1
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fleischmann C, Scherag A, Adhikari NK,
Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K;
International Forum of Acute Care Trialists, : Assessment of global
incidence and mortality of hospital-treated sepsis. Current
estimates and limitations. Am J Respir Crit Care Med. 193:259–272.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Prescott HC and Angus DC: Enhancing
recovery from sepsis: A review. JAMA. 319:62–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sato R and Nasu M: A review of
sepsis-induced cardiomyopathy. J Intensive Care. 3:482015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hollenberg SM and Singer M:
Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol.
18:424–434. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
van der Poll T, van de Veerdonk FL,
Scicluna BP and Netea MG: The immunopathology of sepsis and
potential therapeutic targets. Nat Rev Immunol. 17:407–420. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Haileselassie B, Mukherjee R, Joshi AU,
Napier BA, Massis LM, Ostberg NP, Queliconi BB, Monack D, Bernstein
D and Mochly-Rosen D: Drp1/Fis1 interaction mediates mitochondrial
dysfunction in septic cardiomyopathy. J Mol Cell Cardiol.
130:160–169. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu XX, Wang X, Jiao SY, Liu Y, Shi L, Xu
Q, Wang JJ, Chen YE, Zhang Q, Song YT, et al: Cardiomyocyte
peroxisome proliferator-activated receptor α prevents septic
cardiomyopathy via improving mitochondrial function. Acta Pharmacol
Sin. 44:2184–2200. 2023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kong W, Kang K, Gao Y, Liu H, Meng X, Yang
S, Yu K and Zhao M: Dexmedetomidine alleviates LPS-induced septic
cardiomyopathy via the cholinergic anti-inflammatory pathway in
mice. Am J Transl Res. 9:5040–5047. 2017.PubMed/NCBI
|
10
|
Brealey D, Brand M, Hargreaves I, Heales
S, Land J, Smolenski R, Davies NA, Cooper CE and Singer M:
Association between mitochondrial dysfunction and severity and
outcome of septic shock. Lancet. 360:219–223. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dorn GW II: Mitochondrial dynamics in
heart disease. Biochim Biophys Acta. 1833:233–241. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lelubre C and Vincent JL: Mechanisms and
treatment of organ failure in sepsis. Nat Rev Nephrol. 14:417–427.
2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dorn GW II, Vega RB and Kelly DP:
Mitochondrial biogenesis and dynamics in the developing and
diseased heart. Genes Dev. 29:1981–1991. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martínez-Reyes I and Chandel NS:
Mitochondrial TCA cycle metabolites control physiology and disease.
Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sies H and Jones DP: Reactive oxygen
species (ROS) as pleiotropic physiological signalling agents. Nat
Rev Mol Cell Biol. 21:363–383. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mantzarlis K, Tsolaki V and Zakynthinos E:
Role of oxidative stress and mitochondrial dysfunction in sepsis
and potential therapies. Oxid Med Cell Longev. 2017:59852092017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Carey BW, Finley LW, Cross JR, Allis CD
and Thompson CB: Intracellular α-ketoglutarate maintains the
pluripotency of embryonic stem cells. Nature. 518:413–416. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chang LC, Chiang SK, Chen SE and Hung MC:
Targeting 2-oxoglutarate dehydrogenase for cancer treatment. Am J
Cancer Res. 12:1436–1455. 2022.PubMed/NCBI
|
19
|
Asadi Shahmirzadi A, Edgar D, Liao CY, Hsu
YM, Lucanic M, Asadi Shahmirzadi A, Wiley CD, Gan G, Kim DE, Kasler
HG, et al: Alpha-ketoglutarate, an endogenous metabolite, extends
lifespan and compresses morbidity in aging mice. Cell Metab.
32:447–456.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
TeSlaa T, Chaikovsky AC, Lipchina I,
Escobar SL, Hochedlinger K, Huang J, Graeber TG, Braas D and
Teitell MA: α-Ketoglutarate accelerates the initial differentiation
of primed human pluripotent stem cells. Cell Metab. 24:485–493.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Matzi V, Lindenmann J, Muench A,
Greilberger J, Juan H, Wintersteiger R, Maier A and Smolle-Juettner
FM: The impact of preoperative micronutrient supplementation in
lung surgery. A prospective randomized trial of oral
supplementation of combined alpha-ketoglutaric acid and
5-hydroxymethylfurfural. Eur J Cardiothorac Surg. 32:776–782. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Dhat R, Mongad D, Raji S, Arkat S,
Mahapatra NR, Singhal N and Sitasawad SL: Epigenetic modifier
alpha-ketoglutarate modulates aberrant gene body methylation and
hydroxymethylation marks in diabetic heart. Epigenetics Chromatin.
16:122023. View Article : Google Scholar : PubMed/NCBI
|
23
|
An D, Zeng Q, Zhang P, Ma Z, Zhang H, Liu
Z, Li J, Ren H and Xu D: Alpha-ketoglutarate ameliorates pressure
overload-induced chronic cardiac dysfunction in mice. Redox Biol.
46:1020882021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu W, Ziemann M, Huynh K, She G, Pang ZD,
Zhang Y, Duong T, Kiriazis H, Pu TT, Bai RY, et al: Activation of
Hippo signaling pathway mediates mitochondria dysfunction and
dilated cardiomyopathy in mice. Theranostics. 11:8993–9008. 2021.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu W, Lu Q, Ma S, Du JC, Huynh K, Duong T,
Pang ZD, Donner D, Meikle PJ, Deng XL and Du XJ: Mitochondrial
damage in a takotsubo syndrome-like mouse model mediated by
activation of β-adrenoceptor-Hippo signaling pathway. Am J Physiol
Heart Circ Physiol. 324:H528–H541. 2023. View Article : Google Scholar : PubMed/NCBI
|
26
|
She G, Du JC, Wu W, Pu TT, Zhang Y, Bai
RY, Zhang Y, Pang ZD, Wang HF, Ren YJ, et al: Hippo pathway
activation mediates chemotherapy-induced anti-cancer effect and
cardiomyopathy through causing mitochondrial damage and
dysfunction. Theranostics. 13:560–577. 2023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Abdulmahdi W, Patel D, Rabadi MM, Azar T,
Jules E, Lipphardt M, Hashemiyoon R and Ratliff BB: HMGB1 redox
during sepsis. Redox Biol. 13:600–607. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
McGrath JC and Lilley E: Implementing
guidelines on reporting research using animals (ARRIVE etc.): New
requirements for publication in BJP. Br J Pharmacol. 172:3189–3193.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie
Y, Yang Q and Wang S: Cinnamaldehyde ameliorates LPS-induced
cardiac dysfunction via TLR4-NOX4 pathway: The regulation of
autophagy and ROS production. J Mol Cell Cardiol. 101:11–24. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Han Y, Tian H and Gao X: NORAD regulates
proliferation and apoptosis in cardiomyocytes under high-glucose
treatment through miRNA-150-5p/ZEB1 axis. Eur Rev Med Pharmacol
Sci. 24:11259–11265. 2020.PubMed/NCBI
|
32
|
Chen PA, Xu ZH, Huang YL, Luo Y, Zhu DJ,
Wang P, Du ZY, Yang Y, Wu DH, Lai WY, et al: Increased serum
2-oxoglutarate associated with high myocardial energy expenditure
and poor prognosis in chronic heart failure patients. Biochim
Biophys Acta. 1842:2120–2125. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Spallotta F, Cencioni C, Atlante S,
Garella D, Cocco M, Mori M, Mastrocola R, Kuenne C, Guenther S,
Nanni S, et al: Stable oxidative cytosine modifications accumulate
in cardiac mesenchymal cells from type2 diabetes patients: Rescue
by α-ketoglutarate and TET-TDG functional reactivation. Circ Res.
122:31–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lai L, Leone TC, Keller MP, Martin OJ,
Broman AT, Nigro J, Kapoor K, Koves TR, Stevens R, Ilkayeva OR, et
al: Energy metabolic reprogramming in the hypertrophied and early
stage failing heart: a multisystems approach. Circ Heart Fail.
7:1022–1031. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yan C, Duanmu X, Zeng L, Liu B and Song Z:
Mitochondrial DNA: Distribution, mutations, and elimination. Cells.
8:3792019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the nomenclature committee on cell death 2018. Cell Death Differ.
25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ghezzi D, Sevrioukova I, Invernizzi F,
Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G and
Zeviani M: Severe X-linked mitochondrial encephalomyopathy
associated with a mutation in apoptosis-inducing factor. Am J Hum
Genet. 86:639–649. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tilokani L, Nagashima S, Paupe V and
Prudent J: Mitochondrial dynamics: Overview of molecular
mechanisms. Essays Biochem. 62:341–360. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chaanine AH, Joyce LD, Stulak JM, Maltais
S, Joyce DL, Dearani JA, Klaus K, Nair KS, Hajjar RJ and Redfield
MM: Mitochondrial morphology, dynamics, and function in human
pressure overload or ischemic heart disease with preserved or
reduced ejection fraction. Circ Heart Fail. 12:e0051312019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Shirihai OS, Song M and Dorn GW II: How
mitochondrial dynamism orchestrates mitophagy. Circ Res.
116:1835–1849. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brand MD: Mitochondrial generation of
superoxide and hydrogen peroxide as the source of mitochondrial
redox signaling. Free Radic Biol Med. 100:14–31. 2016. View Article : Google Scholar : PubMed/NCBI
|