|
1
|
Sabina J and Tobias W: Augmentation
therapy with alpha1-antitrypsin: Novel perspectives. Cardiovasc
Hematol Disord Drug Targets. 13:90–98. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lechowicz U, Rudzinski S, Jezela-Stanek A,
Janciauskiene S and Chorostowska-Wynimko J: Post-translational
modifications of circulating alpha-1-antitrypsin protein. Int J Mol
Sci. 21:91872020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Santangelo S, Scarlata S, Poeta ML, Bialas
AJ, Paone G and Incalzi RA: Alpha-1 antitrypsin deficiency: Current
perspective from genetics to diagnosis and therapeutic approaches.
Curr Med Chem. 24:65–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Haq I, Irving JA, Saleh AD, Dron L,
Regan-Mochrie GL, Motamedi-Shad N, Hurst JR, Gooptu B and Lomas DA:
Deficiency mutations of alpha-1 antitrypsin. Effects on folding,
function, and polymerization. Am J Respir Cell Mol Biol. 54:71–80.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
van't Wout EF, van Schadewijk A, Savage
ND, Stolk J and Hiemstra PS: α1-Antitrypsin production by
proinflammatory and antiinflammatory macrophages and dendritic
cells. Am J Respir Cell Mol Biol. 46:607–613. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
de Serres F and Blanco I: Role of alpha-1
antitrypsin in human health and disease. J Intern Med. 276:311–335.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rahaghi FF and Miravitlles M: Long-term
clinical outcomes following treatment with alpha 1-proteinase
inhibitor for COPD associated with alpha-1 antitrypsin deficiency:
A look at the evidence. Respir Res. 18:1052017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Stockley RA: Alpha1-antitrypsin review.
Clin Chest Med. 35:39–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Song S: Alpha-1 antitrypsin therapy for
autoimmune disorders. Chronic Obstr Pulm Dis. 5:289–301.
2018.PubMed/NCBI
|
|
10
|
Serban KA, Petrusca DN, Mikosz A, Poirier
C, Lockett AD, Saint L, Justice MJ, Twigg HL III, Campos MA and
Petrache I: Alpha-1 antitrypsin supplementation improves alveolar
macrophages efferocytosis and phagocytosis following cigarette
smoke exposure. PLoS One. 12:e01760732017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jiang S, Liu G, Yuan H, Xu E, Xia W, Zhang
X, Liu J and Gao L: Changes on proteomic and metabolomic profile in
serum of mice induced by chronic exposure to tramadol. Sci Rep.
11:14542021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yarmohammadi ME, Hassan ZM, Mostafaie A,
Ebtekar M, Yaraee R, Pourfarzam S, Jalali-Nadoushan M, Faghihzadeh
S, Vaez-Mahdavi MR, Soroush MR, et al: Salivary levels of secretary
IgA, C5a and alpha 1-antitrypsin in sulfur mustard exposed patients
20 years after the exposure, sardasht-Iran cohort study (SICS). Int
Immunopharmacol. 17:952–957. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Burgess JL, Kurzius-Spencer M, Poplin GS,
Littau SR, Kopplin MJ, Stürup S, Boitano S and Clark Lantz R:
Environmental arsenic exposure, selenium and sputum alpha-1
antitrypsin. J Expo Sci Environ Epidemiol. 24:150–155. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yi L, Cui J, Hu N, Li L, Chen Y, Mu H, Yin
J, Wei S, Gong Y, Wei Y, et al: iTRAQ-based proteomic profiling of
potential biomarkers in rat serum for uranium tailing suspension
intratracheal instillation. J Proteome Res. 20:995–1004. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Veith M, Tüffers J, Peychev E, Klemmer A,
Kotke V, Janciauskiene S, Wilhelm S, Bals R, Koczulla AR,
Vogelmeier CF and Greulich T: The distribution of alpha-1
antitrypsin genotypes between patients with COPD/emphysema, asthma
and bronchiectasis. Int J Chron Obstruct Pulmon Dis. 15:2827–2836.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Alam S, Li Z, Atkinson C, Jonigk D,
Janciauskiene S and Mahadeva R: Z α1-antitrypsin confers a
proinflammatory phenotype that contributes to chronic obstructive
pulmonary disease. Am J Respir Crit Care Med. 189:909–931. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ordóñez A, Snapp EL, Tan L, Miranda E,
Marciniak SJ and Lomas DA: Endoplasmic reticulum polymers impair
luminal protein mobility and sensitize to cellular stress in
alpha1-antitrypsin deficiency. Hepatology. 57:2049–2060. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Giri Rao VVH and Gosavi S: On the folding
of a structurally complex protein to its metastable active state.
Proc Natl Acad Sci USA. 115:1998–2003. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ordóñez A, Harding HP, Marciniak SJ and
Ron D: Cargo receptor-assisted endoplasmic reticulum export of
pathogenic α1-antitrypsin polymers. Cell Rep. 35:1091442021.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ronzoni R, Berardelli R, Medicina D, Sitia
R, Gooptu B and Fra AM: Aberrant disulphide bonding contributes to
the ER retention of alpha1-antitrypsin deficiency variants. Hum Mol
Genet. 25:642–650. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lockett AD: Alpha-1 antitrypsin
transcytosis and secretion. Methods Mol Biol. 1639:173–184. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lockett AD, Brown MB, Santos-Falcon N,
Rush NI, Oueini H, Oberle AJ, Bolanis E, Fragoso MA, Petrusca DN,
Serban KA, et al: Active trafficking of alpha 1 antitrypsin across
the lung endothelium. PLoS One. 9:e939792014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kim M, Cai Q and Oh Y: Therapeutic
potential of alpha-1 antitrypsin in human disease. Ann Pediatr
Endocrinol Metab. 23:131–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Schuster R, Motola-Kalay N, Baranovski BM,
Bar L, Tov N, Stein M, Lewis EC, Ayalon M and Sagiv Y: Distinct
anti-inflammatory properties of alpha1-antitrypsin and
corticosteroids reveal unique underlying mechanisms of action. Cell
Immunol. 356:1041772020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ostermann L, Maus R, Stolper J, Schütte L,
Katsarou K, Tumpara S, Pich A, Mueller C, Janciauskiene S, Welte T
and Maus UA: Alpha-1 antitrypsin deficiency impairs lung
antibacterial immunity in mice. JCI Insight. 6:e1408162021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Serban KA and Petrache I: alpha-1
antitrypsin and lung cell apoptosis. Ann Am Thorac Soc. 13 (Suppl
2):S146–S149. 2016.PubMed/NCBI
|
|
27
|
Han L, Wu X, Wang O, Luan X, Velander WH,
Aynardi M, Halstead ES, Bonavia AS, Jin R, Li G, et al: Mesenchymal
stromal cells and alpha-1 antitrypsin have a strong synergy in
modulating inflammation and its resolution. Theranostics.
13:2843–2862. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Baraldo S, Turato G, Lunardi F, Bazzan E,
Schiavon M, Ferrarotti I, Molena B, Cazzuffi R, Damin M, Balestro
E, et al: Immune activation in α1-antitrypsin-deficiency emphysema.
Beyond the protease-antiprotease paradigm. Am J Respir Crit Care
Med. 191:402–409. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jonigk D, Al-Omari M, Maegel L, Müller M,
Izykowski N, Hong J, Hong K, Kim SH, Dorsch M, Mahadeva R, et al:
Anti-inflammatory and immunomodulatory properties of α1-antitrypsin
without inhibition of elastase. Proc Natl Acad Sci USA.
110:15007–15012. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ehlers MR: Immune-modulating effects of
alpha-1 antitrypsin. Biol Chem. 395:1187–1193. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tawara I, Sun Y, Lewis EC, Toubai T, Evers
R, Nieves E, Azam T, Dinarello CA and Reddy P: Alpha-1-antitrypsin
monotherapy reduces graft-versus-host disease after experimental
allogeneic bone marrow transplantation. Proc Natl Acad Sci USA.
109:564–569. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Blas-García A and Apostolova N: Novel
therapeutic approaches to liver fibrosis based on targeting
oxidative stress. Antioxidants (Basel). 12:15672023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Feng Y, Xu J, Zhou Q, Wang R, Liu N, Wu Y,
Yuan H and Che H: Alpha-1 antitrypsin prevents the development of
preeclampsia through suppression of oxidative stress. Front
Physiol. 7:1762016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chapman KR, Chorostowska-Wynimko J,
Koczulla AR, Ferrarotti I and McElvaney NG: Alpha 1 antitrypsin to
treat lung disease in alpha 1 antitrypsin deficiency: Recent
developments and clinical implications. Int J Chron Obstruct Pulmon
Dis. 13:419–432. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Janciauskiene S and Welte T: Well-known
and less well-known functions of alpha-1 antitrypsin. its role in
chronic obstructive pulmonary disease and other disease
developments. Ann Am Thorac Soc. 13 (Suppl 4):S280–S288. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cosio MG, Bazzan E, Rigobello C, Tinè M,
Turato G, Baraldo S and Saetta M: Alpha-1 antitrypsin deficiency:
beyond the protease/antiprotease paradigm. Ann Am Thorac Soc. 13
(Suppl 4):S305–S310. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stockley RA: The multiple facets of
alpha-1-antitrypsin. Ann Transl Med. 3:1302015.PubMed/NCBI
|
|
38
|
Schwarz N, Tumpara S, Wrenger S, Ercetin
E, Hamacher J, Welte T and Janciauskiene S: Alpha1-antitrypsin
protects lung cancer cells from staurosporine-induced apoptosis:
The role of bacterial lipopolysaccharide. Sci Rep. 10:95632020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Meghadri SH, Martinez-Delgado B, Ostermann
L, Gomez-Mariano G, Perez-Luz S, Tumpara S, Wrenger S, DeLuca DS,
Maus UA, Welte T and Janciauskiene S: Loss of Serpina1 in mice
leads to altered gene expression in inflammatory and metabolic
pathways. Int J Mol Sci. 23:104252022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Stolk J, Tov N, Chapman KR, Fernandez P,
MacNee W, Hopkinson NS, Piitulainen E, Seersholm N, Vogelmeier CF,
Bals R, et al: Efficacy and safety of inhaled α1-antitrypsin in
patients with severe α1-antitrypsin deficiency and frequent
exacerbations of COPD. Eur Respir J. 54:19006732019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
McElvaney NG: Alpha-1 antitrypsin therapy
in cystic fibrosis and the lung disease associated with alpha-1
antitrypsin deficiency. Ann Am Thorac Soc. 13 (Suppl 2):S191–S196.
2016.PubMed/NCBI
|
|
42
|
Demir N, Erçen Diken Ö, Karabulut HG,
Karnak D and Kayacan O: Alpha-1 antitrypsin levels and
polymorphisms in interstitial lung diseases. Turk J Med Sci.
47:476–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Oriano M, Amati F, Gramegna A, De Soyza A,
Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F
and Aliberti S: Protease-antiprotease imbalance in bronchiectasis.
Int J Mol Sci. 22:59962021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Murphy MP, McEnery T, McQuillan K,
McElvaney OF, McElvaney OJ, Landers S, Coleman O, Bussayajirapong
A, Hawkins P, Henry M, et al: α1 Antitrypsin therapy
modulates the neutrophil membrane proteome and secretome. Eur
Respir J. 55:19016782020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ritzmann F, Chitirala P, Krüger N,
Hoffmann M, Zuo W, Lammert F, Smola S, Tov N, Alagem N, Lepper PM,
et al: Therapeutic application of alpha-1 antitrypsin in COVID-19.
Am J Respir Crit Care Med. 204:224–227. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang C, Keshavjee S and Liu M: Alpha-1
antitrypsin for COVID-19 treatment: Dual role in antiviral
infection and anti-inflammation. Front Pharmacol. 11:6153982020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li Y, Miao L, Yu M, Shi M, Wang Y, Yang J,
Xiao Y and Cai H: α1-Antitrypsin promotes lung adenocarcinoma
metastasis through upregulating fibronectin expression. Int J
Oncol. 50:1955–1964. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Khodayari N, Wang RL, Oshins R, Lu Y,
Millett M, Aranyos AM, Mostofizadeh S, Scindia Y, Flagg TO and
Brantly M: The mechanism of mitochondrial injury in alpha-1
antitrypsin deficiency mediated liver disease. Int J Mol Sci.
22:132552021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tanash HA and Piitulainen E: Liver disease
in adults with severe alpha-1-antitrypsin deficiency. J
Gastroenterol. 54:541–548. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Franciosi AN, Ralph J, O'Farrell NJ,
Buckley C, Gulmann C, O'Kane M, Carroll TP and McElvaney NG:
Alpha-1 antitrypsin deficiency-associated panniculitis. J Am Acad
Dermatol. 87:825–832. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang Q, Du J, Yu P, Bai B, Zhao Z, Wang S,
Zhu J, Feng Q, Gao Y, Zhao Q and Liu C: Hepatic steatosis depresses
alpha-1-antitrypsin levels in human and rat acute pancreatitis. Sci
Rep. 5:178332015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yu Y, Rubin AG, Gee S, Banker S and Kim
CN: Ulcerative panniculitis with fevers and pleural effusions: A
unique case of α1-antitrypsin deficiency. JAAD Case Rep. 1:1–2.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jedicke N, Struever N, Aggrawal N, Welte
T, Manns MP, Malek NP, Zender L, Janciauskiene S and Wuestefeld T:
α-1-antitrypsin inhibits acute liver failure in mice. Hepatology.
59:2299–2308. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Elshikha AS, Lu Y, Chen MJ, Akbar M,
Zeumer L, Ritter A, Elghamry H, Mahdi MA, Morel L and Song S: Alpha
1 antitrypsin inhibits dendritic cell activation and attenuates
nephritis in a mouse model of lupus. PLoS One. 11:e01565832016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pervakova MY, Emanuel VL, Titova ON, Lapin
SV, Mazurov VI, Belyaeva IB, Chudinov AL, Blinova TV and Surkova
EA: The diagnostic value of alpha-1-antitrypsin phenotype in
patients with granulomatosis with polyangiitis. Int J Rheumatol.
2016:78314102016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mota A, Sahebghadam Lotfi A, Jamshidi AR
and Najavand S: Alpha 1-antitrypsin activity is markedly decreased
in Wegener's granulomatosis. Rheumatol Int. 34:553–558. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mauro AG, Mezzaroma E, Marchetti C,
Narayan P, Del Buono MG, Capuano M, Prestamburgo A, Catapano S,
Salloum FN, Abbate A and Toldo S: A preclinical translational study
of the cardioprotective effects of plasma-derived alpha-1
anti-trypsin in acute myocardial infarction. J Cardiovasc
Pharmacol. 69:273–278. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Toldo S, Mauro AG, Marchetti C, Rose SW,
Mezzaroma E, Van Tassell BW, Kim S, Dinarello CA and Abbate A:
Recombinant human alpha-1 antitrypsin-Fc fusion protein reduces
mouse myocardial inflammatory injury after ischemia-reperfusion
independent of elastase inhibition. J Cardiovasc Pharmacol.
68:27–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lockett AD, Petrusca DN, Justice MJ,
Poirier C, Serban KA, Rush NI, Kamocka M, Predescu D, Predescu S
and Petrache I: Scavenger receptor class B, type I-mediated uptake
of A1AT by pulmonary endothelial cells. Am J Physiol Lung Cell Mol
Physiol. 309:L425–L434. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhou T, Huang Z, Zhu X, Sun X, Liu Y,
Cheng B, Li M, Liu Y, He C and Liu X: Alpha-1 antitrypsin
attenuates M1 microglia-mediated neuroinflammation in retinal
degeneration. Front Immunol. 9:12022018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ebrahimi T, Rust M, Kaiser SN, Slowik A,
Beyer C, Koczulla AR, Schulz JB, Habib P and Bach JP:
α1-Antitrypsin mitigates NLRP3-inflammasome activation in amyloid
β1-42-stimulated murine astrocytes. J Neuroinflammation.
15:2822018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Park SS, Rodriguez Ortega R, Agudelo CW,
Perez Perez J, Perez Gandara B, Garcia-Arcos I, McCarthy C and
Geraghty P: Therapeutic potential of alpha-1 antitrypsin in type 1
and type 2 diabetes mellitus. Medicina (Kaunas). 57:3972021.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fleixo-Lima G, Ventura H, Medini M, Bar L,
Strauss P and Lewis EC: Mechanistic evidence in support of
alpha1-antitrypsin as a therapeutic approach for type 1 diabetes. J
Diabetes Sci Technol. 8:1193–1203. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kalis M, Kumar R, Janciauskiene S, Salehi
A and Cilio CM: α 1-antitrypsin enhances insulin secretion and
prevents cytokine-mediated apoptosis in pancreatic β-cells. Islets.
2:185–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu W and Wang Y: Protective role of the
alpha-1-antitrypsin in intervertebral disc degeneration. J Orthop
Surg Res. 16:5162021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pérez-Holanda S, Blanco I, Menéndez M and
Rodrigo L: Serum concentration of alpha-1 antitrypsin is
significantly higher in colorectal cancer patients than in healthy
controls. BMC Cancer. 14:3552014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tountas Y, Sparos L, Theodoropoulos C and
Trichopoulos D: Alpha 1-antitrypsin and cancer of the pancreas.
Digestion. 31:37–40. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vasishta A, Baker PR, Preece PE, Wood RA
and Cuschieri A: Serum proteinase-like peptidase activities and
proteinase inhibitors in women with breast disease. Eur J Cancer
Clin Oncol. 20:197–202. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Warwas M, Gerber J and Pietkiewicz A:
Haptoglobin and proteinase inhibitors in the blood serum of women
with inflammatory, benign and neoplastic lesions of the ovary.
Neoplasma. 33:79–84. 1986.PubMed/NCBI
|
|
70
|
Janciauskiene S, Wrenger S, Günzel S,
Gründing AR, Golpon H and Welte T: Potential roles of acute phase
proteins in cancer: Why do cancer cells produce or take up
exogenous acute phase protein alpha1-antitrypsin? Front Oncol.
11:6220762021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hsu PI, Chen CH, Hsiao M, Wu DC, Lin CY,
Lai KH and Lu PJ: Diagnosis of gastric malignancy using gastric
juice alpha1-antitrypsin. Cancer Epidemiol Biomarkers Prev.
19:405–411. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu W, Juan WC, Liang CR, Yeoh KG, So J and
Chung MC: S100A9, GIF and AAT as potential combinatorial biomarkers
in gastric cancer diagnosis and prognosis. Proteomics Clin Appl.
6:152–162. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Geramizadeh B, Jowkar Z, Karami L,
Masoumpour M, Mehrabi S and Ghayoumi MA: Alpha-1 antitrypsin
deficiency in Iranian patients with chronic obstructive pulmonary
disease. Iran Red Crescent Med J. 15:e75082013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Matamala N, Lara B, Gomez-Mariano G,
Martínez S, Retana D, Fernandez T, Silvestre RA, Belmonte I,
Rodriguez-Frias F, Vilar M, et al: Characterization of novel
missense variants of SERPINA1 gene causing alpha-1 antitrypsin
deficiency. Am J Respir Cell Mol Biol. 58:706–716. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Foil KE: Variants of SERPINA1 and the
increasing complexity of testing for alpha-1 antitrypsin
deficiency. Ther Adv Chronic Dis (12 Suppl). 204062232110159542021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tsutsui Y, Dela Cruz R and Wintrode PL:
Folding mechanism of the metastable serpin α1-antitrypsin. Proc
Natl Acad Sci USA. 109:4467–4472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Marciniak SJ, Ordóñez A, Dickens JA,
Chambers JE, Patel V, Dominicus CS and Malzer E: New concepts in
alpha-1 antitrypsin deficiency disease mechanisms. Ann Am Thorac
Soc. 13 (Suppl 4):S289–S296. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Börner FR, Lechowicz U, Wrenger S,
Martinez-Delgado B, Olejnicka B, Welte T, Chorostowska-Wynimko J,
Kiehntopf M and Janciauskiene S: Plasma levels of
α1-antitrypsin-derived C-terminal peptides in PiMM and
PiZZ COPD patients. ERJ Open Res. 9:00329–2023. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fra AM, Gooptu B, Ferrarotti I, Miranda E,
Scabini R, Ronzoni R, Benini F, Corda L, Medicina D, Luisetti M and
Schiaffonati L: Three new alpha1-antitrypsin deficiency variants
help to define a C-terminal region regulating conformational change
and polymerization. PLoS One. 7:e384052012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Salahuddin P: Genetic variants of
alpha1-antitrypsin. Curr Protein Pept Sci. 11:101–117. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Karatas E and Bouchecareilh M: Alpha
1-antitrypsin deficiency: A disorder of proteostasis-mediated
protein folding and trafficking pathways. Int J Mol Sci.
21:14932020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Miranda E, Ferrarotti I, Berardelli R,
Laffranchi M, Cerea M, Gangemi F, Haq I, Ottaviani S, Lomas DA,
Irving JA and Fra A: The pathological Trento variant of
alpha-1-antitrypsin (E75V) shows nonclassical behaviour during
polymerization. FEBS J. 284:2110–2126. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Laffranchi M, Berardelli R, Ronzoni R,
Lomas DA and Fra A: Heteropolymerization of α-1-antitrypsin mutants
in cell models mimicking heterozygosity. Hum Mol Genet.
27:1785–1793. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Laffranchi M, Elliston ELK, Gangemi F,
Berardelli R, Lomas DA, Irving JA and Fra A: Characterisation of a
type II functionally-deficient variant of alpha-1-antitrypsin
discovered in the general population. PLoS One. 14:e02069552019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bergin DA, Reeves EP, Hurley K, Wolfe R,
Jameel R, Fitzgerald S and McElvaney NG: The circulating proteinase
inhibitor α-1 antitrypsin regulates neutrophil degranulation and
autoimmunity. Sci Transl Med. 6:217ra12014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hawkins P, McEnery T, Gabillard-Lefort C,
Bergin DA, Alfawaz B, Shutchaidat V, Meleady P, Henry M, Coleman O,
Murphy M, et al: In vitro and in vivo modulation of NADPH oxidase
activity and reactive oxygen species production in human
neutrophils by α1-antitrypsin. ERJ Open Res.
7:00234–2021. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Voynow JA and Shinbashi M: Neutrophil
elastase and chronic lung disease. Biomolecules. 11:10652021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Miravitlles M: Alpha-1-antitrypsin and
other proteinase inhibitors. Curr Opin Pharmacol. 12:309–314. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hurley K, Lacey N, O'Dwyer CA, Bergin DA,
McElvaney OJ, O'Brien ME, McElvaney OF, Reeves EP and McElvaney NG:
Alpha-1 antitrypsin augmentation therapy corrects accelerated
neutrophil apoptosis in deficient individuals. J Immunol.
193:3978–3991. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
O'Dwyer CA, O'Brien ME, Wormald MR, White
MM, Banville N, Hurley K, McCarthy C, McElvaney NG and Reeves EP:
The BLT1 inhibitory function of α-1 antitrypsin augmentation
therapy disrupts leukotriene B4 neutrophil signaling. J Immunol.
195:3628–3641. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
McCarthy C, Reeves EP and McElvaney NG:
The role of neutrophils in alpha-1 antitrypsin deficiency. Ann Am
Thorac Soc. 13 (Suppl 4):S297–S304. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fazleen A and Wilkinson T: The emerging
role of proteases in α1-antitrypsin deficiency and
beyond. ERJ Open Res. 7:00494–2021. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
O'Brien ME, Murray G, Gogoi D, Yusuf A,
McCarthy C, Wormald MR, Casey M, Gabillard-Lefort C, McElvaney NG
and Reeves EP: A review of alpha-1 antitrypsin binding partners for
immune regulation and potential therapeutic application. Int J Mol
Sci. 23:24412022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Joosten LA, Crişan TO, Azam T, Cleophas
MC, Koenders MI, van de Veerdonk FL, Netea MG, Kim S and Dinarello
CA: Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty
arthritis by reducing release and extracellular processing of IL-1β
and by the induction of endogenous IL-1Ra. Ann Rheum Dis.
75:1219–1227. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Agné A, Richter K, Padberg W,
Janciauskiene S and Grau V: Commercial α1-antitrypsin preparations
markedly differ in their potential to inhibit the ATP-induced
release of monocytic interleukin-1β. Pulm Pharmacol Ther.
68:1020202021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Siebers K, Fink B, Zakrzewicz A, Agné A,
Richter K, Konzok S, Hecker A, Zukunft S, Küllmar M, Klein J, et
al: Alpha-1 antitrypsin inhibits ATP-mediated release of
interleukin-1β via CD36 and nicotinic acetylcholine receptors.
Front Immunol. 9:8772018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bergin DA, Reeves EP, Meleady P, Henry M,
McElvaney OJ, Carroll TP, Condron C, Chotirmall SH, Clynes M,
O'Neill SJ and McElvaney NG: α-1 Antitrypsin regulates human
neutrophil chemotaxis induced by soluble immune complexes and IL-8.
J Clin Invest. 120:4236–4250. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee J, Lu Y, Oshins R, West J, Moneypenny
CG, Han K and Brantly ML: Alpha 1 antitrypsin-deficient macrophages
have impaired efferocytosis of apoptotic neutrophils. Front
Immunol. 11:5744102020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lockett AD, Kimani S, Ddungu G, Wrenger S,
Tuder RM, Janciauskiene SM and Petrache I:
α1-Antitrypsin modulates lung endothelial cell
inflammatory responses to TNF-α. Am J Respir Cell Mol Biol.
49:143–150. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhukovsky N, Silvano M, Filloux T,
Gonzalez S and Krause KH: Alpha-1 antitrypsin reduces disease
progression in a mouse model of charcot-marie-tooth type 1A: A role
for decreased inflammation and ADAM-17 inhibition. Int J Mol Sci.
23:74052022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Abecassis A, Schuster R, Shahaf G, Ozeri
E, Green R, Ochayon DE, Rider P and Lewis EC: α1-Antitrypsin
increases interleukin-1 receptor antagonist production during
pancreatic islet graft transplantation. Cell Mol Immunol.
11:377–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ozeri E, Mizrahi M, Shahaf G and Lewis EC:
α-1 antitrypsin promotes semimature, IL-10-producing and readily
migrating tolerogenic dendritic cells. J Immunol. 189:146–153.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang J, Sun Z, Gou W, Adams DB, Cui W,
Morgan KA, Strange C and Wang H: α-1 antitrypsin enhances islet
engraftment by suppression of instant blood-mediated inflammatory
reaction. Diabetes. 66:970–980. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mukherjee A, Hidvegi T, Araya P, Ewing M,
Stolz DB and Perlmutter DH: NFκB mitigates the pathological effects
of misfolded α1-antitrypsin by activating autophagy and an
integrated program of proteostasis mechanisms. Cell Death Differ.
26:455–469. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Pastore N, Blomenkamp K, Annunziata F,
Piccolo P, Mithbaokar P, Maria Sepe R, Vetrini F, Palmer D, Ng P,
Polishchuk E, et al: Gene transfer of master autophagy regulator
TFEB results in clearance of toxic protein and correction of
hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med.
5:397–412. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rivas M, Gupta G, Costanzo L, Ahmed H,
Wyman AE and Geraghty P: Senescence: Pathogenic driver in chronic
obstructive pulmonary disease. Medicina (Kaunas). 58:8172022.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Saferali A, Lee J, Sin DD, Rouhani FN,
Brantly ML and Sandford AJ: Longer telomere length in COPD patients
with α1-antitrypsin deficiency independent of lung function. PLoS
One. 9:e956002014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Escribano A, Pastor S, Reula A, Castillo
S, Vicente S, Sanz F, Casas F, Torres M, Fernández-Fabrellas E,
Codoñer-Franch P and Dasí F: Accelerated telomere attrition in
children and teenagers with α1-antitrypsin deficiency. Eur Respir
J. 48:350–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hurley K, Reeves EP, Carroll TP and
McElvaney NG: Tumor necrosis factor-α driven inflammation in
alpha-1 antitrypsin deficiency: A new model of pathogenesis and
treatment. Expert Rev Respir Med. 10:207–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li Z, Alam S, Wang J, Sandstrom CS,
Janciauskiene S and Mahadeva R: Oxidized {alpha}1-antitrypsin
stimulates the release of monocyte chemotactic protein-1 from lung
epithelial cells: Potential role in emphysema. Am J Physiol Lung
Cell Mol Physiol. 297:L388–L400. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Subramaniyam D, Glader P, von Wachenfeldt
K, Burneckiene J, Stevens T and Janciauskiene S: C-36 peptide, a
degradation product of alpha1-antitrypsin, modulates human monocyte
activation through LPS signaling pathways. Int J Biochem Cell Biol.
38:563–575. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Antonsson A and Persson JL: Induction of
apoptosis by staurosporine involves the inhibition of expression of
the major cell cycle proteins at the G(2)/m checkpoint accompanied
by alterations in Erk and Akt kinase activities. Anticancer Res.
29:2893–2898. 2009.PubMed/NCBI
|
|
113
|
Campos MA, Geraghty P, Holt G, Mendes E,
Newby PR, Ma S, Luna-Diaz LV, Turino GM and Stockley RA: The
biological effects of double-dose alpha-1 antitrypsin augmentation
therapy. A pilot clinical trial. Am J Respir Crit Care Med.
200:318–326. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hunt JM and Tuder R: Alpha 1 anti-trypsin:
One protein, many functions. Curr Mol Med. 12:827–835. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Berman R, Jiang D, Wu Q and Chu HW:
α1-Antitrypsin reduces rhinovirus infection in primary human airway
epithelial cells exposed to cigarette smoke. Int J Chron Obstruct
Pulmon Dis. 11:1279–1286. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mehta AJ, Thun GA, Imboden M, Ferrarotti
I, Keidel D, Künzli N, Kromhout H, Miedinger D, Phuleria H, Rochat
T, et al: Interactions between SERPINA1 PiMZ genotype, occupational
exposure and lung function decline. Occup Environ Med. 71:234–240.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wrześniak M, Kepinska M, Królik M and
Milnerowicz H: The influence of tobacco smoke on protein and metal
levels in the serum of women during pregnancy. PLoS One.
11:e01613422016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Pemberton PA, Kobayashi D, Wilk BJ,
Henstrand JM, Shapiro SD and Barr PJ: Inhaled recombinant alpha
1-antitrypsin ameliorates cigarette smoke-induced emphysema in the
mouse. COPD. 3:101–108. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Molloy K, Hersh CP, Morris VB, Carroll TP,
O'Connor CA, Lasky-Su JA, Greene CM, O'Neill SJ, Silverman EK and
McElvaney NG: Clarification of the risk of chronic obstructive
pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes.
Am J Respir Crit Care Med. 189:419–427. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Stearns K, Goldklang M, Xiao R, Zelonina
T, Blomenkamp K, Teckman J and D'Armiento JM: Knockdown of alpha-1
antitrypsin with antisense oligonucleotide does not exacerbate
smoke induced lung injury. PLoS One. 16:e02460402021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rangaraju M and Turner AM: Why is disease
penetration so variable in alpha-1 antitrypsin deficiency? The
contribution of environmental factors. Chronic Obstr Pulm Dis.
7:280–289. 2020.PubMed/NCBI
|
|
122
|
Churg A, Wang X, Wang RD, Meixner SC,
Pryzdial EL and Wright JL: Alpha1-antitrypsin suppresses TNF-alpha
and MMP-12 production by cigarette smoke-stimulated macrophages. Am
J Respir Cell Mol Biol. 37:144–151. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Thun GA, Ferrarotti I, Imboden M, Rochat
T, Gerbase M, Kronenberg F, Bridevaux PO, Zemp E, Zorzetto M,
Ottaviani S, et al: SERPINA1 PiZ and PiS heterozygotes and lung
function decline in the SAPALDIA cohort. PLoS One. 7:e427282012.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Khodayari N, Oshins R, Mehrad B, Lascano
JE, Qiang X, West JR, Holliday LS, Lee J, Wiesemann G, Eydgahi S
and Brantly M: Cigarette smoke exposed airway epithelial
cell-derived EVs promote pro-inflammatory macrophage activation in
alpha-1 antitrypsin deficiency. Respir Res. 23:2322022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Al Ashry HS and Strange C: COPD in
individuals with the PiMZ alpha-1 antitrypsin genotype. Eur Respir
Rev. 26:1700682017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Geraghty P, Eden E, Pillai M, Campos M,
McElvaney NG and Foronjy RF: α1-Antitrypsin activates protein
phosphatase 2A to counter lung inflammatory responses. Am J Respir
Crit Care Med. 190:1229–1242. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Rosen E, Fatanmi OO, Wise SY, Rao VA and
Singh VK: Gamma-tocotrienol, a radiation countermeasure, reverses
proteomic changes in serum following total-body gamma irradiation
in mice. Sci Rep. 12:33872022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Rosen E, Fatanmi OO, Wise SY, Rao VA and
Singh VK: Tocol prophylaxis for total-body irradiation: A proteomic
analysis in murine model. Health Phys. 119:12–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Rithidech KN, Honikel L, Rieger R, Xie W,
Fischer T and Simon SR: Protein-expression profiles in mouse
blood-plasma following acute whole-body exposure to (137)Cs gamma
rays. Int J Radiat Biol. 85:432–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zutler M, Quinlan PJ and Blanc PD:
Alpha-1-antitrypsin deficient man presenting with lung function
decline associated with dust exposure: A case report. J Med Case
Rep. 5:1542011. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Bolund AC, Miller MR, Sigsgaard T and
Schlünssen V: The effect of organic dust exposure on long-term
change in lung function: A systematic review and meta-analysis.
Occup Environ Med. 74:531–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liao SY, Lin X and Christiani DC:
Occupational exposures and longitudinal lung function decline. Am J
Ind Med. 58:14–20. 2015. View Article : Google Scholar : PubMed/NCBI
|