1
|
Diane A, Allouch A, Mu UMRBA and
Al-Siddiqi HH: Endoplasmic reticulum stress in pancreatic β-cell
dysfunctionality and diabetes mellitus: A promising target for
generation of functional hPSC-derived β-cells in vitro. Front
Endocrinol (Lausanne). 15:13864712024. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ding Y, Shi Y, Guan R, Yan S, Liu H, Wang
Z, Li J, Wang T, Cai W and Ma G: Evaluation and comparison of
efficacy and safety of tirzepatide and semaglutide in patients with
type 2 diabetes mellitus: A Bayesian network meta-analysis.
Pharmacol Res. 199:1070312024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ye H, Wang R, Wei J, Wang Y, Zhang X and
Wang L: Bioinformatics analysis identifies potential ferroptosis
key gene in type 2 diabetic islet dysfunction. Front Endocrinol
(Lausanne). 13:9043122022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zheng Y, Ley SH and Hu FB: Global
aetiology and epidemiology of type 2 diabetes mellitus and its
complications. Nat Rev Endocrinol. 14:88–98. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sandoval DA and Patti ME: Glucose
metabolism after bariatric surgery: Implications for T2DM remission
and hypoglycaemia. Nat Rev Endocrinol. 19:164–176. 2023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu
R, Yin X and Xu Q: Obesity and type 2 diabetes mellitus:
Connections in epidemiology, pathogenesis and treatments. Front
Endocrinol (Lausanne). 14:11615212023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Marin-Penalver JJ, Martin-Timon I,
Sevillano-Collantes C and Del Canizo-Gomez FJ: Update on the
treatment of type 2 diabetes mellitus. World J Diabetes. 7:354–395.
2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ortiz-Martinez M, Gonzalez-Gonzalez M,
Martagon AJ, Hlavinka V, Willson RC and Rito-Palomares M: Recent
developments in biomarkers for diagnosis and screening of type 2
diabetes Mellitus. Curr Diab Rep. 22:95–115. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rovira-Llopis S, Banuls C, Diaz-Morales N,
Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics
in type 2 diabetes: Pathophysiological implications. Redox Biol.
11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baker ZN, Forny P and Pagliarini DJ:
Mitochondrial proteome research: The road ahead. Nat Rev Mol Cell
Biol. 25:65–82. 2024. View Article : Google Scholar : PubMed/NCBI
|
11
|
Miwa S, Kashyap S, Chini E and von
Zglinicki T: Mitochondrial dysfunction in cell senescence and
aging. J Clin Invest. 132:2022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ,
Kunovac A and Hollander JM: Mitochondrial dysfunction in type 2
diabetes mellitus: An Organ-based analysis. Am J Physiol Endocrinol
Metab. 316:E268–E285. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Palma FR, Gantner BN, Sakiyama MJ, Kayzuka
C, Shukla S, Lacchini R, Cunniff B and Bonini MG: ROS production by
mitochondria: Function or dysfunction? Oncogene. 43:295–303. 2024.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Apostolova N, Vezza T, Muntane J, Rocha M
and Victor VM: Mitochondrial dysfunction and mitophagy in type 2
diabetes: Pathophysiology and therapeutic targets. Antioxid Redox
Signal. 39:278–320. 2023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shan Z, Fa WH, Tian CR, Yuan CS and Jie N:
Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus
treatment. Aging (Albany NY). 14:2902–2919. 2022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shen S, Liao Q, Wong YK, Chen X, Yang C,
Xu C, Sun J and Wang J: The role of melatonin in the treatment of
type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci.
18:983–994. 2022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Luo M, Zhao F, Cheng H, Su M and Wang Y:
Macrophage polarization: An important role in inflammatory
diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI
|
18
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xie W, Li J, Du H and Xia J: Causal
relationship between PCSK9 inhibitor and autoimmune diseases: A
drug target Mendelian randomization study. Arthritis Res Ther.
25:1482023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hemani G, Zheng J, Elsworth B, Wade KH,
Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, et
al: The MR-Base platform supports systematic causal inference
across the human phenome. Elife. 7:e344082018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang S, Guo J, Kong Z, Deng M, Da J, Lin
X, Peng S, Fu J, Luo T, Ma J, et al: Causal effects of gut
microbiota on sepsis and sepsis-related death: Insights from
genome-wide Mendelian randomization, single-cell RNA, bulk RNA
sequencing and network pharmacology. J Transl Med. 22:102024.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Shen B, Liu J, Wu D and Guo J: Evaluation
of the safety and efficacy of high-dose rate brachytherapy for
radiorecurrent prostate cancer: Asystematic review and
meta-analysis. Strahlenther Onkol. 200:655–670. 2024. View Article : Google Scholar : PubMed/NCBI
|
24
|
Namazi N, Moghaddam SS, Esmaeili S,
Peimani M, Tehrani YS, Bandarian F, Shobeiri P, Nasli-Esfahani E,
Malekpour MR, Rezaei N, et al: Burden of type 2 diabetes mellitus
and its risk factors in North Africa and the Middle East,
1990–2019: findings from the Global Burden of Disease study 2019.
BMC Public Health. 24:982024. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang X, He Y, Xu H, Shen Y, Pan X, Wu J
and Chen K: Association between sociodemographic status and the
T2DM-related risks in China: Implication for reducing T2DM disease
burden. Front Public Health. 11:12972032023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Herman WH: Are There Clinical implications
of racial differences in HbA1c? Yes, to not consider can do great
harm! Diabetes Care. 39:1458–1461. 2016.PubMed/NCBI
|
27
|
Alidrisi HA, Al-Ibadi AA, Al-Saidi JS,
Alsawad MA, Jameel AA and Al-Shati AW: Comparative analysis of
glycemic and lipid profiles in newly diagnosed males and females
with type 2 diabetes mellitus. Cureus. 15:e501012023.PubMed/NCBI
|
28
|
Parrinello CM and Selvin E: Beyond HbA1c
and glucose: The role of nontraditional glycemic markers in
diabetes diagnosis, prognosis and management. Curr Diab Rep.
14:5482014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu H, Chen R, Hou X, Li N, Han Y and Ji S:
The clinical potential of 1,5-anhydroglucitol as biomarker in
diabetes mellitus. Front Endocrinol (Lausanne). 15:14715772024.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Blagov A, Nedosugova L, Kirichenko T,
Sukhorukov V, Melnichenko A and Orekhov A: Mitochondrial
dysfunction as a factor of energy metabolism disorders in type 2
diabetes mellitus. Front Biosci (Schol Ed). 16:52024. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun
H, Zhang H, Shi Y and He X: Telomeres and mitochondrial metabolism:
Implications for cellular senescence and Age-related diseases. Stem
Cell Rev Rep. 18:2315–2327. 2022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mattorre B, Caristi S, Donato S, Volpe E,
Faiella M, Paiardini A, Sorrentino R and Paladini F: A Short ERAP2
that binds IRAP is expressed in macrophages independently of gene
variation. Int J Mol Sci. 23:49612022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Q, Hao T, Li L, Huang D, Lin Z, Fang
Y, Wang D and Zhang X: Construction of a mitochondrial dysfunction
related signature of diagnosed model to obstructive sleep apnea.
Front Genet. 13:10566912022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Anderson K, Carey B, Martin A, Roark C,
Chalk C, Nowell-Bostic M, Freed B, Aubrey M, Trapnell B and
Fontenot A: Pulmonary alveolar proteinosis: An autoimmune disease
lacking an HLA association. PLoS One. 14:e02131792019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Qiu YH, Deng FY, Tang ZX, Jiang ZH and Lei
SF: Functional relevance for type 1 diabetes Mellitus-associated
genetic variants by using integrative analyses. Hum Immunol.
76:753–758. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ma ZJ, Sun P, Guo G, Zhang R and Chen LM:
Association of the HLA-DQA1 and HLA-DQB1 alleles in type 2 diabetes
mellitus and diabetic nephropathy in the han ethnicity of China. J
Diabetes Res. 2013:4525372013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Inoue H, Kanda T, Hayashi G, Munenaga R,
Yoshida M, Hasegawa K, Miyagawa T, Kurumada Y, Hasegawa J, Wada T,
et al: A MAP1B-cortactin-Tks5 axis regulates TNBC invasion and
tumorigenesis. J Cell Biol. 223:e2023031022024. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hatta T, Iemura SI, Ohishi T, Nakayama H,
Seimiya H, Yasuda T, Iizuka K, Fukuda M, Takeda J, Natsume T and
Horikawa Y: Calpain-10 regulates actin dynamics by proteolysis of
microtubule-associated protein 1B. Sci Rep. 8:167562018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li XY, Hou L, Zhang LY, Zhang L, Wang D,
Wang Z, Wen MZ and Yang XT: OAS3 is a Co-immune biomarker
associated with tumour microenvironment, disease staging, prognosis
and treatment response in multiple cancer types. Front Cell Dev
Biol. 10:8154802022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu C, Chen X, Shu J and Lee CT:
Whole-genome expression analyses of type 2 diabetes in human skin
reveal altered immune function and burden of infection. Oncotarget.
8:34601–34609. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Potenza MA, Sgarra L, Desantis V, Nacci C
and Montagnani M: Diabetes and Alzheimer's Disease: Might
mitochondrial dysfunction help deciphering the common path?
Antioxidants (Basel). 10:12572021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Turnbull DM, Bone AJ, Tames FJ, Wilson L,
Baird JD and Sherratt HS: The effect of valproate on blood
metabolite concentrations in spontaneously diabetic, ketoacidotic,
BB/E Wistar rats. Diabetes Res. 2:45–48. 1985.PubMed/NCBI
|
43
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane
P, Khathi A and Sibiya N: Drug-induced mitochondrial toxicity:
Risks of developing glucose handling impairments. Front Endocrinol
(Lausanne). 14:11239282023. View Article : Google Scholar : PubMed/NCBI
|
44
|
Stakisaitis D, Kapocius L, Kilimaite E,
Gečys D, Šlekienė L, Balnytė I, Palubinskienė J and Lesauskaitė V:
Preclinical study in mouse thymus and thymocytes: Effects of
treatment with a combination of sodium dichloroacetate and sodium
valproate on infectious inflammation pathways. Pharmaceutics.
15:27152023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Khan S and Jena G: Valproic acid improves
glucose homeostasis by increasing beta-cell proliferation, function
and reducing its apoptosis through HDAC inhibition in juvenile
diabetic rat. J Biochem Mol Toxicol. 30:438–446. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Cicek NP, Kamasak T, Serin M, Okten A,
Alver A and Cansu A: The effects of valproate and topiramate use on
serum insulin, leptin, neuropeptide Y and ghrelin levels in
epileptic children. Seizure. 58:90–95. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tien N, Wu TY, Lin CL, Chu FY, Wang CCN,
Hsu CY, Tsai FJ, Fang YJ and Lim YP: Association of epilepsy,
anti-epileptic drugs (AEDs) and type 2 diabetes mellitus (T2DM): A
population-based cohort retrospective study, impact of AEDs on
T2DM-related molecular pathway and via peroxisome
proliferator-activated receptor gamma transactivation. Front
Endocrinol (Lausanne). 14:11569522023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Daryabor G, Atashzar MR, Kabelitz D, Meri
S and Kalantar K: The effects of type 2 diabetes mellitus on organ
metabolism and the immune system. Front Immunol. 11:15822020.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Painter JD and Akbari O: Type 2 innate
lymphoid cells: Protectors in type 2 Diabetes. Front Immunol.
12:7270082021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Song Y, He C, Jiang Y, Yang M, Xu Z, Yuan
L, Zhang W and Xu Y: Bulk and single-cell transcriptome analyses of
islet tissue unravel gene signatures associated with pyroptosis and
immune infiltration in type 2 diabetes. Front Endocrinol
(Lausanne). 14:11321942023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang S, Gang X, Yang S, Cui M, Sun L, Li
Z and Wang G: The alterations in and the role of the Th17/Treg
balance in metabolic diseases. Front Immunol. 12:6783552021.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Xia C, Rao X and Zhong J: Role of T
lymphocytes in type 2 diabetes and diabetes-associated
inflammation. J Diabetes Res. 2017:64947952017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Sun Q, Yang P, Gu QW, Gu WS, Wang W, Wang
J and Mao XM: Increased glycemic variability results in abnormal
differentiation of T cell subpopulation in type 2 diabetes
patients. J Diabetes Complications. 38:1087382024. View Article : Google Scholar : PubMed/NCBI
|
54
|
Abdel-Moneim A, Bakery HH and Allam G: The
potential pathogenic role of IL-17/Th17 cells in both type 1 and
type 2 diabetes mellitus. Biomed Pharmacother. 101:287–292. 2018.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang C and Zhou B: Associations of blood
glucose, helper T cells and cytokine levels with degree of
periodontal lesion in type 2 diabetes mellitus patients accompanied
by chronic periodontitis. Afr Health Sci. 23:239–245. 2023.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Ju SH, Lim JY, Song M, Kim JM, Kang YE, Yi
HS, Joung KH, Lee JH, Kim HJ and Ku BJ: Distinct effects of
rosuvastatin and rosuvastatin/ezetimibe on senescence markers of
CD8+ T cells in patients with type 2 diabetes mellitus: A
randomized controlled trial. Front Endocrinol (Lausanne).
15:13363572024. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ju SH and Ku BJ: Effects of
rosuvastatin/ezetimibe on senescence of CD8+ T-cell in type 2
diabetic patients with hypercholesterolemia: A study protocol.
Medicine (Baltimore). 101:e316912022. View Article : Google Scholar : PubMed/NCBI
|
58
|
Osawa Y, Studenski SA and Ferrucci L: Knee
extension rate of velocity development affects walking performance
differently in men and women. Exp Gerontol. 112:63–67. 2018.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Gao D, Jiao J, Wang Z, Huang X, Ni X, Fang
S, Zhou Q, Zhu X, Sun L, Yang Z and Yuan H: The roles of cell-cell
and organ-organ crosstalk in the type 2 diabetes mellitus
associated inflammatory microenvironment. Cytokine Growth Factor
Rev. 66:15–25. 2022. View Article : Google Scholar : PubMed/NCBI
|
60
|
Lee MK, Ryu H, Van JY, Kim MJ, Jeong HH,
Jung WK, Jun JY and Lee B: The role of macrophage populations in
skeletal muscle insulin sensitivity: Current understanding and
implications. Int J Mol Sci. 24:114672023. View Article : Google Scholar : PubMed/NCBI
|
61
|
Pivari F, Mingione A, Brasacchio C and
Soldati L: Curcumin and Type 2 Diabetes Mellitus: Prevention and
Treatment. Nutrients. 11:18372019. View Article : Google Scholar : PubMed/NCBI
|
62
|
Banu S and Sur D: Role of macrophage in
type 2 diabetes mellitus: macrophage polarization a new paradigm
for treatment of type 2 diabetes mellitus. Endocr Metab Immune
Disord Drug Targets. 23:2–11. 2023. View Article : Google Scholar : PubMed/NCBI
|
63
|
Schachinger E, Chanda G, Lobo RP, Naito M
and Pronin AV: Eliashberg analysis of the optical conductivity in
superconducting Pr2CuOx with × ≃ 4. J Phys Condens Matter.
27:0457022015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Zhang JA, Zhou XY, Huang D, Luan C, Gu H,
Ju M and Chen K: Development of an Immune-related gene signature
for prognosis in melanoma. Front Oncol. 10:6025552020. View Article : Google Scholar : PubMed/NCBI
|
65
|
O'Brien CL, Summers KM, Martin NM,
Carter-Cusack D, Yang Y, Barua R, Dixit OVA, Hume DA and Pavli P:
The relationship between extreme inter-individual variation in
macrophage gene expression and genetic susceptibility to
inflammatory bowel disease. Hum Genet. 143:233–261. 2024.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Lyu X, Qiang Y, Zhang B, Xu W, Cui Y and
Ma L: Identification of immuno-infiltrating MAP1A as a
prognosis-related biomarker for bladder cancer and its ceRNA
network construction. Front Oncol. 12:10165422022. View Article : Google Scholar : PubMed/NCBI
|
67
|
Monti A, Lopez-Serrano J, Prieto A and
Nicasio MC: Broad-scope amination of aryl sulfamates catalyzed by a
palladium phosphine complex. ACS Catal. 13:10945–10952. 2023.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Han Y, Liu S, Shi S, Shu Y, Lu C and Gu X:
Screening of genes associated with immune infiltration of discoid
lupus erythematosus based on weighted gene Co-expression network
analysis. Biochem Genet. 63:465–482. 2025. View Article : Google Scholar : PubMed/NCBI
|
69
|
Khalid M, Alkaabi J, Khan MAB and Adem A:
Insulin signal transduction perturbations in insulin resistance.
Int J Mol Sci. 22:85902021. View Article : Google Scholar : PubMed/NCBI
|