Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)

  • Authors:
    • Ying Wu
    • Fan Zhang
    • Furong Du
    • Juan Huang
    • Shuqing Wei
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China, Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China, Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China, Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 140
    |
    Published online on: March 27, 2025
       https://doi.org/10.3892/mmr.2025.13505
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research. 
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Liu C, Qin T, Huang Y, Li Y, Chen G and Sun C: Drug screening model meets cancer organoid technology. Transl Oncol. 13:1008402020. View Article : Google Scholar : PubMed/NCBI

3 

Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M and Desai J: Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J Immunother Cancer. 11:e0062902023. View Article : Google Scholar : PubMed/NCBI

4 

Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T, Phat S, Myers DT, Zhong J, Igo P, et al: Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 8:600–615. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, et al: Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 28:2595–2605. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Saito R, Kobayashi T, Kashima S, Matsumoto K and Ogawa O: Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol. 25:831–841. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R and Golub TR: Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 49:1567–1575. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X and Liu Y: Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 7:1682022. View Article : Google Scholar : PubMed/NCBI

9 

Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, et al: Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv Sci (Weinh). 8:e21011762021. View Article : Google Scholar : PubMed/NCBI

10 

Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CG, Szeglin BC, et al: Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res. 82:2298–2312. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Seppälä TT, Zimmerman JW, Suri R, Zlomke H, Ivey GD, Szabolcs A, Shubert CR, Cameron JL, Burns WR, Lafaro KJ, et al: Precision medicine in pancreatic cancer: Patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response. Clin Cancer Res. 28:3296–3307. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Wang HM, Zhang CY, Peng KC, Chen ZX, Su JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, et al: Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med. 4:1009112023. View Article : Google Scholar : PubMed/NCBI

13 

Drost J and Clevers H: Organoids in cancer research. Nat Rev Cancer. 18:407–418. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Wilson HV: A new method by which sponges may be artificially reared. Science. 25:912–915. 1907. View Article : Google Scholar : PubMed/NCBI

15 

Lindberg K, Brown ME, Chaves HV, Kenyon KR and Rheinwald JG: In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci. 34:2672–2679. 1993.PubMed/NCBI

16 

Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R and De Luca M: Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 349:990–993. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Kim JY, Nam Y, Rim YA and Ju JH: Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep. 18:142–154. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Cheng H, Liu C, Cai X, Lu Y, Xu Y and Yu X: iPSCs derived from malignant tumor cells: Potential application for cancer research. Curr Stem Cell Res Ther. 11:444–450. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Orqueda AJ, Giménez CA and Pereyra-Bonnet F: iPSCs: A minireview from bench to bed, including organoids and the crispr system. Stem Cells Int. 2016:59347822016. View Article : Google Scholar : PubMed/NCBI

20 

Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 321:1218–1221. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Kuratnik A and Giardina C: Intestinal organoids as tissue surrogates for toxicological and pharmacological studies. Biochem Pharmacol. 85:1721–1726. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T and Sasai Y: Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472:51–56. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, et al: Organoid cultures derived from patients with advanced prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al: Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al: Organoid models of human and mouse ductal pancreatic cancer. Cell. 160:324–338. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters PJ and Clevers H: In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148:126–136.e6. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, Couce M, McLendon RE, Sloan AE and Rich JN: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76:2465–2477. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 23:1424–1435. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Girda E, Huang EC, Leiserowitz GS and Smith LH: The use of endometrial cancer patient-derived organoid culture for drug sensitivity testing is feasible. Int J Gynecol Cancer. 27:1701–1707. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, Kasagi Y, Kikuchi O, Tanaka K, Giroux V, et al: Three-Dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 7:73–91. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, Zhao M, Takahashi H and Myers JN: Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol. 87:49–57. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost N, Begthel H, et al: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 25:838–849. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI

38 

Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, Costantini M, Flex E, Ciolfi A, Pizzi S, et al: Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 10:2012019. View Article : Google Scholar : PubMed/NCBI

39 

Chen D, Tan Y, Li Z, Li W, Yu L, Chen W, Liu Y, Liu L, Guo L, Huang W and Zhao Y: Organoid cultures derived from patients with papillary thyroid cancer. J Clin Endocrinol Metab. 106:1410–1426. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Wörsdörfer P, Takashi I, Asahina I, Sumita Y and Ergün S: Do not keep it simple: Recent advances in the generation of complex organoids. J Neural Transm (Vienna). 127:1569–1577. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Demyan L, Habowski AN, Plenker D, King DA, Standring OJ, Tsang C, St Surin L, Rishi A, Crawford JM, Boyd J, et al: Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy. Ann Surg. 276:450–462. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Beato F, Reverón D, Dezsi KB, Ortiz A, Johnson JO, Chen DT, Ali K, Yoder SJ, Jeong D, Malafa M, et al: Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab Invest. 101:204–217. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Ma C, Peng Y, Li H and Chen W: Organ-on-a-Chip: A new paradigm for drug development. Trends Pharmacol Sci. 42:119–133. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Kutluk H, Bastounis EE and Constantinou I: Integration of extracellular matrices into organ-on-chip systems. Adv Healthc Mater. 12:e22032562023. View Article : Google Scholar : PubMed/NCBI

45 

Demers CJ, Soundararajan P, Chennampally P, Cox GA, Briscoe J, Collins SD and Smith RL: Development-on-chip: In vitro neural tube patterning with a microfluidic device. Development. 143:1884–1892. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Wang Y, Wang L, Zhu Y and Qin J: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip. 18:851–860. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC and George SC: Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 18:3687–3702. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Garreta E, Kamm RD, de Sousa Lopes SM, Lancaster MA, Weiss R, Trepat X, Hyun I and Montserrat N: Rethinking organoid technology through bioengineering. Nat Mater. 20:145–155. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH, Kim YG and Cho SW: Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater. 28:18019542018. View Article : Google Scholar

50 

Miller CP, Tsuchida C, Zheng Y, Himmelfarb J and Akilesh S: A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia. 20:610–620. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A and Bishehsari F: Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst Nanoeng. 8:362022. View Article : Google Scholar : PubMed/NCBI

52 

Picollet-D'hahan N, Zuchowska A, Lemeunier I and Le Gac S: Multiorgan-on-a-Chip: A systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39:788–810. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Mandrycky C, Wang Z, Kim K and Kim DH: 3D bioprinting for engineering complex tissues. Biotechnol Adv. 34:422–434. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK and Ozbolat IT: Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnol Adv. 36:1481–1504. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Wang X, Luo Y, Ma Y, Wang P and Yao R: Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 42:648–663. 2024. View Article : Google Scholar : PubMed/NCBI

56 

Ding S, Feng L, Wu J, Zhu F, Tan Z and Yao R: Bioprinting of stem cells: Interplay of bioprinting process, bioinks, and stem cell properties. ACS Biomater Sci Eng. 4:3108–3124. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Gaspar VM, Lavrador P, Borges J, Oliveira MB and Mano JF: Advanced bottom-up engineering of living architectures. Adv Mater. 32:e19039752020. View Article : Google Scholar : PubMed/NCBI

58 

Yoon WH, Lee HR, Kim S, Kim E, Ku JH, Shin K and Jung S: Use of inkjet-printed single cells to quantify intratumoral heterogeneity. Biofabrication. 12:0350302020. View Article : Google Scholar : PubMed/NCBI

59 

Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC and Bruno RD: 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 95:201–213. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Reid JA, Palmer XL, Mollica PA, Northam N, Sachs PC and Bruno RD: A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep. 9:74662019. View Article : Google Scholar : PubMed/NCBI

61 

Maloney E, Clark C, Sivakumar H, Yoo K, Aleman J, Rajan SAP, Forsythe S, Mazzocchi A, Laxton AW, Tatter SB, et al: Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines (Basel). 11:2082020. View Article : Google Scholar : PubMed/NCBI

62 

Mao S, He J, Zhao Y, Liu T, Xie F, Yang H, Mao Y, Pang Y and Sun W: Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: Establishment, evaluation and anti-cancer drug testing. Biofabrication. 12:0450142020. View Article : Google Scholar : PubMed/NCBI

63 

Bernal PN, Bouwmeester M, Madrid-Wolff J, Falandt M, Florczak S, Rodriguez NG, Li Y, Größbacher G, Samsom RA, van Wolferen M, et al: Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater. 34:e21100542022. View Article : Google Scholar : PubMed/NCBI

64 

Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Talbot NC and Caperna TJ: Proteome array identification of bioactive soluble proteins/peptides in Matrigel: Relevance to stem cell responses. Cytotechnology. 67:873–883. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Aisenbrey EA and Murphy WL: Synthetic alternatives to Matrigel. Nat Rev Mater. 5:539–551. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Ng S, Tan WJ, Pek MMX, Tan MH and Kurisawa M: Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 219:1194002019. View Article : Google Scholar : PubMed/NCBI

68 

Below CR, Kelly J, Brown A, Humphries JD, Hutton C, Xu J, Lee BY, Cintas C, Zhang X, Hernandez-Gordillo V, et al: A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat Mater. 21:110–119. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Kim S, Min S, Choi YS, Jo SH, Jung JH, Han K, Kim J, An S, Ji YW, Kim YG and Cho SW: Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun. 13:16922022. View Article : Google Scholar : PubMed/NCBI

70 

Komor AC, Badran AH and Liu DR: CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell. 169:5592017. View Article : Google Scholar : PubMed/NCBI

71 

Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, et al: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6:914–929. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Sharma G, Sharma AR, Bhattacharya M, Lee SS and Chakraborty C: CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 29:571–586. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Artegiani B, van Voorthuijsen L, Lindeboom RGH, Seinstra D, Heo I, Tapia P, López-Iglesias C, Postrach D, Dayton T, Oka R, et al: Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell. 24:927–943.e6. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T and Sato T: Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 21:256–262. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Erlangga Z, Wolff K, Poth T, Peltzer A, Nahnsen S, Spielberg S, Timrott K, Woller N, Kühnel F, Manns MP, et al: Potent antitumor activity of liposomal irinotecan in an organoid- and CRISPR-Cas9-based murine model of gallbladder cancer. Cancers (Basel). 11:19042019. View Article : Google Scholar : PubMed/NCBI

76 

Dekkers JF, Whittle JR, Vaillant F, Chen HR, Dawson C, Liu K, Geurts MH, Herold MJ, Clevers H, Lindeman GJ and Visvader JE: Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst. 112:540–544. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Zhan T, Rindtorff N, Betge J, Ebert MP and Boutros M: CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. 55:106–119. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, Schuman S, Van Veen JE, Murphy B, Hackett CS, et al: Transposon mutagenesis reveals RBMS3 silencing as a promoter of malignant progression of BRAFV600E-driven lung tumorigenesis. Cancer Res. 82:4261–4273. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, et al: CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA. 116:15635–15644. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore I, de Sousa Lopes SC, van Zon J, Tans S and Clevers H: Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 22:321–331. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Hendriks D, Artegiani B, Hu H, de Sousa Lopes SC and Clevers H: Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc. 16:182–217. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, et al: A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11:1562–1581. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L and Cao H: Organoids: Development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (2020). 5:e7352024. View Article : Google Scholar : PubMed/NCBI

84 

Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC and Ewald AJ: A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. Cancer Res. 80:4288–4301. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Liu X, Taftaf R, Kawaguchi M, Chang YF, Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB, et al: Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 9:96–113. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Boos SL, Loevenich LP, Vosberg S, Engleitner T, Öllinger R, Kumbrink J, Rokavec M, Michl M, Greif PA, Jung A, et al: Disease modeling on tumor organoids implicates AURKA as a therapeutic target in liver metastatic colorectal cancer. Cell Mol Gastroenterol Hepatol. 13:517–540. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Sánchez-Botet A, Quandt E, Masip N, Escribá R, Novellasdemunt L, Gasa L, Li VSW, Raya Á, Clotet J and Ribeiro MPC: Atypical cyclin P regulates cancer cell stemness through activation of the WNT pathway. Cell Oncol (Dordr). 44:1273–1286. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Harada K, Sakamoto N, Ukai S, Yamamoto Y, Pham QT, Taniyama D, Honma R, Maruyama R, Takashima T, Ota H, et al: Establishment of oxaliplatin-resistant gastric cancer organoids: Importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer. 24:1264–1277. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, et al: Extracellular matrix in synthetic hydrogel-based prostate cancer organoids regulate therapeutic Response to EZH2 and DRD2 Inhibitors. Adv Mater. 34:e21000962022. View Article : Google Scholar : PubMed/NCBI

91 

Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-Derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang GH, et al: Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8:1112–1129. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Ji S, Feng L, Fu Z, Wu G, Wu Y, Lin Y, Lu D, Song Y, Cui P, Yang Z, et al: Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med. 15:eadg33582023. View Article : Google Scholar : PubMed/NCBI

96 

Jensen LH, Rogatto SR, Lindebjerg J, Havelund B, Abildgaard C, do Canto LM, Vagn-Hansen C, Dam C, Rafaelsen S and Hansen TF: Precision medicine applied to metastatic colorectal cancer using tumor-derived organoids and in-vitro sensitivity testing: A phase 2, single-center, open-label, and non-comparative study. J Exp Clin Cancer Res. 42:1152023. View Article : Google Scholar : PubMed/NCBI

97 

Minoli M, Cantore T, Hanhart D, Kiener M, Fedrizzi T, La Manna F, Karkampouna S, Chouvardas P, Genitsch V, Rodriguez-Calero A, et al: Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun. 14:22142023. View Article : Google Scholar : PubMed/NCBI

98 

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid Modeling of the Tumor Immune Microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Bozkus CC and Bhardwaj N: Tumor organoid-originated biomarkers predict immune response to PD-1 blockade. Cancer Cell. 39:1187–1189. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Meng Q, Xie S, Gray GK, Dezfulian MH, Li W, Huang L, Akshinthala D, Ferrer E, Conahan C, Perea Del Pino S, et al: Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J Immunother Cancer. 9:e0032132021. View Article : Google Scholar : PubMed/NCBI

102 

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J, Miller L, Levine E, Triozzi P and Skardal A: Model of patient-specific immune-enhanced organoids for immunotherapy screening: Feasibility study. Ann Surg Oncol. 27:1956–1967. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Kryeziu K, Moosavi SH, Bergsland CH, Guren MG, Eide PW, Totland MZ, Lassen K, Abildgaard A, Nesbakken A, Sveen A and Lothe RA: Increased sensitivity to SMAC mimetic LCL161 identified by longitudinal ex vivo pharmacogenomics of recurrent, KRAS mutated rectal cancer liver metastases. J Transl Med. 19:3842021. View Article : Google Scholar : PubMed/NCBI

105 

Choi YJ, Lee H, Kim DS, Kim DH, Kang MH, Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, et al: Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol. 907:1742982021. View Article : Google Scholar : PubMed/NCBI

106 

Zhou Z, Van der Jeught K, Fang Y, Yu T, Li Y, Ao Z, Liu S, Zhang L, Yang Y, Eyvani H, et al: An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng. 5:1320–1335. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Cho K, Ro SW, Lee HW, Moon H, Han S, Kim HR, Ahn SH, Park JY and Kim DY: YAP/TAZ suppress drug penetration into hepatocellular carcinoma through stromal activation. Hepatology. 74:2605–2621. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Grebenyuk S and Ranga A: Engineering organoid vascularization. Front Bioeng Biotechnol. 7:392019. View Article : Google Scholar : PubMed/NCBI

109 

Strobel HA, Moss SM and Hoying JB: Vascularized tissue organoids. Bioengineering (Basel). 10:1242023. View Article : Google Scholar : PubMed/NCBI

110 

Bhat SM, Badiger VA, Vasishta S, Chakraborty J, Prasad S, Ghosh S and Joshi MB: 3D tumor angiogenesis models: Recent advances and challenges. J Cancer Res Clin Oncol. 147:3477–3494. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Wörsdörfer P, Dalda N, Kern A, Krüger S, Wagner N, Kwok CK, Henke E and Ergün S: Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep. 9:156632019. View Article : Google Scholar : PubMed/NCBI

112 

Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC and George SC: Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 18:3687–3702. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Mazio C, Casale C, Imparato G, Urciuolo F and Netti PA: Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater. 73:236–249. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M, Takigawa-Imamura H, Kotera H, Nishiyama K, Miura T and Yokokawa R: Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb). 9:506–518. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Grönholm M, Feodoroff M, Antignani G, Martins B, Hamdan F and Cerullo V: Patient-Derived organoids for precision cancer immunotherapy. Cancer Res. 81:3149–3155. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, Rane L, Xie S, Verbeke C, Dodoo E, Del Chiaro M, et al: Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother. 39:81–89. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Almeqdadi M, Mana MD, Roper J and Yilmaz ÖH: Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol. 317:C405–C419. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Vazquez-Armendariz AI and Tata PR: Recent advances in lung organoid development and applications in disease modeling. J Clin Invest. 133:e1705002023. View Article : Google Scholar : PubMed/NCBI

119 

Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 26:1162–1174. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu Y, Zhang F, Du F, Huang J and Wei S: Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 31: 140, 2025.
APA
Wu, Y., Zhang, F., Du, F., Huang, J., & Wei, S. (2025). Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Molecular Medicine Reports, 31, 140. https://doi.org/10.3892/mmr.2025.13505
MLA
Wu, Y., Zhang, F., Du, F., Huang, J., Wei, S."Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)". Molecular Medicine Reports 31.6 (2025): 140.
Chicago
Wu, Y., Zhang, F., Du, F., Huang, J., Wei, S."Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)". Molecular Medicine Reports 31, no. 6 (2025): 140. https://doi.org/10.3892/mmr.2025.13505
Copy and paste a formatted citation
x
Spandidos Publications style
Wu Y, Zhang F, Du F, Huang J and Wei S: Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 31: 140, 2025.
APA
Wu, Y., Zhang, F., Du, F., Huang, J., & Wei, S. (2025). Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Molecular Medicine Reports, 31, 140. https://doi.org/10.3892/mmr.2025.13505
MLA
Wu, Y., Zhang, F., Du, F., Huang, J., Wei, S."Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)". Molecular Medicine Reports 31.6 (2025): 140.
Chicago
Wu, Y., Zhang, F., Du, F., Huang, J., Wei, S."Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review)". Molecular Medicine Reports 31, no. 6 (2025): 140. https://doi.org/10.3892/mmr.2025.13505
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team