
Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)
- Authors:
- Ying Wu
- Fan Zhang
- Furong Du
- Juan Huang
- Shuqing Wei
-
Affiliations: Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China, Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China, Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China, Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China - Published online on: March 27, 2025 https://doi.org/10.3892/mmr.2025.13505
- Article Number: 140
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Qin T, Huang Y, Li Y, Chen G and Sun C: Drug screening model meets cancer organoid technology. Transl Oncol. 13:1008402020. View Article : Google Scholar : PubMed/NCBI | |
Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M and Desai J: Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J Immunother Cancer. 11:e0062902023. View Article : Google Scholar : PubMed/NCBI | |
Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T, Phat S, Myers DT, Zhong J, Igo P, et al: Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 8:600–615. 2018. View Article : Google Scholar : PubMed/NCBI | |
Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, et al: Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 28:2595–2605. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saito R, Kobayashi T, Kashima S, Matsumoto K and Ogawa O: Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol. 25:831–841. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R and Golub TR: Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 49:1567–1575. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X and Liu Y: Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 7:1682022. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, et al: Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv Sci (Weinh). 8:e21011762021. View Article : Google Scholar : PubMed/NCBI | |
Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CG, Szeglin BC, et al: Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res. 82:2298–2312. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seppälä TT, Zimmerman JW, Suri R, Zlomke H, Ivey GD, Szabolcs A, Shubert CR, Cameron JL, Burns WR, Lafaro KJ, et al: Precision medicine in pancreatic cancer: Patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response. Clin Cancer Res. 28:3296–3307. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang HM, Zhang CY, Peng KC, Chen ZX, Su JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, et al: Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med. 4:1009112023. View Article : Google Scholar : PubMed/NCBI | |
Drost J and Clevers H: Organoids in cancer research. Nat Rev Cancer. 18:407–418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilson HV: A new method by which sponges may be artificially reared. Science. 25:912–915. 1907. View Article : Google Scholar : PubMed/NCBI | |
Lindberg K, Brown ME, Chaves HV, Kenyon KR and Rheinwald JG: In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci. 34:2672–2679. 1993.PubMed/NCBI | |
Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R and De Luca M: Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 349:990–993. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Nam Y, Rim YA and Ju JH: Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep. 18:142–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Liu C, Cai X, Lu Y, Xu Y and Yu X: iPSCs derived from malignant tumor cells: Potential application for cancer research. Curr Stem Cell Res Ther. 11:444–450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Orqueda AJ, Giménez CA and Pereyra-Bonnet F: iPSCs: A minireview from bench to bed, including organoids and the crispr system. Stem Cells Int. 2016:59347822016. View Article : Google Scholar : PubMed/NCBI | |
Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 321:1218–1221. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kuratnik A and Giardina C: Intestinal organoids as tissue surrogates for toxicological and pharmacological studies. Biochem Pharmacol. 85:1721–1726. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T and Sasai Y: Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472:51–56. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, et al: Organoid cultures derived from patients with advanced prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al: Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al: Organoid models of human and mouse ductal pancreatic cancer. Cell. 160:324–338. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters PJ and Clevers H: In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148:126–136.e6. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, Couce M, McLendon RE, Sloan AE and Rich JN: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76:2465–2477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 23:1424–1435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Girda E, Huang EC, Leiserowitz GS and Smith LH: The use of endometrial cancer patient-derived organoid culture for drug sensitivity testing is feasible. Int J Gynecol Cancer. 27:1701–1707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, Kasagi Y, Kikuchi O, Tanaka K, Giroux V, et al: Three-Dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 7:73–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, Zhao M, Takahashi H and Myers JN: Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol. 87:49–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost N, Begthel H, et al: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 25:838–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI | |
Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, Costantini M, Flex E, Ciolfi A, Pizzi S, et al: Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 10:2012019. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Tan Y, Li Z, Li W, Yu L, Chen W, Liu Y, Liu L, Guo L, Huang W and Zhao Y: Organoid cultures derived from patients with papillary thyroid cancer. J Clin Endocrinol Metab. 106:1410–1426. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wörsdörfer P, Takashi I, Asahina I, Sumita Y and Ergün S: Do not keep it simple: Recent advances in the generation of complex organoids. J Neural Transm (Vienna). 127:1569–1577. 2020. View Article : Google Scholar : PubMed/NCBI | |
Demyan L, Habowski AN, Plenker D, King DA, Standring OJ, Tsang C, St Surin L, Rishi A, Crawford JM, Boyd J, et al: Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy. Ann Surg. 276:450–462. 2022. View Article : Google Scholar : PubMed/NCBI | |
Beato F, Reverón D, Dezsi KB, Ortiz A, Johnson JO, Chen DT, Ali K, Yoder SJ, Jeong D, Malafa M, et al: Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab Invest. 101:204–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Peng Y, Li H and Chen W: Organ-on-a-Chip: A new paradigm for drug development. Trends Pharmacol Sci. 42:119–133. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kutluk H, Bastounis EE and Constantinou I: Integration of extracellular matrices into organ-on-chip systems. Adv Healthc Mater. 12:e22032562023. View Article : Google Scholar : PubMed/NCBI | |
Demers CJ, Soundararajan P, Chennampally P, Cox GA, Briscoe J, Collins SD and Smith RL: Development-on-chip: In vitro neural tube patterning with a microfluidic device. Development. 143:1884–1892. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang L, Zhu Y and Qin J: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip. 18:851–860. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC and George SC: Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 18:3687–3702. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garreta E, Kamm RD, de Sousa Lopes SM, Lancaster MA, Weiss R, Trepat X, Hyun I and Montserrat N: Rethinking organoid technology through bioengineering. Nat Mater. 20:145–155. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH, Kim YG and Cho SW: Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater. 28:18019542018. View Article : Google Scholar | |
Miller CP, Tsuchida C, Zheng Y, Himmelfarb J and Akilesh S: A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia. 20:610–620. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A and Bishehsari F: Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst Nanoeng. 8:362022. View Article : Google Scholar : PubMed/NCBI | |
Picollet-D'hahan N, Zuchowska A, Lemeunier I and Le Gac S: Multiorgan-on-a-Chip: A systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39:788–810. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mandrycky C, Wang Z, Kim K and Kim DH: 3D bioprinting for engineering complex tissues. Biotechnol Adv. 34:422–434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK and Ozbolat IT: Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnol Adv. 36:1481–1504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Luo Y, Ma Y, Wang P and Yao R: Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 42:648–663. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Feng L, Wu J, Zhu F, Tan Z and Yao R: Bioprinting of stem cells: Interplay of bioprinting process, bioinks, and stem cell properties. ACS Biomater Sci Eng. 4:3108–3124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gaspar VM, Lavrador P, Borges J, Oliveira MB and Mano JF: Advanced bottom-up engineering of living architectures. Adv Mater. 32:e19039752020. View Article : Google Scholar : PubMed/NCBI | |
Yoon WH, Lee HR, Kim S, Kim E, Ku JH, Shin K and Jung S: Use of inkjet-printed single cells to quantify intratumoral heterogeneity. Biofabrication. 12:0350302020. View Article : Google Scholar : PubMed/NCBI | |
Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC and Bruno RD: 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 95:201–213. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reid JA, Palmer XL, Mollica PA, Northam N, Sachs PC and Bruno RD: A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep. 9:74662019. View Article : Google Scholar : PubMed/NCBI | |
Maloney E, Clark C, Sivakumar H, Yoo K, Aleman J, Rajan SAP, Forsythe S, Mazzocchi A, Laxton AW, Tatter SB, et al: Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines (Basel). 11:2082020. View Article : Google Scholar : PubMed/NCBI | |
Mao S, He J, Zhao Y, Liu T, Xie F, Yang H, Mao Y, Pang Y and Sun W: Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: Establishment, evaluation and anti-cancer drug testing. Biofabrication. 12:0450142020. View Article : Google Scholar : PubMed/NCBI | |
Bernal PN, Bouwmeester M, Madrid-Wolff J, Falandt M, Florczak S, Rodriguez NG, Li Y, Größbacher G, Samsom RA, van Wolferen M, et al: Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater. 34:e21100542022. View Article : Google Scholar : PubMed/NCBI | |
Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Talbot NC and Caperna TJ: Proteome array identification of bioactive soluble proteins/peptides in Matrigel: Relevance to stem cell responses. Cytotechnology. 67:873–883. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aisenbrey EA and Murphy WL: Synthetic alternatives to Matrigel. Nat Rev Mater. 5:539–551. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ng S, Tan WJ, Pek MMX, Tan MH and Kurisawa M: Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 219:1194002019. View Article : Google Scholar : PubMed/NCBI | |
Below CR, Kelly J, Brown A, Humphries JD, Hutton C, Xu J, Lee BY, Cintas C, Zhang X, Hernandez-Gordillo V, et al: A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat Mater. 21:110–119. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Min S, Choi YS, Jo SH, Jung JH, Han K, Kim J, An S, Ji YW, Kim YG and Cho SW: Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun. 13:16922022. View Article : Google Scholar : PubMed/NCBI | |
Komor AC, Badran AH and Liu DR: CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell. 169:5592017. View Article : Google Scholar : PubMed/NCBI | |
Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, et al: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6:914–929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharma G, Sharma AR, Bhattacharya M, Lee SS and Chakraborty C: CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 29:571–586. 2021. View Article : Google Scholar : PubMed/NCBI | |
Artegiani B, van Voorthuijsen L, Lindeboom RGH, Seinstra D, Heo I, Tapia P, López-Iglesias C, Postrach D, Dayton T, Oka R, et al: Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell. 24:927–943.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T and Sato T: Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 21:256–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
Erlangga Z, Wolff K, Poth T, Peltzer A, Nahnsen S, Spielberg S, Timrott K, Woller N, Kühnel F, Manns MP, et al: Potent antitumor activity of liposomal irinotecan in an organoid- and CRISPR-Cas9-based murine model of gallbladder cancer. Cancers (Basel). 11:19042019. View Article : Google Scholar : PubMed/NCBI | |
Dekkers JF, Whittle JR, Vaillant F, Chen HR, Dawson C, Liu K, Geurts MH, Herold MJ, Clevers H, Lindeman GJ and Visvader JE: Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst. 112:540–544. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Rindtorff N, Betge J, Ebert MP and Boutros M: CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. 55:106–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, Schuman S, Van Veen JE, Murphy B, Hackett CS, et al: Transposon mutagenesis reveals RBMS3 silencing as a promoter of malignant progression of BRAFV600E-driven lung tumorigenesis. Cancer Res. 82:4261–4273. 2022. View Article : Google Scholar : PubMed/NCBI | |
Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, et al: CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA. 116:15635–15644. 2019. View Article : Google Scholar : PubMed/NCBI | |
Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore I, de Sousa Lopes SC, van Zon J, Tans S and Clevers H: Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 22:321–331. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hendriks D, Artegiani B, Hu H, de Sousa Lopes SC and Clevers H: Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc. 16:182–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, et al: A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11:1562–1581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L and Cao H: Organoids: Development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (2020). 5:e7352024. View Article : Google Scholar : PubMed/NCBI | |
Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC and Ewald AJ: A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. Cancer Res. 80:4288–4301. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Taftaf R, Kawaguchi M, Chang YF, Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB, et al: Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 9:96–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boos SL, Loevenich LP, Vosberg S, Engleitner T, Öllinger R, Kumbrink J, Rokavec M, Michl M, Greif PA, Jung A, et al: Disease modeling on tumor organoids implicates AURKA as a therapeutic target in liver metastatic colorectal cancer. Cell Mol Gastroenterol Hepatol. 13:517–540. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Botet A, Quandt E, Masip N, Escribá R, Novellasdemunt L, Gasa L, Li VSW, Raya Á, Clotet J and Ribeiro MPC: Atypical cyclin P regulates cancer cell stemness through activation of the WNT pathway. Cell Oncol (Dordr). 44:1273–1286. 2021. View Article : Google Scholar : PubMed/NCBI | |
Harada K, Sakamoto N, Ukai S, Yamamoto Y, Pham QT, Taniyama D, Honma R, Maruyama R, Takashima T, Ota H, et al: Establishment of oxaliplatin-resistant gastric cancer organoids: Importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer. 24:1264–1277. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, et al: Extracellular matrix in synthetic hydrogel-based prostate cancer organoids regulate therapeutic Response to EZH2 and DRD2 Inhibitors. Adv Mater. 34:e21000962022. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-Derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang GH, et al: Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8:1112–1129. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ji S, Feng L, Fu Z, Wu G, Wu Y, Lin Y, Lu D, Song Y, Cui P, Yang Z, et al: Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med. 15:eadg33582023. View Article : Google Scholar : PubMed/NCBI | |
Jensen LH, Rogatto SR, Lindebjerg J, Havelund B, Abildgaard C, do Canto LM, Vagn-Hansen C, Dam C, Rafaelsen S and Hansen TF: Precision medicine applied to metastatic colorectal cancer using tumor-derived organoids and in-vitro sensitivity testing: A phase 2, single-center, open-label, and non-comparative study. J Exp Clin Cancer Res. 42:1152023. View Article : Google Scholar : PubMed/NCBI | |
Minoli M, Cantore T, Hanhart D, Kiener M, Fedrizzi T, La Manna F, Karkampouna S, Chouvardas P, Genitsch V, Rodriguez-Calero A, et al: Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun. 14:22142023. View Article : Google Scholar : PubMed/NCBI | |
Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid Modeling of the Tumor Immune Microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bozkus CC and Bhardwaj N: Tumor organoid-originated biomarkers predict immune response to PD-1 blockade. Cancer Cell. 39:1187–1189. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Xie S, Gray GK, Dezfulian MH, Li W, Huang L, Akshinthala D, Ferrer E, Conahan C, Perea Del Pino S, et al: Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J Immunother Cancer. 9:e0032132021. View Article : Google Scholar : PubMed/NCBI | |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J, Miller L, Levine E, Triozzi P and Skardal A: Model of patient-specific immune-enhanced organoids for immunotherapy screening: Feasibility study. Ann Surg Oncol. 27:1956–1967. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kryeziu K, Moosavi SH, Bergsland CH, Guren MG, Eide PW, Totland MZ, Lassen K, Abildgaard A, Nesbakken A, Sveen A and Lothe RA: Increased sensitivity to SMAC mimetic LCL161 identified by longitudinal ex vivo pharmacogenomics of recurrent, KRAS mutated rectal cancer liver metastases. J Transl Med. 19:3842021. View Article : Google Scholar : PubMed/NCBI | |
Choi YJ, Lee H, Kim DS, Kim DH, Kang MH, Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, et al: Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol. 907:1742982021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Van der Jeught K, Fang Y, Yu T, Li Y, Ao Z, Liu S, Zhang L, Yang Y, Eyvani H, et al: An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng. 5:1320–1335. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cho K, Ro SW, Lee HW, Moon H, Han S, Kim HR, Ahn SH, Park JY and Kim DY: YAP/TAZ suppress drug penetration into hepatocellular carcinoma through stromal activation. Hepatology. 74:2605–2621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grebenyuk S and Ranga A: Engineering organoid vascularization. Front Bioeng Biotechnol. 7:392019. View Article : Google Scholar : PubMed/NCBI | |
Strobel HA, Moss SM and Hoying JB: Vascularized tissue organoids. Bioengineering (Basel). 10:1242023. View Article : Google Scholar : PubMed/NCBI | |
Bhat SM, Badiger VA, Vasishta S, Chakraborty J, Prasad S, Ghosh S and Joshi MB: 3D tumor angiogenesis models: Recent advances and challenges. J Cancer Res Clin Oncol. 147:3477–3494. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wörsdörfer P, Dalda N, Kern A, Krüger S, Wagner N, Kwok CK, Henke E and Ergün S: Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep. 9:156632019. View Article : Google Scholar : PubMed/NCBI | |
Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC and George SC: Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 18:3687–3702. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazio C, Casale C, Imparato G, Urciuolo F and Netti PA: Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater. 73:236–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M, Takigawa-Imamura H, Kotera H, Nishiyama K, Miura T and Yokokawa R: Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb). 9:506–518. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grönholm M, Feodoroff M, Antignani G, Martins B, Hamdan F and Cerullo V: Patient-Derived organoids for precision cancer immunotherapy. Cancer Res. 81:3149–3155. 2021. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, Rane L, Xie S, Verbeke C, Dodoo E, Del Chiaro M, et al: Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother. 39:81–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Almeqdadi M, Mana MD, Roper J and Yilmaz ÖH: Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol. 317:C405–C419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vazquez-Armendariz AI and Tata PR: Recent advances in lung organoid development and applications in disease modeling. J Clin Invest. 133:e1705002023. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 26:1162–1174. 2020. View Article : Google Scholar : PubMed/NCBI |