|
1
|
Francis SL, Di Bella C, Wallace GG and
Choong PFM: Cartilage tissue engineering using stem cells and
bioprinting technology-barriers to clinical translation. Front
Surg. 5:702018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Patel JM, Saleh KS, Burdick JA and Mauck
RL: Bioactive factors for cartilage repair and regeneration:
Improving delivery, retention, and activity. Acta Biomater.
93:222–238. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai
Y, Richards RG, Ho KKW and Qin L: Innovative tissue-engineered
strategies for osteochondral defect repair and regeneration:
Current progress and challenges. Adv Healthc Mater. 9:e20010082020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jacob G, Shimomura K and Nakamura N:
Osteochondral injury, management and tissue engineering approaches.
Front Cell Dev Biol. 8:5808682020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Spencer V, Illescas E, Maltes L, Kim H,
Sathe V and Nukavarapu S: Osteochondral tissue engineering:
Translational research and turning research into products. Adv Exp
Med Biol. 1058:373–390. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W
and Qiu Y: Implementation of photosensitive, injectable,
interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic
scaffolds to restore cartilage integrity in a full-thickness
osteochondral defect model. ACS Biomater Sci Eng. 8:4474–4485.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos
N, Hu JC and Athanasiou KA: Surgical and tissue engineering
strategies for articular cartilage and meniscus repair. Nat Rev
Rheumatol. 15:550–570. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Maia FR, Carvalho MR, Oliveira JM and Reis
RL: Tissue engineering strategies for osteochondral repair. Adv Exp
Med Biol. 1059:353–371. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhao Z, Li J, Bai X, Wang Y, Wang Q, Lv N,
Gao H, Guo Z, Zhu H, Guo Q and Li Z: Microfracture augmentation
with direct in situ radial shockwave stimulation with appropriate
energy has comparable repair Performance with tissue engineering in
the porcine osteochondral defect model. Am J Sports Med.
50:3660–3670. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang J, Zhang YS, Yue K and Khademhosseini
A: Cell-laden hydrogels for osteochondral and cartilage tissue
engineering. Acta Biomater. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Campos Y, Almirall A, Fuentes G, Bloem HL,
Kaijzel EL and Cruz LJ: Tissue engineering: An alternative to
repair cartilage. Tissue Eng Part B Rev. 25:357–373. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kim YG, Choi J and Kim K: Mesenchymal stem
cell-derived exosomes for effective cartilage tissue repair and
treatment of osteoarthritis. Biotechnol J. 15:e20000822020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A
and Wang DA: Progress in articular cartilage tissue engineering: A
review on therapeutic cells and macromolecular scaffolds. Macromol
Biosci. 20:e19002782020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu X, Meng H, Guo Q, Sun B, Zhang K, Yu
W, Liu S, Wang Y, Jing X, Zhang Z, et al: Tissue-derived scaffolds
and cells for articular cartilage tissue engineering:
Characteristics, applications and progress. Cell Tissue Res.
372:13–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hu Y, Chen X, Wang S, Jing Y and Su J:
Subchondral bone microenvironment in osteoarthritis and pain. Bone
Res. 9:202021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hu W, Chen Y, Dou C and Dong S:
Microenvironment in subchondral bone: Predominant regulator for the
treatment of osteoarthritis. Ann Rheum Dis. 80:413–422. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Orth P and Madry H: Advancement of the
subchondral bone plate in translational models of osteochondral
repair: Implications for tissue engineering approaches. Tissue Eng
Part B Rev. 21:504–520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Critchley S, Sheehy EJ, Cunniffe G,
Diaz-Payno P, Carroll SF, Jeon O, Alsberg E, Brama PAJ and Kelly
DJ: 3D printing of fibre-reinforced cartilaginous templates for the
regeneration of osteochondral defects. Acta Biomater. 113:130–143.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mendes LF, Bosmans K, Van Hoven I, Viseu
SR, Marechal M and Luyten FP: Developmental engineering of living
implants for deep osteochondral joint surface defects. Bone.
139:1155202020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Song H and Park KH: Regulation and
function of SOX9 during cartilage development and regeneration.
Semin Cancer Biol. 67:12–23. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang Y, Yu J, Ren K, Zuo J, Ding J and
Chen X: Thermosensitive hydrogels as scaffolds for cartilage tissue
engineering. Biomacromolecules. 20:1478–1492. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lesage C, Lafont M, Guihard P, Weiss P,
Guicheux J and Delplace V: Material-Assisted strategies for
osteochondral defect repair. Adv Sci (Weinh). 9:e22000502022.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lu J, Shen X, Sun X, Yin H, Yang S, Lu C,
Wang Y, Liu Y, Huang Y, Yang Z, et al: Increased recruitment of
endogenous stem cells and chondrogenic differentiation by a
composite scaffold containing bone marrow homing peptide for
cartilage regeneration. Theranostics. 8:5039–5058. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nie X, Yang J, Chuah YJ, Zhu W, Peck Y, He
P and Wang DA: Full-Scale osteochondral regeneration by sole graft
of tissue-engineered hyaline cartilage without co-engraftment of
subchondral bone substitute. Adv Healthc Mater. 9:e19013042020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yu F, Li M, Yuan Z, Rao F, Fang X, Jiang
B, Wen Y and Zhang P: Mechanism research on a bioactive
resveratrol- PLA-gelatin porous nano-scaffold in promoting the
repair of cartilage defect. Int J Nanomedicine. 13:7845–7858. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mendes LF, Katagiri H, Tam WL, Chai YC,
Geris L, Roberts SJ and Luyten FP: Advancing osteochondral tissue
engineering: Bone morphogenetic protein, transforming growth
factor, and fibroblast growth factor signaling drive ordered
differentiation of periosteal cells resulting in stable cartilage
and bone formation in vivo. Stem Cell Res Ther. 9:422018.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xu D, Cheng G, Dai J and Li Z: Bi-layered
composite scaffold for repair of the osteochondral defects. Adv
Wound Care (New Rochelle). 10:401–414. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X,
He Y, Yao H and Ding J: Bilayered PLGA/PLGA-HAp composite scaffold
for osteochondral tissue engineering and tissue regeneration. ACS
Biomater Sci Eng. 4:3506–3521. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim HS, Mandakhbayar N, Kim HW, Leong KW
and Yoo HS: Protein-reactive nanofibrils decorated with
cartilage-derived decellularized extracellular matrix for
osteochondral defects. Biomaterials. 269:1202142021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang T, Zhang H, Zhang L, Jia S, Liu J,
Xiong Z and Sun W: Biomimetic design and fabrication of
multilayered osteochondral scaffolds by low-temperature deposition
manufacturing and thermal-induced phase-separation techniques.
Biofabrication. 9:0250212017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma
X, Zhu M, Xu B and Yang Q: Role of the calcified cartilage layer of
an integrated trilayered silk fibroin scaffold used to regenerate
osteochondral defects in rabbit knees. ACS Biomater Sci Eng.
6:1208–1216. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang Y, Fan H, Gong X, Yang L and Wang F:
Scaffold with natural calcified cartilage zone for osteochondral
defect repair in minipigs. Am J Sports Med. 49:1883–1891. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen T, Bai J, Tian J, Huang P, Zheng H
and Wang J: A single integrated osteochondral in situ composite
scaffold with a multi-layered functional structure. Colloids Surf B
Biointerfaces. 167:354–363. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhai C, Fei H, Hu J, Wang Z, Xu S, Zuo Q,
Li Z, Wang Z, Liang W and Fan W: Repair of articular osteochondral
defects using an integrated and biomimetic trilayered scaffold.
Tissue Eng Part A. 24:1680–1692. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yin H, Wang Y, Sun X, Cui G, Sun Z, Chen
P, Xu Y, Yuan X, Meng H, Xu W, et al: Functional tissue-engineered
microtissue derived from cartilage extracellular matrix for
articular cartilage regeneration. Acta Biomater. 77:127–141. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xue J, He A, Zhu Y, Liu Y, Li D, Yin Z,
Zhang W, Liu W, Cao Y and Zhou G: Repair of articular cartilage
defects with acellular cartilage sheets in a swine model. Biomed
Mater. 13:0250162018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang Y, Feng G, Xu G and Qi Y:
Microporous acellular extracellular matrix combined with
adipose-derived stem cell sheets as a promising tissue patch
promoting articular cartilage regeneration and interface
integration. Cytotherapy. 21:856–869. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhu S, Chen P, Chen Y, Li M, Chen C and Lu
H: 3D-Printed extracellular matrix/polyethylene glycol diacrylate
hydrogel incorporating the anti-inflammatory phytomolecule honokiol
for regeneration of osteochondral defects. Am J Sports Med.
48:2808–2818. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang Z, Li Z, Li Z, Wu B, Liu Y and Wu W:
Cartilaginous extracellular matrix derived from decellularized
chondrocyte sheets for the reconstruction of osteochondral defects
in rabbits. Acta Biomater. 81:129–145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bahrami N, Bordbar S, Hasanzadeh E,
Goodarzi A, Ai A and Mohamadnia A: The effect of decellularized
cartilage matrix scaffolds combined with endometrial stem
cell-derived osteocytes on osteochondral tissue engineering in
rats. In Vitro Cell Dev Biol Anim. 58:480–490. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang W, Zhang Y, Zhang A, Ling C, Sheng
R, Li X, Yao Q and Chen J: Enzymatically crosslinked
silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity
for osteochondral tissue engineering. Mater Sci Eng C Mater Biol
Appl. 127:1122152021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Feng X, Xu P, Shen T, Zhang Y, Ye J and
Gao C: Influence of pore architectures of silk fibroin/collagen
composite scaffolds on the regeneration of osteochondral defects in
vivo. J Mater Chem B. 8:391–405. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Salonius E, Muhonen V, Lehto K, Järvinen
E, Pyhältö T, Hannula M, Aula AS, Uppstu P, Haaparanta AM, Rosling
A, et al: Gas-foamed poly(lactide-co-glycolide) and
poly(lactide-co-glycolide) with bioactive glass fibres demonstrate
insufficient bone repair in lapine osteochondral defects. J Tissue
Eng Regen Med. 13:406–415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Petrovova E, Tomco M, Holovska K, Danko J,
Kresakova L, Vdoviakova K, Simaiova V, Kolvek F, Hornakova P, Toth
T, et al: PHB/CHIT scaffold as a promising biopolymer in the
treatment of osteochondral defects-an experimental animal study.
Polymers (Basel). 13:12322021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang
W, Zhu S, Jiang Y, Shen W, Zhang S and Ouyang HW: Silk
fibroin-chondroitin sulfate scaffold with immuno-inhibition
property for articular cartilage repair. Acta Biomater. 63:64–75.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kabirkoohian A, Bakhshi H, Irani S and
Sharifi F: Chemical immobilization of carboxymethyl chitosan on
polycaprolactone nanofibers as osteochondral scaffolds. Appl
Biochem Biotechnol. 195:3888–3899. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang
Y, Bao C, Xie Z, Lin Q and Zhu L: Integration of stem cell-derived
exosomes with in situ hydrogel glue as a promising tissue patch for
articular cartilage regeneration. Nanoscale. 9:4430–4438. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zuo Q, Cui W, Liu F, Wang Q, Chen Z and
Fan W: Utilizing tissue-engineered cartilage or BMNC-PLGA
composites to fill empty spaces during autologous osteochondral
mosaicplasty in porcine knees. J Tissue Eng Regen Med. 10:916–926.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang X, Song X, Li T, Chen J, Cheng G,
Yang L and Chen C: Aptamer-Functionalized bioscaffold enhances
cartilage repair by improving stem cell recruitment in
osteochondral defects of rabbit knees. Am J Sports Med.
47:2316–2326. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He A, Liu L, Luo X, Liu Y, Liu Y, Liu F,
Wang X, Zhang Z, Zhang W, Liu W, et al: Repair of osteochondral
defects with in vitro engineered cartilage based on autologous bone
marrow stromal cells in a swine model. Sci Rep. 7:404892017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Perez-Silos V, Moncada-Saucedo NK,
Pena-Martinez V, Lara-Arias J, Marino-Martínez IA, Camacho A,
Romero-Díaz VJ, Banda ML, García-Ruiz A, Soto-Dominguez A, et al: A
cellularized biphasic implant based on a bioactive silk fibroin
promotes integration and tissue organization during osteochondral
defect repair in a porcine model. Int J Mol Sci. 20:51452019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang KH, Wan R, Chiu LH, Tsai YH, Fang CL,
Bowley JF, Chen KC, Shih HN and Lai W: Effects of collagen matrix
and bioreactor cultivation on cartilage regeneration of a
full-thickness critical-size knee joint cartilage defects with
subchondral bone damage in a rabbit model. PLoS One.
13:e01967792018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yan J, Liu C, Tu C, Zhang R, Tang X, Li H,
Wang H, Ma Y, Zhang Y, Wu H and Sheng G:
Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with
low-frequency electromagnetic field treatment enhances
osteochondral repair in rabbits. Stem Cell Res Ther. 12:5722021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xing J, Peng X, Li A, Chen M, Ding Y, Xu
X, Yu P, Xie J and Li J: Gellan gum/alginate-based Ca-enriched
acellular bilayer hydrogel with robust interface bonding for
effective osteochondral repair. Carbohydr Polym. 270:1183822021.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shen T, Dai Y, Li X, Xu S, Gou Z and Gao
C: Regeneration of the osteochondral defect by a wollastonite and
macroporous fibrin biphasic scaffold. ACS Biomater Sci Eng.
4:1942–1953. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lin D, Cai B, Wang L, Cai L, Wang Z, Xie
J, Lv QX, Yuan Y, Liu C and Shen SG: A viscoelastic PEGylated
poly(glycerol sebacate)-based bilayer scaffold for cartilage
regeneration in full-thickness osteochondral defect. Biomaterials.
253:1200952020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kumai T, Yui N, Yatabe K, Sasaki C, Fujii
R, Takenaga M, Fujiya H, Niki H and Yudoh K: A novel,
self-assembled artificial cartilage-hydroxyapatite conjugate for
combined articular cartilage and subchondral bone repair:
Histopathological analysis of cartilage tissue engineering in rat
knee joints. Int J Nanomedicine. 14:1283–1298. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ruan SQ, Yan L, Deng J, Huang WL and Jiang
DM: Preparation of a biphase composite scaffold and its application
in tissue engineering for femoral osteochondral defects in rabbits.
Int Orthop. 41:1899–1908. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu Y, Yang Z, Denslin V, Ren X, Lee CS,
Yap FL and Lee EH: Repair of osteochondral defects with
predifferentiated mesenchymal stem cells of distinct phenotypic
character derived from a nanotopographic platform. Am J Sports Med.
48:1735–1747. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lin TH, Wang HC, Cheng WH, Hsu HC and Yeh
ML: Osteochondral tissue regeneration using a tyramine-modified
bilayered PLGA scaffold combined with articular chondrocytes in a
porcine model. Int J Mol Sci. 20:3262019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Browe DC, Diaz-Payno PJ, Freeman FE,
Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD,
Buckley CT, et al: Bilayered extracellular matrix derived scaffolds
with anisotropic pore architecture guide tissue organization during
osteochondral defect repair. Acta Biomater. 143:266–281. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Seong YJ, Kang IG, Song EH, Kim HE and
Jeong SH: Calcium phosphate-collagen scaffold with aligned pore
channels for enhanced osteochondral regeneration. Adv Healthc
Mater. 6:242017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ding X, Gao J, Yu X, Shi J, Chen J, Yu L,
Chen S and Ding J: 3D-Printed porous scaffolds of hydrogels
modified with TGF-β1 binding peptides to promote in vivo cartilage
regeneration and animal gait restoration. ACS Appl Mater
Interfaces. 14:15982–15995. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gao J, Ding X, Yu X, Chen X, Zhang X, Cui
S, Shi J, Chen J, Yu L, Chen S and Ding J: Cell-Free bilayered
porous scaffolds for osteochondral regeneration fabricated by
continuous 3D-printing using nascent physical hydrogel as ink. Adv
Healthc Mater. 10:e20014042021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wei X, Liu B, Liu G, Yang F, Cao F, Dou X,
Yu W, Wang B, Zheng G, Cheng L, et al: Mesenchymal stem cell-loaded
porous tantalum integrated with biomimetic 3D collagen-based
scaffold to repair large osteochondral defects in goats. Stem Cell
Res Ther. 10:722019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang
W and Yao Q: 3D-printed composite scaffold with gradient structure
and programmed biomolecule delivery to guide stem cell behavior for
osteochondral regeneration. Biomater Adv. 140:2130672022.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fang J, Liao J, Zhong C, Lu X and Ren F:
High-Strength, biomimetic functional chitosan-based hydrogels for
full-thickness osteochondral defect repair. ACS Biomater Sci Eng.
8:4449–4461. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Steele JAM, Moore AC, St-Pierre JP,
McCullen SD, Gormley AJ, Horgan CC, Black CR, Meinert C, Klein T,
Saifzadeh S, et al: In vitro and in vivo investigation of a zonal
microstructured scaffold for osteochondral defect repair.
Biomaterials. 286:1215482022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li M, Song P, Wang W, Xu Y, Li J, Wu L,
Gui X, Zeng Z, Zhou Z, Liu M, et al: Preparation and
characterization of biomimetic gradient multi-layer cell-laden
scaffolds for osteochondral integrated repair. J Mater Chem B.
10:4172–4188. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Nie X, Chuah YJ, He P and Wang DA:
Engineering a multiphasic, integrated graft with a biologically
developed cartilage-bone interface for osteochondral defect repair.
J Mater Chem B. 7:6515–6525. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Orth P, Cucchiarini M, Kaul G, Ong MF,
Gräber S, Kohn DM and Madry H: Temporal and spatial migration
pattern of the subchondral bone plate in a rabbit osteochondral
defect model. Osteoarthritis Cartilage. 20:1161–1169. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Findlay DM and Kuliwaba JS: Bone-cartilage
crosstalk: A conversation for understanding osteoarthritis. Bone
Res. 4:160282016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Nordberg RC, Huebner P, Schuchard KG,
Mellor LF, Shirwaiker RA, Loboa EG and Spang JT: The evaluation of
a multiphasic 3D-bioplotted scaffold seeded with adipose derived
stem cells to repair osteochondral defects in a porcine model. J
Biomed Mater Res B Appl Biomater. 109:2246–2258. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yucekul A, Ozdil D, Kutlu NH, Erdemli E,
Aydin HM and Doral MN: Tri-layered composite plug for the repair of
osteochondral defects: In vivo study in sheep. J Tissue Eng.
8:20417314176975002017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Qiao Z, Lian M, Han Y, Sun B, Zhang X,
Jiang W, Li H, Hao Y and Dai K: Bioinspired stratified
electrowritten fiber-reinforced hydrogel constructs with
layer-specific induction capacity for functional osteochondral
regeneration. Biomaterials. 266:1203852021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jia S, Wang J, Zhang T, Pan W, Li Z, He X,
Yang C, Wu Q, Sun W, Xiong Z and Hao D: Multilayered scaffold with
a compact interfacial layer enhances osteochondral defect repair.
ACS Appl Mater Interfaces. 10:20296–20305. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J,
Noh I, Mikos AG and Zhang S: Selective laser sintering scaffold
with hierarchical architecture and gradient composition for
osteochondral repair in rabbits. Biomaterials. 137:37–48. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jiang LB, Su DH, Liu P, Ma YQ, Shao ZZ and
Dong J: Shape-memory collagen scaffold for enhanced cartilage
regeneration: Native collagen versus denatured collagen.
Osteoarthritis Cartilage. 26:1389–1399. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Parisi C, Salvatore L, Veschini L, Serra
MP, Hobbs C, Madaghiele M, Sannino A and Di Silvio L: Biomimetic
gradient scaffold of collagen-hydroxyapatite for osteochondral
regeneration. J Tissue Eng. 11:20417314198960682020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Asensio G, Benito-Garzon L,
Ramirez-Jimenez RA, Guadilla Y, Gonzalez-Rubio J, Abradelo C, Parra
J, Martín-López MR, Aguilar MR, Vázquez-Lasa B and Rojo L:
Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn
folates for osteochondral tissue engineering. Polymers (Basel).
14:122021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Idaszek J, Costantini M, Karlsen TA,
Jaroszewicz J, Colosi C, Testa S, Fornetti E, Bernardini S, Seta M,
Kasarełło K, et al: 3D bioprinting of hydrogel constructs with cell
and material gradients for the regeneration of full-thickness
chondral defect using a microfluidic printing head. Biofabrication.
11:0441012019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Oshima T, Nakase J, Toratani T, Numata H,
Takata Y, Nakayama K and Tsuchiya H: A scaffold-free allogeneic
construct from adipose-derived stem cells regenerates an
osteochondral defect in a rabbit model. Arthroscopy. 35:583–593.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yuan Z, Lyu Z, Zhang W, Zhang J and Wang
Y: Porous bioactive prosthesis with Chitosan/Mesoporous silica
nanoparticles microspheres sequentially and sustainedly releasing
platelet-derived growth factor-BB and kartogenin: A new treatment
strategy for osteoarticular lesions. Front Bioeng Biotechnol.
10:8391202022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gupta V, Lyne DV, Laflin AD, Zabel TA,
Barragan M, Bunch JT, Pacicca DM and Detamore MS: Microsphere-based
osteochondral scaffolds carrying opposing gradients of
decellularized cartilage and demineralized bone matrix. ACS
Biomater Sci Eng. 3:1955–1963. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gu X, Zha Y, Li Y, Chen J, Liu S, Du Y,
Zhang S and Wang J: Integrated polycaprolactone microsphere-based
scaffolds with biomimetic hierarchy and tunable vascularization for
osteochondral repair. Acta Biomater. 141:190–197. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Qasim M, Chae DS and Lee NY:
Bioengineering strategies for bone and cartilage tissue
regeneration using growth factors and stem cells. J Biomed Mater
Res A. 108:394–411. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen L, Liu J, Guan M, Zhou T, Duan X and
Xiang Z: growth factor and its polymer scaffold-based delivery
system for cartilage tissue engineering. Int J Nanomedicine.
15:6097–6111. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kazemi M and Williams JL: Properties of
cartilage-subchondral bone junctions: A narrative review with
specific focus on the growth plate. Cartilage. 13:16S–33S. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sun J, Lyu J, Xing F, Chen R, Duan X and
Xiang Z: A biphasic, demineralized, and Decellularized allograft
bone-hydrogel scaffold with a cell-based BMP-7 delivery system for
osteochondral defect regeneration. J Biomed Mater Res A.
108:1909–1921. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bothe F, Deubel AK, Hesse E, Lotz B, Groll
J, Werner C, Richter W and Hagmann S: Treatment of focal cartilage
defects in minipigs with zonal chondrocyte/mesenchymal progenitor
cell constructs. Int J Mol Sci. 20:6532019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen L, Wei L, Su X, Qin L, Xu Z, Huang X,
Chen H and Hu N: Preparation and characterization of biomimetic
functional scaffold with gradient structure for osteochondral
defect repair. Bioengineering (Basel). 10:2132023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hurtig MB, Buschmann MD, Fortier LA,
Hoemann CD, Hunziker EB, Jurvelin JS, Mainil-Varlet P, McIlwraith
CW, Sah RL and Whiteside RA: Preclinical studies for cartilage
repair. Cartilage. 2:137–152. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Confalonieri D, Schwab A, Walles H and
Ehlicke F: Advanced therapy medicinal products: A guide for bone
marrow-derived MSC application in bone and cartilage tissue
engineering. Tissue Eng Part B Rev. 24:155–169. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Dargoush SA, Hanaee-Ahvaz H, Irani S,
Soleimani M, Khatami SM and Sohi AN: A composite bilayer scaffold
functionalized for osteochondral tissue regeneration in rat animal
model. J Tissue Eng Regen Med. 16:559–574. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Aisenbrey EA, Tomaschke A, Kleinjan E,
Muralidharan A, Pascual-Garrido C, McLeod RR, Ferguson VL and
Bryant SJ: A stereolithography-based 3D printed hybrid scaffold for
in situ cartilage defect repair. Macromol Biosci.
18:10.1002/mabi.201700267. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zlotnick HM, Locke RC, Hemdev S, Stoeckl
BD, Gupta S, Peredo AP, Steinberg DR, Carey JL, Lee D, Dodge GR and
Mauck RL: Gravity-based patterning of osteogenic factors to
preserve bone structure after osteochondral injury in a large
animal model. Biofabrication. 14:10.1088/1758–5090/ac79cd. 2022.
View Article : Google Scholar
|
|
97
|
Zhang J, Zhang D, Wu C, Liu A, Zhang C,
Jiao J and Shang M: Icariin-conditioned serum engineered with
hyaluronic acid promote repair of articular cartilage defects in
rabbit knees. BMC Complement Altern Med. 19:1552019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xiao SP, Tang LS, Chen JY, Li ZT, Cheng
GH, Chen QQ, Liu SH and Liu WG: Effect of cross-linked hyaluronate
scaffold on cartilage repair: An in vivo study. Orthop Surg.
11:679–689. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Korthagen NM, Brommer H, Hermsen G, Plomp
SGM, Melsom G, Coeleveld K, Mastbergen SC, Weinans H, van Buul W
and van Weeren PR: A short-term evaluation of a thermoplastic
polyurethane implant for osteochondral defect repair in an equine
model. Vet J. 251:1053402019. View Article : Google Scholar : PubMed/NCBI
|