
Exploring the mechanism of fibronectin extra domain B in the tumor microenvironment and implications for targeted immunotherapy and diagnostics (Review)
- Authors:
- Yuan Zhou
- Tao Chen
- Yawen Pan
- Jing Liu
-
Affiliations: Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China, Department of Vascular Surgery, Jining Medical College, Jining, Shandong 272000, P.R. China, Department of Geriatric Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China - Published online on: April 10, 2025 https://doi.org/10.3892/mmr.2025.13525
- Article Number: 160
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Tiwari A, Trivedi R and Lin SY: Tumor microenvironment: Barrier or opportunity towards effective cancer therapy. J Biomed Sci. 29:832022. View Article : Google Scholar : PubMed/NCBI | |
Kolesnikoff N, Chen CH and Samuel MS: Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clin Sci (Lond). 136:361–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D and Van Obberghen-Schilling E: Sha up the tumor microenvironment with cellular fibronectin. Front Oncol. 10:6412020. View Article : Google Scholar : PubMed/NCBI | |
Kim SE, Yun S and Doh J: Effects of extracellular adhesion molecules on immune cell mediated solid tumor cell killing. Front Immunol. 13:10041712022. View Article : Google Scholar : PubMed/NCBI | |
Parmar D and Apte M: Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur J Pharmacol. 899:174021. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Lv X and Huang S: Recent progress on the role of fibronectin in tumor stromal immunity and immunotherapy. Curr Top Med Chem. 22:2494–2505. 2022. View Article : Google Scholar : PubMed/NCBI | |
Neri D and Sondel PM: Immunocytokines for cancer treatment: Past, present and future. Curr Opin Immunol. 40:96–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li R, Li M and Wang C: Fibronectin and colorectal cancer: Signaling pathways and clinical implications. J Recept Signal Transduct Res. 41:313–320. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wagner J, Wickman E, Shaw TI, Anido AA, Langfitt D, Zhang J, Porter SN, Pruett-Miller SM, Tillman H, Krenciute G and Gottschalk S: Antitumor effects of CAR T cells redirected to the EDB Splice variant of fibronectin. Cancer Immunol Res. 9:279–290. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C and Gao G: Fibronectin promotes tumor angiogenesis and progression of Non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol. 12:612023. View Article : Google Scholar : PubMed/NCBI | |
Pankov R and Yamada KM: Fibronectin at a glance. J Cell Sci. 115:3861–3863. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kumra H and Reinhardt DP: Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev. 97:101–110. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Seo BR, Fischbach C and Gourdon D: Fibronectin mechanobiology regulates tumorigenesis. Cell Mol Bioeng. 9:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kraft S, Klemis V, Sens C, Lenhard T, Jacobi C, Samstag Y, Wabnitz G, Kirschfink M, Wallich R, Hänsch GM and Nakchbandi IA: Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl). 94:567–581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dalton CJ and Lemmon CA: Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. Cells. 10:24432021. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Carraher C and Schwarzbauer JE: Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 26:397–419. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ventura E, Sassi F, Parodi A, Balza E, Borsi L, Castellani P, Carnemolla B and Zardi L: Alternative splicing of the angiogenesis associated Extra-domain B of fibronectin regulates the accessibility of the B-C loop of the type III repeat 8. PLoS One. 5:e91452010. View Article : Google Scholar : PubMed/NCBI | |
Barrow-McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche BA, Noval AJ, Mai A, Guzmán C, Robbez-Masson L, et al: Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun. 7:123922016. View Article : Google Scholar : PubMed/NCBI | |
Dinesh NEH, Campeau PM and Reinhardt DP: Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol. 323:C536–C549. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guerrero-Barberà G, Burday N and Costell M: Shaping oncogenic microenvironments: Contribution of fibronectin. Front Cell Dev Biol. 12:13630042024. View Article : Google Scholar : PubMed/NCBI | |
Rick JW, Chandra A, Dalle Ore C, Nguyen AT, Yagnik G and Aghi MK: Fibronectin in malignancy: Cancer-specific alterations, protumoral effects and therapeutic implications. Semin Oncol. 46:284–290. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Ryu JM and Han HJ: Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: Role of FAK, RhoA, PI3K/Akt and ERK 1/2 pathways. J Cell Physiol. 226:267–275. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fei D, Meng X, Yu W, Yang S, Song N, Cao Y, Jin S, Dong L, Pan S and Zhao M: Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin β1. Virulence. 9:1588–1600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Menrad A and Menssen HD: ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets. 9:491–500. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hall RC, Vaidya AM, Schiemann WP, Pan Q and Lu ZR: RNA-Seq analysis of extradomain a and extradomain B fibronectin as extracellular matrix markers for cancer. Cells. 12:6852023. View Article : Google Scholar : PubMed/NCBI | |
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C II, Castro MG and Lowenstein PR: The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol. 12:10050692022. View Article : Google Scholar : PubMed/NCBI | |
Chen CW, Yang CH, Lin YH, Hou YC, Cheng TJ, Chang ST, Huang YH, Chung ST, Chio CC, Shan YS, et al: The fibronectin expression determines the distinct progressions of malignant gliomas via transforming growth Factor-beta pathway. Int J Mol Sci. 22:3782. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hall RC, Ayat NR, Qiao PL, Vaidya AM, Ma D, Aminoshariae A, Stojanov I and Lu ZR: Preclinical assessment of the effectiveness of magnetic resonance molecular imaging of Extradomain-B fibronectin for detection and characterization of oral cancer. Mol Imaging Biol. 22:1532–1542. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vaidya A, Wang H, Qian V, Gilmore H and Lu ZR: Overexpression of Extradomain-B fibronectin is associated with invasion of breast cancer cells. Cells. 9:18262020. View Article : Google Scholar : PubMed/NCBI | |
Nail HM, Chiu CC, Leung CH, Ahmed MMM and Wang HD: Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci. 30:692023. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Molecular Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
Burrows L, Clark K, Mould AP and Humphries MJ: Fine mapping of inhibitory anti-α5 monoclonal antibody epitopes that differentially affect integrin-ligand binding. Biochem J. 344:527. 1999. View Article : Google Scholar : PubMed/NCBI | |
Farndale RW and Jarvis GE: Integrins in GtoPdb v.2023.1. IUPHAR/BPS guide to pharmacology CITE. Apr 26–2023.doi:10.2218/gtopdb/f760/2023.1. View Article : Google Scholar | |
Takagi J: Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans. 32:403–406. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kolasangiani R, Bidone TC and Schwartz MA: Integrin conformational dynamics and mechanotransduction. Cells. 11:35842022. View Article : Google Scholar : PubMed/NCBI | |
Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, Tarone G and Defilippi P: Integrins induce activation of EGF receptor: Role in MAP kinase induction and adhesion-dependent cell survival. EMBO J. 17:6622–6632. 1998. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Xia W, Li J, Walz T, Humphries MJ, Vestweber D, Cabañas C, Lu C and Springer TA: Relating conformation to function in integrin α 5 β 1. Proc Natl Acad Sci USA. 113:E3872–E3881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Widmaier M, Rognoni E, Radovanac K, Azimifar SB and Fässler R: Integrin-linked kinase at a glance. J Cell Sci. 125:1839–1843. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsuura S, Thompson CR, Kah NS, Karagianni A, Torres CW, Mazzeo CS, Leiva O, Malara A, Balduini A and Ravid K: Integrin-mediated adhesion to extracellular matrix protein fibronectin drives megakaryocytosis in JAK2V617F+ primary myelofibrosis. Blood. 134 (Suppl 1):S42052019. View Article : Google Scholar | |
Andreucci E, Bugatti K, Peppicelli S, Ruzzolini J, Lulli M, Calorini L, Battistini L, Zanardi F, Sartori A and Bianchini F: Nintedanib-αVβ6 integrin ligand conjugates reduce TGFβ-Induced EMT in human Non-small cell lung cancer. Int J Mol Sci. 24:14752023. View Article : Google Scholar : PubMed/NCBI | |
Haarmann A, Nowak E, Deiß A, van der Pol S, Monoranu CM, Kooij G, Müller N, van der Valk P, Stoll G, de Vries HE, et al: Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathologica. 129:639–652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Iacob RE, Li J, Engen JR and Springer TA: Dynamics of integrin α5β1, fibronectin and their complex reveal sites of interaction and conformational change. J Biol Chem. 298:1023232022. View Article : Google Scholar : PubMed/NCBI | |
Durrant TN, van den Bosch MT and Hers I: Integrin αIIbβ3 outside-in signaling. Blood. 130:1607–1619. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q and Cui Y: Targeting integrin pathways: Mechanisms and advances in therapy. Signal. 8:12023. | |
Shams H and Mofrad MRK: Molecular mechanisms underlying the inside-out signaling through focal adhesions. Biophysical J. 106:574a2014. View Article : Google Scholar | |
Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K and Ginsberg MH: Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol. 11:624–630. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han SB, Lee G, Kim D, Kim JK, Kim IS, Kim HW and Kim DH: Selective suppression of Integrin-ligand binding by single molecular tension probes mediates directional cell migration. Adv Sci (Weinh). 11:e23064972024. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, You SJ, Yang DH, Chun HJ and Kim MS: Preparation of novel RGD-conjugated thermosensitive mPEG-PCL composite hydrogels and in vitro investigation of their impacts on Adhesion-dependent cellular behavior. J Industrial Engineering Chemistry. 84:226–235. 2020. View Article : Google Scholar | |
Legate KR, Wickström SA and Fässler R: Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23:397–418. 2009. View Article : Google Scholar : PubMed/NCBI | |
Betriu N, Andreeva A, Alonso A and Semino CE: Increased stiffness downregulates focal adhesion kinase expression in pancreatic cancer cells cultured in 3D Self-assembling peptide scaffolds. Biomedicines. 10:1835. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martinez OE and Sudhamsu J: Abstract A025: Investigating the molecular mechanisms of regulation of the RAS guanine nucleotide exchange factor, SOS1 by Grb2 and 14-3-3. Mol Cancer Res. 21 (5_Suppl):A0252023. View Article : Google Scholar : PubMed/NCBI | |
Lagarrigue F and Gingras AR: Src-mediated phosphorylation of RIAM promotes integrin activation. Structure. 29:305–307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kang BW and Chau I: Molecular target: Pan-AKT in gastric cancer. ESMO Open. 5:e0007282020. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Xue X, Chen Y, Zheng N and Wang J: Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res. 184:1064562022. View Article : Google Scholar : PubMed/NCBI | |
Alanko J and Ivaska J: Endosomes: Emerging platforms for Integrin-mediated FAK signalling. Trends Cell Biol. 26:391–398. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wan J: The regulatory role of the mitotic checkpoint component Mad1 in interphase and tumor progression. University of Wisconsin-Madison; 2019 | |
Liu J, Lu F, Ithychanda SS, Apostol M, Das M, Deshpande G, Plow EF and Qin J: A mechanism of platelet integrin αIIbβ3 outside-in signaling through a novel integrin αIIb subunit-filamin-actin linkage. Blood. 141:2629–2641. 2023.PubMed/NCBI | |
Shams H and Mofrad MRK: α-Actinin induces a kink in the transmembrane domain of β3-Integrin and impairs activation via talin. Biophys J. 113:948–956. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fraser J, Simpson J, Fontana R, Kishi-Itakura C, Ktistakis NT and Gammoh N: Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep. 20:e477342019. View Article : Google Scholar : PubMed/NCBI | |
Miao M, Collins J, Moreira Bahnson ES, Chubinskaya S and Loeser RF: Reactive oxygen species regulate fibronectin fragments-induced map kinase signaling and metalloproteinase 13 release in human chondrocytes through nadph oxidase 2 and endocytosis of chondrocyte integrins. Osteoarthritis. 28 (Suppl):S45–S46. 2020. View Article : Google Scholar | |
Teran OY, Zanotelli MR, Joy Lin MC, Cerione RA and Wilson KF: Dock7 regulates AKT and mTOR/S6K activity required for the transformed phenotypes and survival of cancer cells. bioRxiv. Jan 3–2023.doi: 10.1101/2023.01.03.522657. PubMed/NCBI | |
Gagné D, Benoit YD, Groulx JF, Vachon PH and Beaulieu JF: ILK supports RhoA/ROCK-mediated contractility of human intestinal epithelial crypt cells by inducing the fibrillogenesis of endogenous soluble fibronectin during the spreading process. BMC Mol Cell Biol. 21:142020. View Article : Google Scholar : PubMed/NCBI | |
Nadel G, Maik-Rachline G and Seger R: JNK Cascade-induced Apoptosis-A unique role in GqPCR signaling. Int J Mol Sci. 24:13527. 2023. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran D, Nguyen MA, Geoffrion M, Vreeken D, Lister Z, Cheng HS, Otte N, Essebier P, Wyatt H, Kandiah JW, et al: RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice. Circulation. 143:163–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Meng F, Wu S, Kreike B, Sethi S, Chen W, Miller FR and Wu G: Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res. 71:4846–4856. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 16:1242017. View Article : Google Scholar : PubMed/NCBI | |
Weller M, Silginer M, Goodman SL, Hasenbach K, Thies S, Schraml P, Tabatabai G, Moch H, Tritschler I and Roth P: Effect of the integrin inhibitor cilengitide on TGF-beta signaling. J Clin Oncol. 30 (15_suppl):S20552012. View Article : Google Scholar | |
Valdembri D and Serini G: Angiogenesis: The importance of RHOJ-mediated trafficking of active integrins. Current Biology. 30:R652–R654. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nilsson M and Heymach JV: Vascular endothelial growth factor (VEGF) pathway. J Thorac Oncol. 1:768–770. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Z and Dong Z: A cross talk between HIF and NF-κB in AKI. Am J Physiol Renal Physiol. 321:F255–F256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang J, Qin W, Hu Q, Li J, Qin R, Ma N, Zheng F, Tian W, Jiang J, et al: Dehydroepiandrosterone promotes ovarian angiogenesis and improves ovarian function in a rat model of premature ovarian insufficiency by up-regulating HIF-1α/VEGF signalling. Reprod Biomed Online. 49:1039142024. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee S and Naik UP: Pericyte-endothelial cell interaction. Cell Adh Migr. 6:157–159. 2012. View Article : Google Scholar : PubMed/NCBI | |
Surazynski A, Donald SP, Cooper SK, Whiteside MA, Salnikow K, Liu Y and Phang JM: Extracellular matrix and HIF-1 signaling: The role of prolidase. Int J Cancer. 122:1435–1440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Caporali A, Martello A, Miscianinov V, Maselli D, Vono R and Spinetti G: Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther. 171:56–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V and Volarevic V: Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci. 25:122028. | |
Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H and Isacke CM: Pericytes promote selective vessel regression to regulate vascular patterning. Blood. 120:1516–1527. 2012. View Article : Google Scholar : PubMed/NCBI | |
Smart N: Understanding the recruitment process. Arteriosclerosis Thrombosis Vascular Biol. 40:2564–2565. 2020. View Article : Google Scholar : PubMed/NCBI | |
Senger DR and Davis GE: Angiogenesis. Cold Spring Harb Perspect Biol. 3:a0050902011. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Snuderl M and Jain RK: Polarization of Tumor-associated macrophages: A novel strategy for vascular normalization and antitumor immunity. Cancer Cell. 19:1–2. 2011. View Article : Google Scholar : PubMed/NCBI | |
Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR and Varricchi G: Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 10:431. 2022. View Article : Google Scholar : PubMed/NCBI | |
Van Hinsbergh VW and Koolwijk P: Endothelial sprouting and angiogenesis: Matrix metalloproteinases in the lead. Cardiovasc Res. 78:203–212. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y and Zhang Q: The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res. 41:2032022. View Article : Google Scholar : PubMed/NCBI | |
Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, Ng IO, Man K, To KF, Lai PB, et al: CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 55:807–820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Engelmann D, Mayoli-Nüssle D, Mayrhofer C, Fürst K, Alla V, Stoll A, Spitschak A, Abshagen K, Vollmar B, Ran S and Pützer BM: E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J Mol Cell Biol. 5:391–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M and Hamblin MR: Interactions between tumor biology and targeted nanoplatforms for imaging applications. Adv Funct Mater. 30:19104022020. View Article : Google Scholar : PubMed/NCBI | |
Vaidya A, Ayat N, Buford M, Wang H, Shankardass A, Zhao Y, Gilmore H, Wang Z and Lu ZR: Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics. 10:111272020. View Article : Google Scholar : PubMed/NCBI | |
Lewandowski S, Diao L, Quigley A, Crochiere M and Pinkas J: EDB+ FN is an attractive therapeutic target in oncology: Insights from protein expression analysis of solid tumors. Cancer Res. 84 (6_Suppl):S29082004. View Article : Google Scholar | |
Qiao P, Ayat NR, Vaidya A, Gao S, Sun W, Chou S, Han Z, Gilmore H, Winter JM and Lu ZR: Magnetic resonance molecular imaging of extradomain B fibronectin improves imaging of pancreatic cancer tumor xenografts. Front Oncol. 10:5867272020. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Hao Y, Wang Y, Song W, Zhang S, Ni D, Yan F and Sun L: Ultrasound molecular imaging of bladder cancer via extradomain B Fibronectin-targeted biosynthetic GVs. Int J Nanomedicine. 18:4871–4884. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zheng X, Huang Y, Li S, Li X and Zhu L: EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice. Sci Rep. 14:220562024. View Article : Google Scholar : PubMed/NCBI | |
Mohammadgholi M, Sadeghzadeh N, Erfani M, Abediankenari S, Abedi SM, Emrarian I, Jafari N and Behzadi R: Human fibronectin Extra-domain B (EDB)-Specific aptide (APTEDB) radiolabelling with technetium-99m as a potent targeted Tumour-imaging agent. Anticancer Agents Med Chem. 18:277–285. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiao PL, Gargesha M, Liu Y, Laney VEA, Hall RC, Vaidya AM, Gilmore H, Gawelek K, Scott BB, Roy D, et al: Magnetic resonance molecular imaging of extradomain B fibronectin enables detection of pancreatic ductal adenocarcinoma metastasis. Magn Reson Imaging. 86:37–45. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sergeeva O, Zhang Y, Gao S, Chan ER, Sergeev M, Iyer R, Sexton S, Avril N, Lu ZR and Lee Z: PET imaging of hepatocellular carcinoma using ZD2-(Ga-NOTA). J Hepatocell Carcinoma. 10:291–301. 2023. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Sergeeva O, Roelle S, Cheng H, Gao S, Li Y, Lee Z and Lu ZR: Preparation and evaluation of ZD2 peptide Cu-DOTA conjugate as a positron emission tomography probe for detection and characterization of prostate cancer. ACS Omega. 4:1185–1190. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu ZR, Laney V and Li Y: Targeted contrast agents for magnetic resonance molecular imaging of cancer. Acc Chem Res. 55:2833–2847. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Sergeeva O, Roelle S, Cheng H, Gao S, Li Y, Lee Z and Lu ZR: Preparation and evaluation of ZD2 Peptide 64Cu-DOTA conjugate as a positron emission tomography probe for detection and characterization of prostate cancer. ACS Omega. 4:1185–1190. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Li Y, Roelle S, Zhou Z, Liu Y, Sabatelle R, DeSanto A, Yu X, Zhu H, Magi-Galluzzi C and Lu ZR: Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI. Bioconjug Chem. 28:1031–1040. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye XX, Zhao YY, Wang Q, Xiao W, Zhao J, Peng YJ, Cao DH, Lin WJ, Si-Tu MY, Li MZ, et al: EDB Fibronectin-Specific SPECT Probe 99mTc-HYNIC-ZD2 for breast cancer detection. ACS Omega. 2:2459–2468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liang X, Zhang X, Tong W, Shi G, Guo H, Jin Z, Tian J, Du Y and Xue H: Magnetic-optical dual-modality imaging monitoring chemotherapy efficacy of pancreatic ductal adenocarcinoma with a low-dose fibronectin-targeting Gd-based contrast agent. Eur J Nucl Med Mol Imaging. 51:1841–1855. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Huang Y, Wang X, Wang D, Yao D and Ren GL: Fibronectin-targeting Dual-Modal MR/NIRF imaging contrast agents for diagnosis of gastric cancer and peritoneal metastasis. Bioconjug Chem. 35:843–854. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang MD, Lv GT, An HW, Zhang NY and Wang H: In Situ Self-assembly of bispecific peptide for cancer immunotherapy. angewandte chemie international edition. Angew Chem Int Ed Engl. 61:e2021136492022. View Article : Google Scholar : PubMed/NCBI | |
Ranjbar L, Maleki F, Sadeghzadeh N, Abediankenari S, Mardanshahi A and Masteri Farahani A: In vitro/in vivo assessment of the targeting ability of [99mTc] Tc-labeled an aptide specific to the extra domain B of fibronectin (APTEDB) for colorectal cancer. Ann Nucl Med. 34:460–466. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghaffari H, Atashzar MR and Abdollahi H: Molecular imaging in tracking cancer stem cells: A review. Med J Islam Repub Iran. 34:902020.PubMed/NCBI | |
Noh I, Son Y, Jung W, Kim M, Kim D, Shin H, Kim YC and Jon S: Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials. 275:1209262021. View Article : Google Scholar : PubMed/NCBI | |
Henze J: Immunotherapy of solid tumors: Multimodal imaging strategies for chimeric antigen receptor T cell tracking in the tumor microenvironment. Dissertation Göttingen: Georg-August Universität; 2021 | |
Sun Y, Kim HS, Park J, Li M, Tian L, Choi Y, Choi BI, Jon S and Moon WK: MRI of breast tumor initiating cells using the extra domain-B of fibronectin targeting nanoparticles. Theranostics. 4:845–857. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Kim HS, Kang S, Piao YJ, Jon S and Moon WK: Magnetic resonance Imaging-guided drug delivery to breast cancer Stem-like cells. Adv Healthc Mater. 7:e18002662018. View Article : Google Scholar : PubMed/NCBI | |
Park J, Kim S, Saw PE, Lee IH, Yu MK, Kim M, Lee K, Kim YC, Jeong YY and Jon S: Fibronectin extra domain B-specific aptide conjugated nanoparticles for targeted cancer imaging. J Control Release. 163:111–118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, Jiang Z, Ploegh HL and Hynes RO: Noninvasive imaging of tumor progression, metastasis and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci USA. 116:187452019. View Article : Google Scholar : PubMed/NCBI | |
Reeves KM: Applying PET imaging to cancer immunotherapy to improve clinical outcomes. The University of Alabama; Birmingham: 2022 | |
Rossin R, Berndorff D, Friebe M, Dinkelborg LM and Welch MJ: Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med. 48:1172–1179. 2007. View Article : Google Scholar : PubMed/NCBI | |
Berndorff D, Borkowski S, Moosmayer D, Viti F, Müller-Tiemann B, Sieger S, Friebe M, Hilger CS, Zardi L, Neri D and Dinkelborg LM: Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med. 47:1707–1716. 2006.PubMed/NCBI | |
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z and Jin S: Crosstalk between colorectal CSCs and immune cells in tumorigenesis and strategies for targeting colorectal CSCs. Exp Hematol Oncol. 13:62024. View Article : Google Scholar : PubMed/NCBI | |
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, et al: Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 25:18482024. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li S, Chen D, Liu D, Guo H, Yang C, Zhang W, Zhang L, Zhao G, Tu X, et al: SIRPα-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPα signal pathway via blocking the ‘don't eat me’ signal and activating the ‘eat me’ signal. J Hematol Oncol. 15:1672022. View Article : Google Scholar : PubMed/NCBI | |
Li R, Wang Q, She K, Lu F and Yang Y: CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Mol Biomed. 3:312022. View Article : Google Scholar : PubMed/NCBI | |
Dabas P and Danda A: Revolutionizing cancer treatment: A comprehensive review of CAR-T cell therapy. Med Oncol. 40:2752023. View Article : Google Scholar : PubMed/NCBI | |
Johannsen M, Spitaleri G, Curigliano G, Roigas J, Weikert S, Kempkensteffen C, Roemer A, Kloeters C, Rogalla P, Pecher G, et al: The tumour-targeting human L19-IL2 immunocytokine: Preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer. 46:2926–2935. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schliemann C, Börschel N, Schwöppe C, Liersch R, Kessler T, Dreyling M, Klapper W, Menssen HD, Neri D, Berdel WE and Mesters RM: Targeting Interleukin-2 to the neovasculature potentiates Rituximab's activity against mantle cell lymphoma in mice. Blood. 120:3716. 2012. View Article : Google Scholar | |
Orecchia P, Balza E, Pietra G, Conte R, Bizzarri N, Ferrero S, Mingari MC and Carnemolla B: L19-IL2 immunocytokine in combination with the anti-syndecan-1 46F2SIP antibody format: A new targeted treatment approach in an ovarian carcinoma model. Cancers (Basel). 11:12322019. View Article : Google Scholar : PubMed/NCBI | |
Schliemann C, Palumbo A, Zuberbühler K, Villa A, Kaspar M, Trachsel E, Klapper W, Menssen HD and Neri D: Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood. 113:2275–2283. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weide B, Eigentler T, Catania C, Ascierto PA, Cascinu S, Becker JC, Hauschild A, Romanini A, Danielli R, Dummer R, et al: A phase II study of the L19IL2 immunocytokine in combination with dacarbazine in advanced metastatic melanoma patients. Cancer Immunol Immunother. 68:1547–1559. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van Limbergen EJ, Hoeben A, Lieverse RIY, Houben R, Overhof C, Postma A, Zindler J, Verhelst F, Dubois LJ, De Ruysscher D, et al: Toxicity of L19-Interleukin 2 Combined with Stereotactic Body Radiation Therapy: A Phase 1 Study. Int J Radiat Oncol Biol Phys. 109:1421–1430. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AC, Hendriks LEL, Eckert F, Hiley C, Dooms C, et al: Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: A multicentre, randomised controlled open-label phase II trial. BMC Cancer. 20:5572020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Mills D, Kim JY, Knudsen N, Nelson J, Buechler Y and Skidmore L: 41P Evaluation of ARX517: A next-generation anti-PSMA antibody drug conjugate for prostate cancer treatment, in preclinical enzalutamide-resistant and enzalutamide-sensitive pharmacology models and in toxicology models. Ann Oncol. 34 (Suppl 2):S1992023. View Article : Google Scholar | |
Nakada T, Sugihara K, Jikoh T, Abe Y and Agatsuma T: The latest research and development into the antibody-drug conjugate, (fam-)Trastuzumab Deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull (Tokyo). 67:173–185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ceci C, Lacal PM and Graziani G: Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther. 236:1081062022. View Article : Google Scholar : PubMed/NCBI | |
Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, Acton G, Erlandsson F and Spicer JF: A phase 1 study of AS1409, a novel Antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res. 17:1998–2005. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ongaro T, Gouyou B, Stringhini M, Corbellari R, Neri D and Villa A: A novel format for recombinant antibody-interleukin-2 fusion proteins exhibits superior tumor-targeting properties in vivo. Oncotarget. 11:3698–3711. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wilks S, Carneiro BA, Coté GM, Henry J, Sen S, Spira AL, Tsai F YC, Wang JS, Crochiere M, He S, et al: 762 A first-in-human phase 1 clinical study evaluating safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the EDB+FN targeting ADC PYX-201 in participants with advanced solid tumors. J Immunother Cancer. 11 (Suppl 1):A1–A1731. 2023. | |
Hooper AT, Marquette K, Chang CB, Golas J, Jain S, Lam MH, Guffroy M, Leal M, Falahatpisheh H, Mathur D, et al: Anti-extra Domain B splice variant of fibronectin antibody-drug conjugate eliminates tumors with enhanced efficacy when combined with checkpoint blockade. Mol Cancer Ther. 21:1462–1472. 2022. View Article : Google Scholar : PubMed/NCBI | |
Trachsel E, Bootz F, Silacci M, Kaspar M, Kosmehl H and Neri D: Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res Ther. 9:R92007. View Article : Google Scholar : PubMed/NCBI | |
Kaspar M, Trachsel E and Neri D: The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res. 67:4940–4948. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ruan JI: Blocking leptin-STAT3 axis-induced fatty acid oxidation: A novel approach to activate CD8+ T effector cells in breast cancer. Thoracic Cancer. 11:3422–3424. 2020. View Article : Google Scholar : PubMed/NCBI | |
Di Nitto C, Gilardoni E, Mock J, Nadal L, Weiss T, Weller M, Seehusen F, Libbra C, Puca E, Neri D and De Luca R: An engineered IFNγ-antibody fusion protein with improved tumor-homing properties. Pharmaceutics. 15:3772023. View Article : Google Scholar : PubMed/NCBI | |
Niu J, Kaufman HL, Kichenadasse G, Haydon AM, Barve MA, Ganju V, Iannotti Buchbinder E, Spira AI, Pang W, Fu W, et al: Updated results from an ongoing phase 1/2a study of T3011, an oncolytic HSV expressing IL-12 and PD-1 antibody, administered via IT injection as monotherapy or combined with pembrolizumab in advanced solid tumors. J Clin Oncol. 41 (16_suppl):95352023. View Article : Google Scholar | |
Danielli R, Patuzzo R, Di Giacomo AM, Gallino G, Maurichi A, Di Florio A, Cutaia O, Lazzeri A, Fazio C, Miracco C, et al: Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: Results of a phase II study. Cancer Immunol Immunother. 64:999–1009. 2015. View Article : Google Scholar : PubMed/NCBI | |
Papadia F, Basso V, Patuzzo R, Maurichi A, Di Florio A, Zardi L, Ventura E, González-Iglesias R, Lovato V, Giovannoni L, et al: Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol. 107:173–179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spitaleri G, Berardi R, Pierantoni C, De Pas T, Noberasco C, Libbra C, González-Iglesias R, Giovannoni L, Tasciotti A, Neri D, et al: Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clin Oncol. 139:447–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spaeth N, Wyss MT, Pahnke J, Biollaz G, Trachsel E, Drandarov K, Treyer V, Weber B, Neri D and Buck A: Radioimmunotherapy targeting the extra domain B of fibronectin in C6 rat gliomas: A preliminary study about the therapeutic efficacy of iodine-131-labeled SIP (L19). Nucl Med Biol. 33:661–666. 2006. View Article : Google Scholar : PubMed/NCBI | |
Saif A, Rossi AJ, Sarnaik A, Hernandez JM and Zager JS: Efficacy of neoadjuvant intratumoral Darleukin/Fibromun (L19IL2 + L19TNF) in patients with clinical stage IIIB/C melanoma (Neo-DREAM). Ann Surg Oncol. 29:3377–3378. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hauschild A, Hassel JC, Ziemer M, Rutkowski P, Meier FE, Flatz L, Gaudy-Marqueste C, Santinami M, Russano F, von Wasielewski I, et al: Phase 3 study (PIVOTAL) of neoadjuvant intralesional daromun vs. immediate surgery in fully resectable melanoma with regional skin and/or nodal metastases. J Clin Oncol. 42 (17_suppl):LBA95012024. View Article : Google Scholar | |
Borga G, Sucre S, Sucre O, Vivas L, Salazar H and Sucre CE: Use of tumor mutational burden as a predictive marker of response to immuno-oncology agents: Initial experience at an academic center in Venezuela. J Clin Oncol. 41 (16_suppl):e146132023. View Article : Google Scholar | |
Park SE: Design and Sythesis of conjugages of amphiphilic cell-penetrating peptides containing anticancer drug and ligand for extra cellular matrix biomarker to provide efficient tumor-targeting. Irvine, CA: Chapman University; 2021 | |
Yu B, Hwang D, Jeon H, Kim H, Lee Y, Keum H, Kim J, Lee DY, Kim Y, Chung J and Jon S: A hybrid platform based on a bispecific peptide-antibody complex for targeted cancer therapy. Angew Chem Int Ed Engl. 58:2005–2010. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park SE, El-Sayed NS, Shamloo K, Lohan S, Kumar S, Sajid MI and Tiwari RK: Targeted delivery of cabazitaxel using cyclic cell-penetrating peptide and biomarkers of extracellular matrix for prostate and breast cancer therapy. Bioconjug Chem. 32:1898–1914. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Yoo D, Kim KH, Kim TW, Park S, Kim Y, Son Y, Kim J, Noh I, Whang CH, et al: Effective combination immunotherapy through vessel normalization using a cancer-targeting antiangiogenic peptide-antibody hybrid. Advanced Therapeutics:. 5:21001512022. View Article : Google Scholar | |
Park SE, Shamloo K, Kristedja TA, Darwish S, Bisoffi M, Parang K and Tiwari RK: EDB-FN targeted peptide-drug conjugates for use against prostate cancer. Int J Mol Sci. 20:3291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Hwang D, Choi M, Lee S, Kang S, Lee Y, Kim S, Chung J and Jon S: Antibody-assisted delivery of a peptide-drug conjugate for targeted cancer therapy. Mol Pharm. 16:165–172. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim YJ, Bae J, Shin TH, Kang SH, Jeong M, Han Y, Park JH, Kim SK and Kim YS: Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis. J Control Release. 216:56–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Gao D, Zhao B, Ma J, Yang Z and Guo H: Thermal immuno-nanomedicine: A new strategy for cancer treatment. Clin Transl Med. 23:e12562023. View Article : Google Scholar : PubMed/NCBI | |
Saw PE, Zhang A, Nie Y, Zhang L, Xu Y and Xu X: Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin A siRNA delivery and targeted malignant glioblastoma therapy. Front Pharmacol. 9:11942018. View Article : Google Scholar : PubMed/NCBI | |
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A and Karimi-Shahri M: Unlocking the potential of RGD-conjugated gold nanoparticles: A new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B. 12:10786–10817. 2024. View Article : Google Scholar : PubMed/NCBI | |
Saw PE, Xu X, Kang BR, Lee J, Lee YS, Kim C, Kim H, Kang SH, Na YJ, Moon HJ, et al: Extra-domain B of fibronectin as an alternative target for drug delivery and a cancer diagnostic and prognostic biomarker for malignant glioma. Theranostics. 11:941–957. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Leitao R, Xu X, Saw PE, Ortega CA, Si K, Ahn S, Liu J, Lotfi A, Lee I-H, et al: Fibronectin Extradomain B (FN-EDB) expression is specific to the atherosclerotic lesion types III, IV, and V, and the FN-EDB targeting nanomedicine enhances atherosclerotic plaque detection and local delivery of model drug cargo. Arteriosclerosis Thrombosis Vascular Biol. 37 (Suppl_1):A4672017. View Article : Google Scholar | |
Zhou Y, Qian M, Li J, Ruan L, Wang Y, Cai C, Gu S and Zhao X: The role of tumor-associated macrophages in lung cancer: From mechanism to small molecule therapy. Biomed Pharmacother. 170:116014. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Carlino MS and Rizos H: Dosing of BRAF and MEK inhibitors in melanoma: No point in taking a break. Cancer Cell. 38:779–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kapoor AR and Mittal V: Immunoregulatory role of club cell secretory proteins in non-small cell lung cancer. Cancer Res. 83 (7_Suppl):44242023. View Article : Google Scholar | |
Ji P, Gong Y, Jin M, Hu X, Di G and Shao Z: 23P in vivo multi-dimensional CRISPR screens identify LGALS2 as an immunotherapy target in triple-negative breast cancer. Ann Oncol. 33:S1332022. View Article : Google Scholar | |
Canè S, Barouni RM, Fabbi M, Cuozzo J, Fracasso G, Adamo A, Ugel S, Trovato R, De Sanctis F, Giacca M, et al: Neutralization of NET-associated human ARG1 enhances cancer immunotherapy. Sci Transl Med. 15:eabq62212023. View Article : Google Scholar : PubMed/NCBI | |
Baumgartner CK, Ebrahimi-Nik H, Iracheta-Vellve A, Hamel KM, Olander KE, Davis TGR, McGuire KA, Halvorsen GT, Avila OI, Patel CH, et al: The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature. 622:850–862. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P and Ahn BC: CAR T-cell-based gene therapy for cancers: New perspectives, challenges, and clinical developments. Front Immunol. 13:9259852022. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Liu N, Zhu Y, Li Y and Zhao X: CAR-T therapy targets extra domain b of fibronectin positive solid tumor cells. Immunol Invest. 52:985–996. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liu C, Wang M, Sun R, Yang Z, Hua Z, Wu Y, Wu M, Wang H, Qiu W, et al: Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin. J Immunother Cancer. 11:e0071992023. View Article : Google Scholar : PubMed/NCBI | |
Gentile D, Orlandi P, Banchi M and Bocci G: Preclinical and clinical combination therapies in the treatment of anaplastic thyroid cancer. Med Oncol. 37:192020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Hao R, Wang H, Yi QY, Yantao Y, Zhong Y and Sun M: Peri cruiser CAR-T: An innovative platform to reduce on-target off-tumor toxicity of CAR-T therapy. J Clin Oncol. 41 (16_suppl):25392023. View Article : Google Scholar | |
Zhang Z, Liu C, Yang Z and Yin H: CAR-T-cell therapy for solid tumors positive for fibronectin extra Domain B. Cells. 11:28632022. View Article : Google Scholar : PubMed/NCBI | |
Martínez Bedoya D, Gustave R, Corlazzoli F, Dutoit V and Migliorini D: 53P A multispecific non-integrating RNA CAR T platform to overcome the clinical challenge of glioblastoma heterogeneity. Ann Oncol. 32:S13952021. View Article : Google Scholar | |
Parikh RH and Lonial S: Chimeric antigen receptor T-cell therapy in multiple myeloma: A comprehensive review of current data and implications for clinical practice. CA Cancer J Clin. 73:275–285. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G and Jiang P: The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med. 22:3682024. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Zhang J, Zhang Q, Jin G, Su X, Liu S and Liu F: Enhancement of CD70-specific CAR T treatment by IFN-γ released from oHSV-1-infected glioblastoma. Cancer Immunol Immunother. 71:2433–2448. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Guo S, Luo Q, Wang X, Deng W, Ouyang G, Pu JJ, Lei W and Qian W: Preclinical evaluation of CD70-specific CAR T cells targeting acute myeloid leukemia. Front Immunol. 14:10937502023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhu T, Wang R, Chen J, Tang L, Huo W, Huang X and Cao Q: Genetically programmable vesicles for enhancing CAR-T therapy against solid tumors. Adv Mater. 35:e22111382023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu Y, Cui Q, Liu L, Li Z, Cui W, Li M, Zhu X, Kang L, Yu L, et al: Rituximab improves clinical outcomes of CAR-T therapy for r/r B-ALL via sensitizing leukemia cells to CAR-T-mediated cytotoxicity and reducing CAR-T exhaustion. Blood. 142 (Suppl 1):68032023. View Article : Google Scholar | |
Simmons ME, McIntosh J, Zhang T, Li Y, Yan F, Yao Y, Nie L, Lee HH, Wang W, Jiang VC, et al: The reversible BTK inhibitor nemtabrutinib demonstrates favorable antitumor efficacy and enhances the function of CAR T cells in mantle cell lymphoma. Blood. 142 (Suppl 1):57892023. View Article : Google Scholar | |
Gholamrezanezhad A, Shooli H, Jokar N, Nemati R and Assadi M: Radioimmunotherapy (RIT) in brain tumors. Nucl Med Mol Imaging. 53:374–381. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leung K: I-Human recombinant anti-ED-B fibronectin antibody small immunoprotein. Molecular Imaging and Contrast Agent Database (MICAD) Bethesda (MD): National Center for Biotechnology Information (US); April 17–2007, PubMed/NCBI | |
Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D and Zardi L: Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer. 102:75–85. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li R, He H, Li X, Zheng X, Li Z, Zhang H, Ye J, Zhang W, Yu C, Feng G and Fan W: EDB-FN targeted probes for the surgical navigation, radionuclide imaging and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging. 50:2100–2113. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GW, Kloet RW, Dinkelborg LM, Leemans CR, Neri D and van Dongen GA: (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy. Eur J Nucl Med Mol Imaging. 36:1235–1244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moosmayer D, Berndorff D, Chang CH, Sharkey RM, Rother A, Borkowski S, Rossi EA, McBride WJ, Cardillo TM, Goldenberg DM and Dinkelborg LM: Bispecific antibody pretargeting of tumor neovasculature for improved systemic radiotherapy of solid tumors. Clin Cancer Res. 12:5587–5595. 2006. View Article : Google Scholar : PubMed/NCBI | |
Del Conte G, Erba PA, Fasolo A, Chiesa C, Grana C, Menssen H, Neri D, Mariani G, Bombardieri E and Gianni L: Radioimmunotherapy (RIT) with 131l-L19SIP in solid cancers (SC) and lymphoproliferative diseases: Final results of the first human trial. J Clin Oncol. 28 (15_suppl):25232010. View Article : Google Scholar | |
Petrini I, Sollini M, Bartoli F, Barachini S, Montali M, Pardini E, Burzi IS and Erba PA: ED-B-containing isoform of fibronectin in tumor microenvironment of thymomas: A target for a theragnostic approach. Cancers (Basel). 14:25922022. View Article : Google Scholar : PubMed/NCBI | |
Miura JT and Zager JS: Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol. 15:3665–3674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vaidya AM, Wang H, Qian V and Lu ZR: Extradomain-B Fibronectin is a molecular marker of invasive breast cancer cells. bioRxiv. Aug 22–2019.doi: 10.1101/743500. |