1
|
Hill DB, Button B, Rubinstein M and
Boucher RC: Physiology and pathophysiology of human airway mucus.
Physiol Rev. 102:1757–1836. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fahy JV and Dickey BF: Airway mucus
function and dysfunction. N Engl J Med. 363:2232–2247. 2010.
View Article : Google Scholar
|
3
|
Ma J, Rubin BK and Voynow JA: Mucins,
mucus, and goblet cells. Chest. 154:169–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vestbo J, Prescott E and Lange P:
Association of chronic mucus hypersecretion with FEV1 decline and
chronic obstructive pulmonary disease morbidity. Am J Respir Crit
Care Med. 153:1530–1535. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Burgel PR, Nesme–Meyer P, Chanez P,
Caillaud D, Carré P, Perez T and Roche N: Cough and sputum
production are associated with frequent exacerbations and
hospitalizations in COPD subjects. Chest. 135:975–982. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Prescott E, Lange P and Vestbo J: Chronic
mucus hypersecretion in COPD and death from pulmonary infection.
Eur Respir J. 8:1333–1338. 1995. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dickey BF, Lai Y, Frick M and Brunger AT:
Discovery of a drug to treat airway mucus hypersecretion. Clin
Transl Med. 12:e9722022. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Maldonado RF, Sá-Correia I and Valvano MA:
Lipopolysaccharide modification in Gram-negative bacteria during
chronic infection. FEMS Microbiol Rev. 40:480–493. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang X, Wang Y, Zhao X, Andersson R, Song
Z and Yang D: Potential effects of peroxisome
proliferator-activated receptor activator on LPS-induced lung
injury in rats. Pulm Pharmacol Ther. 22:318–325. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hardaker EL, Freeman MS, Dale N, Bahra P,
Raza F, Banner KH and Poll C: Exposing rodents to a combination of
tobacco smoke and lipopolysaccharide results in an exaggerated
inflammatory response in the lung. Br J Pharmacol. 160:1985–1996.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Di Lorenzo F, Silipo A, Bianconi I, Lore
NI, Scamporrino A, Sturiale L, Garozzo D, Lanzetta R, Parrilli M,
Bragonzi A and Molinaro A: Persistent cystic fibrosis isolate
Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS
structure responsible of its low inflammatory activity. Mol
Immunol. 63:166–175. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
De Stefano D, Ungaro F, Giovino C,
Polimeno A, Quaglia F and Carnuccio R: Sustained inhibition of IL-6
and IL-8 expression by decoy ODN to NF-κB delivered through
respirable large porous particles in LPS-stimulated cystic fibrosis
bronchial cells. J Gene Med. 13:200–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jiang L, Zhang L, Kang K, Fei D, Gong R,
Cao Y, Pan S and Zhao M and Zhao M: Resveratrol ameliorates
LPS-induced acute lung injury via NLRP3 inflammasome modulation.
Biomed Pharmacother. 84:130–138. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo B, Peng Y, Gu Y, Zhong Y, Su C, Liu L,
Chai D, Song T, Zhao N, Yan X and Xu T: Resveratrol pretreatment
mitigates LPS-induced acute lung injury by regulating conventional
dendritic cells' maturation and function. Open Life Sci.
16:1064–1081. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Y, Wang G, Zhang D and Sun X:
Resveratrol ameliorates LPS-induced acute lung injury mouse model
via induction of tristetraprolin. Comb Chem High Throughput Screen.
26:838–847. 2023. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang C, Yuan J and Du J: Resveratrol
alleviates acute lung injury through regulating PLSCR-3-mediated
mitochondrial dysfunction and mitophagy in a cecal ligation and
puncture model. Eur J Pharmacol. 913:1746432021. View Article : Google Scholar : PubMed/NCBI
|
17
|
de Oliveira MTP, de Sá Coutinho D, de
Souza ET, Guterres SS, Pohlmann AR, Silva PMR, Martins MA and
Bernardi A: Orally delivered resveratrol-loaded lipid-core
nanocapsules ameliorate LPS-induced acute lung injury via the ERK
and PI3K/Akt pathways. Int J Nanomedicine. 14:5215–5228. 2019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
de Oliveira MT, de Sá Coutinho D, Guterres
SS, Pohlmann AR, Silva PMR, Martins MA and Bernardi A:
Resveratrol-loaded lipid-core nanocapsules modulate acute lung
inflammation and oxidative imbalance induced by LPS in mice.
Pharmaceutics. 13:6832021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li L, Li J, Wang Y, Liu X, Li S, Wu Y,
Tang W and Qiu Y: Resveratrol prevents inflammation and oxidative
stress response in LPS-induced human gingival fibroblasts by
targeting the PI3K/AKT and Wnt/β-catenin signaling pathways. Genet
Mol Biol. 44:e202003492021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen J, Yang X, Zhang W, Peng D, Xia Y, Lu
Y, Han X, Song G, Zhu J and Liu R: Therapeutic effects of
resveratrol in a mouse model of LPS and cigarette smoke-induced
COPD. Inflammation. 39:1949–1959. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee SY, Lee HJ, Sikder MA, Shin HD, Kim
JH, Chang GT, Seok JH and Lee CJ: Resveratrol inhibits mucin gene
expression, production and secretion from airway epithelial cells.
Phytother Res. 26:1082–1087. 2012. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Ni ZH, Tang JH, Chen G, Lai YM, Chen QG,
Li Z, Yang W, Luo XM and Wang XB: Resveratrol inhibits mucus
overproduction and MUC5AC expression in a murine model of asthma.
Mol Med Rep. 13:287–294. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lin YH, Zhu LY, Yang YQ, Zhang ZH, Chen
QG, Sun YP, Bi JJ, Luo XM, Ni ZH and Wang XB: Resveratrol inhibits
MUC5AC expression by regulating SPDEF in lung cancer cells.
Phytomedicine. 89:1536012021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhuang Y, Wu H, Wang X, He J, He S and Yin
Y: Resveratrol attenuates oxidative stress-induced intestinal
barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway.
Oxid Med Cell Longev. 2019:75918402019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xun W, Fu Q, Shi L, Cao T, Jiang H and Ma
Z: Resveratrol protects intestinal integrity, alleviates intestinal
inflammation and oxidative stress by modulating AhR/Nrf2 pathways
in weaned piglets challenged with diquat. Int Immunopharmacol.
99:1079892021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li H, Shen Y, Xiao H and Sun W:
Resveratrol attenuates rotenone-induced inflammation and oxidative
stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell
line. Pathol Res Pract. 225:1535762021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ropert C, Almeida IC, Closel M, Travassos
LR, Ferguson MA, Cohen P and Gazzinelli RT: Requirement of
mitogen–activated protein kinases and I kappa B phosphorylation for
induction of proinflammatory cytokines synthesis by macrophages
indicates functional similarity of receptors triggered by
glycosylphosphatidylinositol anchors from parasitic protozoa and
bacterial lipopolysaccharide. J Immunol. 166:3423–3431. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim H, Seo JH and Kim KH: The effect of
p38 mitogen–activated protein kinase on mucin gene expression and
apoptosis in Helicobacter pylori–infected gastric epithelial cells.
Ann N Y Acad Sci. 1010:90–94. 2014. View Article : Google Scholar
|
29
|
Wang P, Ma X, He Y, Sun B, Zhu C, Zhao R,
Zhang S, Huang X and Liu Y: Effect of p38 mitogen–activate protein
kinase on MUC5AC protein expression of bile duct epithelial cells
in hepatolithiasis patients. Int J Clin Exp Pathol. 8:13753–13758.
2015.PubMed/NCBI
|
30
|
Choi YS, Na HG, Bae CH, Song SY and Kim
YD: Ghrelin downregulates lipopolysaccharide/leptin–induced MUC5AC
expression in human nasal epithelial cells. Clin Exp
Otorhinolaryngol. 16:49–58. 2023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhou M, Meng L, He Q, Ren C and Li C:
Valsartan attenuates LPS–induced ALI by modulating NF–κB and MAPK
pathways. Front Pharmacol. 15:13210952024. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ying YH, Lin XP, Zhou HB, Wu YF, Yan FG,
Hua W, Xia LX, Qiu ZW, Chen ZH, Li W and Shen HH: Nuclear erythroid
2 p45-related factor-2 Nrf2 ameliorates cigarette smoking-induced
mucus overproduction in airway epithelium and mouse lungs. Microbes
Infect. 16:855–863. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lin XP, Xue C, Zhang JM, Wu WJ, Chen XY
and Zeng YM: Curcumin inhibits lipopolysaccharide-induced mucin 5AC
hypersecretion and airway inflammation via nuclear factor erythroid
2-related factor 2. Chin Med J (Engl). 131:1686–1693. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
du Sert NP, Hurst V, Ahluwalia A, Alam S,
Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, et al:
The ARRIVE guidelines 2.0: Updated guidelines for reporting animal
research. PLoS Biol. 18:e30004102020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun Y, Shi Z, Lin Y, Zhang M, Liu J, Zhu
L, Chen Q, Bi J, Li S, Ni Z and Wang X: Benzo(a)pyrene induces
MUC5AC expression through the AhR/mitochondrial ROS/ERK pathway in
airway epithelial cells. Ecotoxicol Environ Saf. 210:1118572021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yan F, Li W, Jono H, Li Q, Zhang S, Li JD
and Shen H: Reactive oxygen species regulate Pseudomonas aeruginosa
lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH
oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial
cells. Biochem Biophys Res Commun. 366:513–519. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chiba T, Uchi H, Tsuji G, Gondo H, Moroi Y
and Furue M: Arylhydrocarbon receptor (AhR) activation in airway
epithelial cells induces MUC5AC via reactive oxygen species (ROS)
production. Pulm Pharmacol Ther. 24:133–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Binker MG, Binker-Cosen AA, Richards D,
Oliver B and Cosen-Binker LI: LPS-stimulated MUC5AC production
involves Rac1-dependent MMP-9 secretion and activation in NCI-H292
cells. Biochem Biophys Res Commun. 386:124–129. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li W, Yan F, Zhou H, Lin X, Wu Y, Chen C,
Zhou N, Chen Z, Li JD and Shen H: P. aeruginosa
lipopolysaccharide-induced MUC5AC and CLCA3 expression is partly
through Duox1 in vitro and in vivo. PLoS One. 8:e639452013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li M, Tian Y, Wu S, Yu H and Li Y: LPS
stimulates MUC5AC expression in human biliary epithelial cells:
Whether there exists a possible pathway of PKC/NADPH/ROS? Mol Cell
Biochem. 385:87–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Qi L, Xiangdong Z, Hongmei Y, Xiaohong N
and Xiaoyan X: Regulation of neutrophil elastase-induced MUC5AC
expression by nuclear factor erythroid-2 related factor 2 in human
airway epithelial cells. J Investig Med. 58:730–736. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu D, Li Y, Zhang B, Wang Y, Liu Y, Luo Y,
Niu W, Dong M, Liu M, Dong H, et al: Resveratrol alleviate hypoxic
pulmonary hypertension via anti-inflammation and anti-oxidant
pathways in rats. Int J Med Sci. 13:942–954. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ma Q: Role of nrf2 in oxidative stress and
toxicity. Annu Rev Pharmacol Toxicol. 53:401–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hybertson BM, Gao B, Bose SK and McCord
JM: Oxidative stress in health and disease: The therapeutic
potential of Nrf2 activation. Mol Aspects Med. 32:234–246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Singh S, Vrishni S, Singh BK, Rahman I and
Kakkar P: Nrf2-ARE stress response mechanism: A control point in
oxidative stress-mediated dysfunctions and chronic inflammatory
diseases. Free Radic Res. 44:1267–1288. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yang H, Wang Y, Liu M, Liu X, Jiao Y, Jin
S, Shan A and Feng X: Effects of dietary resveratrol
supplementation on growth performance and anti-inflammatory ability
in ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB
signaling pathways. Animals (Basel). 11:35882021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang H, Wang Y, Jin S, Pang Q, Shan A and
Feng X: Dietary resveratrol alleviated lipopolysaccharide-induced
ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas
platyrhynchos). J Anim Physiol Anim Nutr (Berl). 106:1306–1320.
2022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yang D, Jin M, Bai C, Zhou J and Shen Y:
Peroxiredoxin 6 suppresses Muc5ac overproduction in LPS-induced
airway inflammation through H2O2-EGFR-MAPK
signaling pathway. Respir Physiol Neurobiol. 236:84–90. 2017.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Huang J, Liu J, Chang G, Wang Y, Ma N, Roy
AC and Shen X: Glutamine supplementation attenuates the
inflammation caused by LPS-induced acute lung injury in mice by
regulating the TLR4/MAPK signaling pathway. Inflamation.
44:2180–2192. 2021. View Article : Google Scholar
|