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X and Yang Y: ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics. 24:1842024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yuan Z, Chai J, Zhu D, Miao X, Zhou J and Gu X: ALDH2 ameliorates ethanol-induced gastric ulcer through suppressing NLPR3 inflammasome activation and ferroptosis. Arch Biochem Biophys. 743:1096212023. View Article : Google Scholar : PubMed/NCBI | |
|
Shan G, Bian Y, Yao G, Liang J, Shi H, Hu Z, Zheng Z, Bi G, Fan H and Zhan C: Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma. Free Radic Biol Med. 224:310–324. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu ZY, Liu YD, Gong Y, Jin W, Topchiy E, Turdi S, Gao YF, Culver B, Wang SY, Ge W, et al: Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer's disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol Sin. 43:39–49. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Yin L, Sun X, Wu J, Dong Z, Hu K, Sun A and Ge J: Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 11:5992020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Luo Q, Zhu H, Liu X, Dong Z, Zhang K, Zou Y, Wu J, Ge J and Sun A: Aldehyde dehydrogenase 2 activation ameliorates CCl4-induced chronic liver fibrosis in mice by up-regulating Nrf2/HO-1 antioxidant pathway. J Cell Mol Med. 22:3965–3978. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tao Y, Huang X, Xie Y, Zhou X, He X, Tang S, Liao M, Chen Y, Tan A, Chen Y, et al: Genome-wide association and gene-environment interaction study identifies variants in ALDH2 associated with serum ferritin in a Chinese population. Gene. 685:196–201. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD and Mochly-Rosen D: Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 321:1493–1495. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Beretta M, Gorren AC, Wenzl MV, Weis R, Russwurm M, Koesling D, Schmidt K and Mayer B: Characterization of the East Asian variant of aldehyde dehydrogenase-2: Bioactivation of nitroglycerin and effects of Alda-1. J Biol Chem. 285:943–952. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D and Hurley TD: Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat Struct Mol Biol. 17:159–1564. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Doorn JA, Hurley TD and Petersen DR: Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal. Chem Res Toxicol. 19:102–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Budas GR, Disatnik MH and Mochly-Rosen D: Aldehyde dehydrogenase 2 in cardiac protection: A new therapeutic target? Trends Cardiovasc Med. 19:158–164. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Malyshev Y, Neuzil P, Petru J, Funasako M, Hala P, Kopriva K, Schneider C, Achyutha A, Vanderper A, Musikantow D, et al: Nitroglycerin to ameliorate coronary artery spasm during focal Pulsed-Field ablation for atrial fibrillation. JACC Clin Electrophysiol. 10:885–896. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mollace V, Muscoli C, Dagostino C, Giancotti LA, Gliozzi M, Sacco I, Visalli V, Gratteri S, Palma E, Malara N, et al: The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: Role in nitrate tolerance. Pharmacol Res. 89:29–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Salvemini D, Pistelli A and Mollace V: Release of nitric oxide from glyceryl trinitrate by captopril but not enalaprilat: In vitro and in vivo studies. Br J Pharmacol. 109:430–436. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Munzel T and Daiber A: The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets. 22:217–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, et al: Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest. 116:506–511. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nagano T, Ushijima K, Taga N, Takeuchi M, Kawada MA, Aizawa K, Imai Y and Fujimura A: Influence of the aldehyde dehydrogenase 2 polymorphism on the vasodilatory effect of nitroglycerin in infants with congenital heart disease and pulmonary arterial hypertension. Eur J Clin Pharmacol. 75:1361–1367. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macri R, Scarano F, Coppoletta A, Cardamone A, Bosco F, et al: The generation of nitric oxide from aldehyde Dehydrogenase-2: The role of dietary nitrates and their implication in cardiovascular disease management. Int J Mol Sci. 23:154542022. View Article : Google Scholar : PubMed/NCBI | |
|
Marini E, Giorgis M, Leporati M, Rolando B, Chegaev K, Lazzarato L, Bertinaria M, Vincenti M and Di Stilo A: Multitarget antioxidant NO-donor organic nitrates: A novel approach to overcome nitrates tolerance, an ex vivo study. Antioxidants (Basel). 11:1662022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YR, Nie SD, Shan W, Jiang DJ, Shi RZ, Zhou Z, Guo R, Zhang Z and Li YJ: Decrease in endogenous CGRP release in nitroglycerin tolerance: Role of ALDH-2. Eur J Pharmacol. 571:44–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kim EJ, Kim SY, Lee JH, Kim JM, Kim JS, Byun JI and Koo BN: Effect of isoflurane post-treatment on tPA-exaggerated brain injury in a rat ischemic stroke model. Korean J Anesthesiol. 68:281–286. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zangrillo A, Lomivorotov VV, Pasyuga VV, Belletti A, Gazivoda G, Monaco F, Nigro Neto C, Likhvantsev VV, Bradic N, Lozovskiy A, et al: Effect of volatile anesthetics on myocardial infarction after coronary artery surgery: A post hoc analysis of a randomized trial. J Cardiothorac Vasc Anesth. 36:2454–2462. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J and Fu X: MicroRNA-21 mediates the protective role of emulsified isoflurane against myocardial ischemia/reperfusion injury in mice by targeting SPP1. Cell Signal. 86:1100862021. View Article : Google Scholar : PubMed/NCBI | |
|
Ku HC, Huang CW and Lee SY: Technical refinement of a bilateral renal Ischemia-reperfusion mouse model for acute kidney injury research. J Vis Exp. Nov 3–2023.doi: 10.3791/63957. View Article : Google Scholar : PubMed/NCBI | |
|
Obeid PCI, Natalini CC and Howell GE: Exposure to emulsified isoflurane and sevoflurane protects canine primary hepatocytes against hypoxia-induced apoptosis. Am J Vet Res. 1–8. 2023.doi: 10.2460/ajvr.23.08.0192 (Epub ahead of print). PubMed/NCBI | |
|
Li H and Lang XE: Protein kinase C signaling pathway involvement in cardioprotection during isoflurane pretreatment. Mol Med Rep. 11:2683–2688. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A and Harken AH: Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol. 29:175–182. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Shi Q, Guo Q, Peng L, Li X, Rao L and Li M: Remote ischemic preconditioning can extend the tolerance to extended drug-coated balloon inflation time by reducing myocardial damage during percutaneous coronary intervention. Int J Cardiol. 353:3–8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Amador A, Grande L, Marti J, Deulofeu R, Miquel R, Sola A, Rodriguez-Laiz G, Ferrer J, Fondevila C, Charco R, et al: Ischemic pre-conditioning in deceased donor liver transplantation: A prospective randomized clinical trial. Am J Transplant. 7:2180–2189. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hardt J, Seyfried S, Brodrecht H, Khalil L, Buttner S, Herrle F, Reissfelder C and Rahbari NN: Remote ischemic preconditioning versus sham-control for prevention of anastomotic leakage after resection for rectal cancer (RIPAL trial): A pilot randomized controlled, triple-blinded monocenter trial. Int J Colorectal Dis. 39:652024. View Article : Google Scholar : PubMed/NCBI | |
|
Ueta CB, Campos JC, Albuquerque RPE, Lima VM, Disatnik MH, Sanchez AB, Chen CH, de Medeiros MHG, Yang W, Mochly-Rosen D and Ferreira JCB: Cardioprotection induced by a brief exposure to acetaldehyde: Role of aldehyde dehydrogenase 2. Cardiovasc Res. 114:1006–1015. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Marino A and Levi R: Salvaging the ischemic heart: Gi-coupled receptors in mast cells activate a PKCepsilon/ALDH2 pathway providing Anti-RAS cardioprotection. Curr Med Chem. 25:4416–4431. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Churchill EN, Disatnik MH and Mochly-Rosen D: Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2. J Mol Cell Cardiol. 46:278–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Gray MO and Mochly-Rosen D: Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: Role of epsilon protein kinase C. Proc Natl Acad Sci USA. 96:12784–12789. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Kang PF, Wu WJ, Tang Y, Xuan L, Guan SD, Tang B, Zhang H, Gao Q and Wang HJ: Activation of ALDH2 with low concentration of ethanol attenuates myocardial Ischemia/Reperfusion injury in diabetes rat model. Oxid Med Cell Longev. 2016:61905042016. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Chen J, Ai Y, Gu X, Li L, Che D, Jiang Z, Li L, Chen S, Huang H, et al: Estrogen-related hormones induce apoptosis by stabilizing Schlafen-12 protein turnover. Mol Cell. 75:1103–16.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ji E, Jiao T, Shen Y, Xu Y, Sun Y, Cai Z, Zhang Q and Li J: Molecular mechanism of HSF1-Upregulated ALDH2 by PKC in ameliorating pressure overload-induced heart failure in mice. Biomed Res Int. 2020:34816232020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, Reiter RJ, Wang X, Zhou H and Ren J: ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther. 5:1192020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo G, Huang B, Qiu X, Xiao L, Wang N, Gao Q, Yang W and Hao L: Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD+/NADH ratio. Mol Nutr Food Res. 612017.doi: 10.1002/mnfr.201700087. | |
|
Zhang H, Xue L, Li B, Zhang Z and Tao S: Vitamin D protects against alcohol-induced liver cell injury within an NRF2-ALDH2 feedback loop. Mol Nutr Food Res. 63:e18010142019. View Article : Google Scholar : PubMed/NCBI | |
|
He JD and Parker JD: The effect of vitamin C on nitroglycerin-mediated vasodilation in individuals with and without the aldehyde dehydrogenase 2 polymorphism. Br J Clin Pharmacol. 89:2767–2774. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Gutierrez G, Duthie GG, Wood S, Morrice P, Nicol F, Reid M, Cantlay LL, Kelder T, Horgan GW, Fernández-Bolaños Guzmán J and de Roos B: Alperujo extract, hydroxytyrosol, and 3,4-dihydroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E-deficient rats-a proteomics and network analysis approach. Mol Nutr Food Res. 56:1137–1147. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hosoi T, Yamaguchi R, Noji K, Matsuo S, Baba S, Toyoda K, Suezawa T, Kayano T, Tanaka S and Ozawa K: Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med. 6:335–346. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Balber AE: Concise review: Aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: Characteristics, activities, and emerging uses in regenerative medicine. Stem Cells. 29:570–575. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Perin EC, Silva GV, Zheng Y, Gahremanpour A, Canales J, Patel D, Fernandes MR, Keller LH, Quan X, Coulter SA, et al: Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 163:415–421.e1. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Perin EC, Murphy M, Cooke JP, Moye L, Henry TD, Bettencourt J, Gahremanpour A, Leeper N, Anderson RD, Hiatt WR, et al: Rationale and design for PACE: Patients with intermittent claudication injected with ALDH bright cells. Am Heart J. 168:667–673. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Perin EC, Murphy MP, March KL, Bolli R, Loughran J, Yang PC, Leeper NJ, Dalman RL, Alexander J, Henry TD, et al: Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: The CCTRN PACE trial (Patients with intermittent claudication injected with ALDH bright cells). Circulation. 135:1417–1428. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Zhu H, Dong Z, Liu X, Ma X, Han S, Lu F, Wang P, Qian S, Wang C, et al: Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia. Redox Biol. 13:196–206. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chan W, Taylor AJ, Ellims AH, Lefkovits L, Wong C, Kingwell BA, Natoli A, Croft KD, Mori T, Kaye DM, et al: Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 5:270–278. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Kiertiburanakul S, Lee MP, Supparatpinyo K, Zhang F, et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 129:2293–2304. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Zhao C, Li H, Chen X, Ding Y and Xu S: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 497:233–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, An S, Shao T, Xu H, Chen H, Ning J, Zhou Y and Chai X: Active compounds of herbs ameliorate impaired cognition in APP/PS1 mouse model of Alzheimer's disease. Aging (Albany NY). 11:11186–11201. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V and Stefanidis I: Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor. Mol Med Rep. 23:412021.PubMed/NCBI | |
|
Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, Chen C, Xia T, Liao Q, Yao Y, et al: Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med. 9:eaao62982017. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Xu F and Lu H: LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260:1183052020. View Article : Google Scholar : PubMed/NCBI | |
|
Stamenkovic A, O'Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, et al: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 320:H1170–H1184. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Yang J, Sun G, Hu J, Zhang Q, Cai J, Yuan D, Li H, Hei Z and Yao W: Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br J Pharmacol. 178:3783–3796. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Li X, Cheng Y, Yang M and Wang R: Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 34:16262–16275. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y, et al: Iron overload as a risk factor for hepatic Ischemia-Reperfusion injury in liver transplantation: Potential role of ferroptosis. Am J Transplant. 20:1606–1618. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Xue X, Hou Q and Dai C: Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel). 8:57–71. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tu H, Zhou YJ, Tang LJ, Xiong XM, Zhang XJ, Ali Sheikh MS, Zhang JJ, Luo XJ, Yuan C and Peng J: Combination of ponatinib with deferoxamine synergistically mitigates ischemic heart injury via simultaneous prevention of necroptosis and ferroptosis. Eur J Pharmacol. 898:1739992021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Han L, Zhang X, Xie L, Pan P and Chen F: Selenium alleviates cerebral Ischemia/reperfusion injury by regulating oxidative stress, mitochondrial fusion and ferroptosis. Neurochem Res. 47:2992–3002. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Z, Wang F, Zhang X, Zhang X, Zhang J and Liu R: Etomidate attenuates the ferroptosis in myocardial Ischemia/Reperfusion rat model via Nrf2/HO-1 pathway. Shock. 56:440–449. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Sun X, Huang N, Li P, He J, Jiang L, Zhang X, Han S and Xin H: Entacapone alleviates acute kidney injury by inhibiting ferroptosis. FASEB J. 36:e223992022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, He W, Wei H, Chang C, Yang L, Meng J, Long T, Xu Q and Zhang C: Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther. 29:1667–1677. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C and Liu Y: Puerarin reduces cell damage from cerebral ischemia-reperfusion by inhibiting ferroptosis. Biochem Biophys Res Commun. 693:1493242024. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Li W, Peng S, Zhou G, Chen S, Wei Y, Xu J, Gu H, Li J, Liu S and Liu B: Puerarin protects against myocardial Ischemia/Reperfusion injury by inhibiting ferroptosis. Biol Pharm Bull. 46:524–532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y and Wang P: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI | |
|
Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y and Liu X: Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 289:1150212022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Liu H, Yang C, Mo H, Wang X, Song X, Jiang L, Deng P, Chen R, Wu P, et al: Galangin attenuates myocardial ischemic Reperfusion-Induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway. Drug Des Devel Ther. 17:2495–2511. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Zhu L, Tang P, Chen D, Li Y, Li J and Bao C: Carthamin yellow improves cerebral ischemia-reperfusion injury by attenuating inflammation and ferroptosis in rats. Int J Mol Med. 47:522021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates Oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JH, Yang KT, Ting PC, Luo YP, Lin DJ, Wang YS and Chang JC: Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules. 11:16672021. View Article : Google Scholar : PubMed/NCBI | |
|
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H and Liu HB: Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med. 29:422023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H and Xu D: Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 12:10924–10934. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Tan Y, Ouyang S, He J and Liu L: Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 808:1459682022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Huang J, Chen Y, Li X, Wen J, Tian M, Ren J, Zhou L and Yang Q: Resveratrol pretreatment protects neurons from oxygen-glucose deprivation/reoxygenation and ischemic injury through inhibiting ferroptosis. Biosci Biotechnol Biochem. 86:704–716. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, et al: Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med. 29:1372023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wei S, Lv Y and Wu R: Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol. 236:931–945. 2021. View Article : Google Scholar : PubMed/NCBI |