
Osteochondral tissue engineering‑based subchondral bone plate repair (Review)
- Authors:
- Xiaoyang Zhang
- Weibo Jiang
- Quezhu Danzeng
- Yi Shen
- Mengying Cui
-
Affiliations: Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China - Published online on: April 4, 2025 https://doi.org/10.3892/mmr.2025.13517
- Article Number: 152
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Francis SL, Di Bella C, Wallace GG and Choong PFM: Cartilage tissue engineering using stem cells and bioprinting technology-barriers to clinical translation. Front Surg. 5:702018. View Article : Google Scholar : PubMed/NCBI | |
Patel JM, Saleh KS, Burdick JA and Mauck RL: Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater. 93:222–238. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, Ho KKW and Qin L: Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: Current progress and challenges. Adv Healthc Mater. 9:e20010082020. View Article : Google Scholar : PubMed/NCBI | |
Jacob G, Shimomura K and Nakamura N: Osteochondral injury, management and tissue engineering approaches. Front Cell Dev Biol. 8:5808682020. View Article : Google Scholar : PubMed/NCBI | |
Spencer V, Illescas E, Maltes L, Kim H, Sathe V and Nukavarapu S: Osteochondral tissue engineering: Translational research and turning research into products. Adv Exp Med Biol. 1058:373–390. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W and Qiu Y: Implementation of photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds to restore cartilage integrity in a full-thickness osteochondral defect model. ACS Biomater Sci Eng. 8:4474–4485. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC and Athanasiou KA: Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 15:550–570. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maia FR, Carvalho MR, Oliveira JM and Reis RL: Tissue engineering strategies for osteochondral repair. Adv Exp Med Biol. 1059:353–371. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li J, Bai X, Wang Y, Wang Q, Lv N, Gao H, Guo Z, Zhu H, Guo Q and Li Z: Microfracture augmentation with direct in situ radial shockwave stimulation with appropriate energy has comparable repair Performance with tissue engineering in the porcine osteochondral defect model. Am J Sports Med. 50:3660–3670. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang YS, Yue K and Khademhosseini A: Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL and Cruz LJ: Tissue engineering: An alternative to repair cartilage. Tissue Eng Part B Rev. 25:357–373. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim YG, Choi J and Kim K: Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 15:e20000822020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A and Wang DA: Progress in articular cartilage tissue engineering: A review on therapeutic cells and macromolecular scaffolds. Macromol Biosci. 20:e19002782020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Meng H, Guo Q, Sun B, Zhang K, Yu W, Liu S, Wang Y, Jing X, Zhang Z, et al: Tissue-derived scaffolds and cells for articular cartilage tissue engineering: Characteristics, applications and progress. Cell Tissue Res. 372:13–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Chen X, Wang S, Jing Y and Su J: Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9:202021. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Chen Y, Dou C and Dong S: Microenvironment in subchondral bone: Predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 80:413–422. 2021. View Article : Google Scholar : PubMed/NCBI | |
Orth P and Madry H: Advancement of the subchondral bone plate in translational models of osteochondral repair: Implications for tissue engineering approaches. Tissue Eng Part B Rev. 21:504–520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Critchley S, Sheehy EJ, Cunniffe G, Diaz-Payno P, Carroll SF, Jeon O, Alsberg E, Brama PAJ and Kelly DJ: 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 113:130–143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mendes LF, Bosmans K, Van Hoven I, Viseu SR, Marechal M and Luyten FP: Developmental engineering of living implants for deep osteochondral joint surface defects. Bone. 139:1155202020. View Article : Google Scholar : PubMed/NCBI | |
Song H and Park KH: Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 67:12–23. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu J, Ren K, Zuo J, Ding J and Chen X: Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 20:1478–1492. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J and Delplace V: Material-Assisted strategies for osteochondral defect repair. Adv Sci (Weinh). 9:e22000502022. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Shen X, Sun X, Yin H, Yang S, Lu C, Wang Y, Liu Y, Huang Y, Yang Z, et al: Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics. 8:5039–5058. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nie X, Yang J, Chuah YJ, Zhu W, Peck Y, He P and Wang DA: Full-Scale osteochondral regeneration by sole graft of tissue-engineered hyaline cartilage without co-engraftment of subchondral bone substitute. Adv Healthc Mater. 9:e19013042020. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Li M, Yuan Z, Rao F, Fang X, Jiang B, Wen Y and Zhang P: Mechanism research on a bioactive resveratrol- PLA-gelatin porous nano-scaffold in promoting the repair of cartilage defect. Int J Nanomedicine. 13:7845–7858. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mendes LF, Katagiri H, Tam WL, Chai YC, Geris L, Roberts SJ and Luyten FP: Advancing osteochondral tissue engineering: Bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther. 9:422018. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Cheng G, Dai J and Li Z: Bi-layered composite scaffold for repair of the osteochondral defects. Adv Wound Care (New Rochelle). 10:401–414. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, He Y, Yao H and Ding J: Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater Sci Eng. 4:3506–3521. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Mandakhbayar N, Kim HW, Leong KW and Yoo HS: Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials. 269:1202142021. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang H, Zhang L, Jia S, Liu J, Xiong Z and Sun W: Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Biofabrication. 9:0250212017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma X, Zhu M, Xu B and Yang Q: Role of the calcified cartilage layer of an integrated trilayered silk fibroin scaffold used to regenerate osteochondral defects in rabbit knees. ACS Biomater Sci Eng. 6:1208–1216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Fan H, Gong X, Yang L and Wang F: Scaffold with natural calcified cartilage zone for osteochondral defect repair in minipigs. Am J Sports Med. 49:1883–1891. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Bai J, Tian J, Huang P, Zheng H and Wang J: A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B Biointerfaces. 167:354–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhai C, Fei H, Hu J, Wang Z, Xu S, Zuo Q, Li Z, Wang Z, Liang W and Fan W: Repair of articular osteochondral defects using an integrated and biomimetic trilayered scaffold. Tissue Eng Part A. 24:1680–1692. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Wang Y, Sun X, Cui G, Sun Z, Chen P, Xu Y, Yuan X, Meng H, Xu W, et al: Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater. 77:127–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xue J, He A, Zhu Y, Liu Y, Li D, Yin Z, Zhang W, Liu W, Cao Y and Zhou G: Repair of articular cartilage defects with acellular cartilage sheets in a swine model. Biomed Mater. 13:0250162018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Feng G, Xu G and Qi Y: Microporous acellular extracellular matrix combined with adipose-derived stem cell sheets as a promising tissue patch promoting articular cartilage regeneration and interface integration. Cytotherapy. 21:856–869. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Chen P, Chen Y, Li M, Chen C and Lu H: 3D-Printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am J Sports Med. 48:2808–2818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Z, Li Z, Wu B, Liu Y and Wu W: Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater. 81:129–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bahrami N, Bordbar S, Hasanzadeh E, Goodarzi A, Ai A and Mohamadnia A: The effect of decellularized cartilage matrix scaffolds combined with endometrial stem cell-derived osteocytes on osteochondral tissue engineering in rats. In Vitro Cell Dev Biol Anim. 58:480–490. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang Y, Zhang A, Ling C, Sheng R, Li X, Yao Q and Chen J: Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Mater Sci Eng C Mater Biol Appl. 127:1122152021. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Xu P, Shen T, Zhang Y, Ye J and Gao C: Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. J Mater Chem B. 8:391–405. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salonius E, Muhonen V, Lehto K, Järvinen E, Pyhältö T, Hannula M, Aula AS, Uppstu P, Haaparanta AM, Rosling A, et al: Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med. 13:406–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Petrovova E, Tomco M, Holovska K, Danko J, Kresakova L, Vdoviakova K, Simaiova V, Kolvek F, Hornakova P, Toth T, et al: PHB/CHIT scaffold as a promising biopolymer in the treatment of osteochondral defects-an experimental animal study. Polymers (Basel). 13:12322021. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W, Zhu S, Jiang Y, Shen W, Zhang S and Ouyang HW: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 63:64–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kabirkoohian A, Bakhshi H, Irani S and Sharifi F: Chemical immobilization of carboxymethyl chitosan on polycaprolactone nanofibers as osteochondral scaffolds. Appl Biochem Biotechnol. 195:3888–3899. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q and Zhu L: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 9:4430–4438. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zuo Q, Cui W, Liu F, Wang Q, Chen Z and Fan W: Utilizing tissue-engineered cartilage or BMNC-PLGA composites to fill empty spaces during autologous osteochondral mosaicplasty in porcine knees. J Tissue Eng Regen Med. 10:916–926. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song X, Li T, Chen J, Cheng G, Yang L and Chen C: Aptamer-Functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. Am J Sports Med. 47:2316–2326. 2019. View Article : Google Scholar : PubMed/NCBI | |
He A, Liu L, Luo X, Liu Y, Liu Y, Liu F, Wang X, Zhang Z, Zhang W, Liu W, et al: Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep. 7:404892017. View Article : Google Scholar : PubMed/NCBI | |
Perez-Silos V, Moncada-Saucedo NK, Pena-Martinez V, Lara-Arias J, Marino-Martínez IA, Camacho A, Romero-Díaz VJ, Banda ML, García-Ruiz A, Soto-Dominguez A, et al: A cellularized biphasic implant based on a bioactive silk fibroin promotes integration and tissue organization during osteochondral defect repair in a porcine model. Int J Mol Sci. 20:51452019. View Article : Google Scholar : PubMed/NCBI | |
Wang KH, Wan R, Chiu LH, Tsai YH, Fang CL, Bowley JF, Chen KC, Shih HN and Lai W: Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model. PLoS One. 13:e01967792018. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Liu C, Tu C, Zhang R, Tang X, Li H, Wang H, Ma Y, Zhang Y, Wu H and Sheng G: Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res Ther. 12:5722021. View Article : Google Scholar : PubMed/NCBI | |
Xing J, Peng X, Li A, Chen M, Ding Y, Xu X, Yu P, Xie J and Li J: Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr Polym. 270:1183822021. View Article : Google Scholar : PubMed/NCBI | |
Shen T, Dai Y, Li X, Xu S, Gou Z and Gao C: Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold. ACS Biomater Sci Eng. 4:1942–1953. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Cai B, Wang L, Cai L, Wang Z, Xie J, Lv QX, Yuan Y, Liu C and Shen SG: A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials. 253:1200952020. View Article : Google Scholar : PubMed/NCBI | |
Kumai T, Yui N, Yatabe K, Sasaki C, Fujii R, Takenaga M, Fujiya H, Niki H and Yudoh K: A novel, self-assembled artificial cartilage-hydroxyapatite conjugate for combined articular cartilage and subchondral bone repair: Histopathological analysis of cartilage tissue engineering in rat knee joints. Int J Nanomedicine. 14:1283–1298. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ruan SQ, Yan L, Deng J, Huang WL and Jiang DM: Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Int Orthop. 41:1899–1908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yang Z, Denslin V, Ren X, Lee CS, Yap FL and Lee EH: Repair of osteochondral defects with predifferentiated mesenchymal stem cells of distinct phenotypic character derived from a nanotopographic platform. Am J Sports Med. 48:1735–1747. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin TH, Wang HC, Cheng WH, Hsu HC and Yeh ML: Osteochondral tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model. Int J Mol Sci. 20:3262019. View Article : Google Scholar : PubMed/NCBI | |
Browe DC, Diaz-Payno PJ, Freeman FE, Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD, Buckley CT, et al: Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair. Acta Biomater. 143:266–281. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seong YJ, Kang IG, Song EH, Kim HE and Jeong SH: Calcium phosphate-collagen scaffold with aligned pore channels for enhanced osteochondral regeneration. Adv Healthc Mater. 6:242017. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Gao J, Yu X, Shi J, Chen J, Yu L, Chen S and Ding J: 3D-Printed porous scaffolds of hydrogels modified with TGF-β1 binding peptides to promote in vivo cartilage regeneration and animal gait restoration. ACS Appl Mater Interfaces. 14:15982–15995. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Ding X, Yu X, Chen X, Zhang X, Cui S, Shi J, Chen J, Yu L, Chen S and Ding J: Cell-Free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv Healthc Mater. 10:e20014042021. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Liu B, Liu G, Yang F, Cao F, Dou X, Yu W, Wang B, Zheng G, Cheng L, et al: Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res Ther. 10:722019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang W and Yao Q: 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. Biomater Adv. 140:2130672022. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Liao J, Zhong C, Lu X and Ren F: High-Strength, biomimetic functional chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater Sci Eng. 8:4449–4461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Steele JAM, Moore AC, St-Pierre JP, McCullen SD, Gormley AJ, Horgan CC, Black CR, Meinert C, Klein T, Saifzadeh S, et al: In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials. 286:1215482022. View Article : Google Scholar : PubMed/NCBI | |
Li M, Song P, Wang W, Xu Y, Li J, Wu L, Gui X, Zeng Z, Zhou Z, Liu M, et al: Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J Mater Chem B. 10:4172–4188. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nie X, Chuah YJ, He P and Wang DA: Engineering a multiphasic, integrated graft with a biologically developed cartilage-bone interface for osteochondral defect repair. J Mater Chem B. 7:6515–6525. 2019. View Article : Google Scholar : PubMed/NCBI | |
Orth P, Cucchiarini M, Kaul G, Ong MF, Gräber S, Kohn DM and Madry H: Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model. Osteoarthritis Cartilage. 20:1161–1169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Findlay DM and Kuliwaba JS: Bone-cartilage crosstalk: A conversation for understanding osteoarthritis. Bone Res. 4:160282016. View Article : Google Scholar : PubMed/NCBI | |
Nordberg RC, Huebner P, Schuchard KG, Mellor LF, Shirwaiker RA, Loboa EG and Spang JT: The evaluation of a multiphasic 3D-bioplotted scaffold seeded with adipose derived stem cells to repair osteochondral defects in a porcine model. J Biomed Mater Res B Appl Biomater. 109:2246–2258. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yucekul A, Ozdil D, Kutlu NH, Erdemli E, Aydin HM and Doral MN: Tri-layered composite plug for the repair of osteochondral defects: In vivo study in sheep. J Tissue Eng. 8:20417314176975002017. View Article : Google Scholar : PubMed/NCBI | |
Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, Li H, Hao Y and Dai K: Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials. 266:1203852021. View Article : Google Scholar : PubMed/NCBI | |
Jia S, Wang J, Zhang T, Pan W, Li Z, He X, Yang C, Wu Q, Sun W, Xiong Z and Hao D: Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl Mater Interfaces. 10:20296–20305. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, Noh I, Mikos AG and Zhang S: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 137:37–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang LB, Su DH, Liu P, Ma YQ, Shao ZZ and Dong J: Shape-memory collagen scaffold for enhanced cartilage regeneration: Native collagen versus denatured collagen. Osteoarthritis Cartilage. 26:1389–1399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parisi C, Salvatore L, Veschini L, Serra MP, Hobbs C, Madaghiele M, Sannino A and Di Silvio L: Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration. J Tissue Eng. 11:20417314198960682020. View Article : Google Scholar : PubMed/NCBI | |
Asensio G, Benito-Garzon L, Ramirez-Jimenez RA, Guadilla Y, Gonzalez-Rubio J, Abradelo C, Parra J, Martín-López MR, Aguilar MR, Vázquez-Lasa B and Rojo L: Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering. Polymers (Basel). 14:122021. View Article : Google Scholar : PubMed/NCBI | |
Idaszek J, Costantini M, Karlsen TA, Jaroszewicz J, Colosi C, Testa S, Fornetti E, Bernardini S, Seta M, Kasarełło K, et al: 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 11:0441012019. View Article : Google Scholar : PubMed/NCBI | |
Oshima T, Nakase J, Toratani T, Numata H, Takata Y, Nakayama K and Tsuchiya H: A scaffold-free allogeneic construct from adipose-derived stem cells regenerates an osteochondral defect in a rabbit model. Arthroscopy. 35:583–593. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Lyu Z, Zhang W, Zhang J and Wang Y: Porous bioactive prosthesis with Chitosan/Mesoporous silica nanoparticles microspheres sequentially and sustainedly releasing platelet-derived growth factor-BB and kartogenin: A new treatment strategy for osteoarticular lesions. Front Bioeng Biotechnol. 10:8391202022. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, Lyne DV, Laflin AD, Zabel TA, Barragan M, Bunch JT, Pacicca DM and Detamore MS: Microsphere-based osteochondral scaffolds carrying opposing gradients of decellularized cartilage and demineralized bone matrix. ACS Biomater Sci Eng. 3:1955–1963. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Zha Y, Li Y, Chen J, Liu S, Du Y, Zhang S and Wang J: Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 141:190–197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qasim M, Chae DS and Lee NY: Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A. 108:394–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu J, Guan M, Zhou T, Duan X and Xiang Z: growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine. 15:6097–6111. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kazemi M and Williams JL: Properties of cartilage-subchondral bone junctions: A narrative review with specific focus on the growth plate. Cartilage. 13:16S–33S. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Lyu J, Xing F, Chen R, Duan X and Xiang Z: A biphasic, demineralized, and Decellularized allograft bone-hydrogel scaffold with a cell-based BMP-7 delivery system for osteochondral defect regeneration. J Biomed Mater Res A. 108:1909–1921. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bothe F, Deubel AK, Hesse E, Lotz B, Groll J, Werner C, Richter W and Hagmann S: Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs. Int J Mol Sci. 20:6532019. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wei L, Su X, Qin L, Xu Z, Huang X, Chen H and Hu N: Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering (Basel). 10:2132023. View Article : Google Scholar : PubMed/NCBI | |
Hurtig MB, Buschmann MD, Fortier LA, Hoemann CD, Hunziker EB, Jurvelin JS, Mainil-Varlet P, McIlwraith CW, Sah RL and Whiteside RA: Preclinical studies for cartilage repair. Cartilage. 2:137–152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Confalonieri D, Schwab A, Walles H and Ehlicke F: Advanced therapy medicinal products: A guide for bone marrow-derived MSC application in bone and cartilage tissue engineering. Tissue Eng Part B Rev. 24:155–169. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dargoush SA, Hanaee-Ahvaz H, Irani S, Soleimani M, Khatami SM and Sohi AN: A composite bilayer scaffold functionalized for osteochondral tissue regeneration in rat animal model. J Tissue Eng Regen Med. 16:559–574. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aisenbrey EA, Tomaschke A, Kleinjan E, Muralidharan A, Pascual-Garrido C, McLeod RR, Ferguson VL and Bryant SJ: A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci. 18:10.1002/mabi.201700267. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zlotnick HM, Locke RC, Hemdev S, Stoeckl BD, Gupta S, Peredo AP, Steinberg DR, Carey JL, Lee D, Dodge GR and Mauck RL: Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. 14:10.1088/1758–5090/ac79cd. 2022. View Article : Google Scholar | |
Zhang J, Zhang D, Wu C, Liu A, Zhang C, Jiao J and Shang M: Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees. BMC Complement Altern Med. 19:1552019. View Article : Google Scholar : PubMed/NCBI | |
Xiao SP, Tang LS, Chen JY, Li ZT, Cheng GH, Chen QQ, Liu SH and Liu WG: Effect of cross-linked hyaluronate scaffold on cartilage repair: An in vivo study. Orthop Surg. 11:679–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Korthagen NM, Brommer H, Hermsen G, Plomp SGM, Melsom G, Coeleveld K, Mastbergen SC, Weinans H, van Buul W and van Weeren PR: A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet J. 251:1053402019. View Article : Google Scholar : PubMed/NCBI |