|
1
|
Maki PM, Kornstein SG, Joffe H, Bromberger
JT, Freeman EW, Athappilly G, Bobo WV, Rubin LH, Koleva HK, Cohen
LS and Soares CN: Guidelines for the evaluation and treatment of
perimenopausal depression: summary and recommendations. J Womens
Health (Larchmt). 28:117–134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Toffol E, Heikinheimo O and Partonen T:
Hormone therapy and mood in perimenopausal and postmenopausal
women: A narrative review. Menopause. 22:564–578. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Williams K: Perimenopausal depression:
Review of recent findings and implications for future research.
Curr Opin Obstet Gynecol. 35:150–153. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kang D, Dong H, Shen Y, Ou J and Zhao J:
The clinical application of Chinese herbal medication to
depression: A narrative review. Front Public Health.
11:11206832023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dobrek L and Głowacka K: Depression and
its phytopharmacotherapy-a narrative review. Int J Mol Sci.
24:47722023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Braillon A, Fried EI, Cristea IA, Cosgrove
L and Naudet F: Treatments for major depression. Lancet.
401:21102023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhao FY, Fu QQ, Spencer SJ, Kennedy GA,
Conduit R, Zhang WJ and Zheng Z: Acupuncture: A promising approach
for comorbid depression and insomnia in perimenopause. Nat Sci
Sleep. 13:1823–1863. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bromberger JT and Epperson CN: Depression
during and after the perimenopause: Impact of hormones, genetics,
and environmental determinants of disease. Obstet Gynecol Clin
North Am. 45:663–678. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Herson M and Kulkarni J: Hormonal agents
for the treatment of depression associated with the menopause.
Drugs Aging. 39:607–618. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xiang X, Palasuberniam P and Pare R:
Exploring the feasibility of estrogen replacement therapy as a
treatment for perimenopausal depression: A comprehensive literature
review. Medicina (Kaunas). 60:10762024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gilmor ML, Owens MJ and Nemeroff CB:
Inhibition of norepinephrine uptake in patients with major
depression treated with paroxetine. Am J Psychiatry. 159:1702–1710.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Garay RP, Charpeaud T, Logan S, Hannaert
P, Garay RG, Llorca PM and Shorey S: Pharmacotherapeutic approaches
to treating depression during the perimenopause. Expert Opin
Pharmacother. 20:1837–1845. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang F, Pan F, Tang Y and Huang JH:
Editorial: Early life stress-induced epigenetic changes involved in
mental disorders. Front Genet. 12:6848442021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kasper S and Hamon M: Beyond the
monoaminergic hypothesis: Agomelatine, a new antidepressant with an
innovative mechanism of action. World J Biol Psychiatry.
10:117–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Moncrieff J, Cooper RE, Stockmann T,
Amendola S, Hengartner MP and Horowitz MA: The serotonin theory of
depression: A systematic umbrella review of the evidence. Mol
Psychiatry. 28:3243–3256. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Han Y, Gu S, Li Y, Qian X, Wang F and
Huang JH: Neuroendocrine pathogenesis of perimenopausal depression.
Front Psychiatry. 14:11625012023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang Y, Xu Y, Sheng H, Ni X and Lu J:
Exercise amelioration of depression-like behavior in OVX mice is
associated with suppression of NLRP3 inflammasome activation in
hippocampus. Behav Brain Res. 307:18–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Park HJ, Shim HS and Shim I: The
differential role of cytokines on stress responses in a menopause
rat model. Front Psychiatry. 11:5775612020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo Y, Chen X, Gong P, Li Z, Wu Y, Zhang
J, Wang J, Yao W, Yang W and Chen F: Advances in the mechanisms of
polysaccharides in alleviating depression and its complications.
Phytomedicine. 109:1545662023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bakunina N, Pariante CM and Zunszain PA:
Immune mechanisms linked to depression via oxidative stress and
neuroprogression. Immunology. 144:365–373. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lopresti AL, Maker GL, Hood SD and
Drummond PD: A review of peripheral biomarkers in major depression:
The potential of inflammatory and oxidative stress biomarkers. Prog
Neuropsychopharmacol Biol Psychiatry. 48:102–111. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q
and Wang X: Peripheral and central neuroimmune mechanisms in
Alzheimer's disease pathogenesis. Mol Neurodegener. 20:222025.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Garofalo S, Cocozza G, Bernardini G,
Savage J, Raspa M, Aronica E, Tremblay ME, Ransohoff RM, Santoni A
and Limatola C: Blocking immune cell infiltration of the central
nervous system to tame Neuroinflammation in Amyotrophic lateral
sclerosis. Brain Behav Immun. 105:1–14. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Garofalo S, Cocozza G, Porzia A,
Inghilleri M, Raspa M, Scavizzi F, Aronica E, Bernardini G, Peng L,
Ransohoff RM, et al: Natural killer cells modulate motor
neuron-immune cell cross talk in models of Amyotrophic Lateral
Sclerosis. Nat Commun. 11:17732020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Malutan AM, Dan M, Nicolae C and Carmen M:
Proinflammatory and anti-inflammatory cytokine changes related to
menopause. Prz Menopauzalny. 13:162–168. 2014.PubMed/NCBI
|
|
26
|
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC
and Lee MT: Menopause-associated depression: impact of oxidative
stress and neuroinflammation on the central nervous system-a
review. Biomedicines. 12:1842024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Avital A, Goshen I, Kamsler A, Segal M,
Iverfeldt K, Richter-Levin G and Yirmiya R: Impaired interleukin-1
signaling is associated with deficits in hippocampal memory
processes and neural plasticity. Hippocampus. 13:826–834. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Patterson SL: Immune dysregulation and
cognitive vulnerability in the aging brain: Interactions of
microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology.
96((Pt A)): 11–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW
and Ho YC: Neurobiology of depression: Chronic stress alters the
glutamatergic system in the brain-focusing on AMPA receptor.
Biomedicines. 10:10052022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Viviani B and Boraso M: Cytokines and
neuronal channels: A molecular basis for age-related decline of
neuronal function? Exp Gerontol. 46:199–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Min SS, Quan HY, Ma J, Han JS, Jeon BH and
Seol GH: Chronic brain inflammation impairs two forms of long-term
potentiation in the rat hippocampal CA1 area. Neurosci Lett.
456:20–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nisticò R, Mango D, Mandolesi G, Piccinin
S, Berretta N, Pignatelli M, Feligioni M, Musella A, Gentile A,
Mori F, et al: Inflammation subverts hippocampal synaptic
plasticity in experimental multiple sclerosis. PLoS One.
8:e546662013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Dugan LL, Ali SS, Shekhtman G, Roberts AJ,
Lucero J, Quick KL and Behrens MM: IL-6 mediated degeneration of
forebrain GABAergic interneurons and cognitive impairment in aged
mice through activation of neuronal NADPH oxidase. PLoS One.
4:e55182009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu C, Chu D, Kalantar-Zadeh K, George J,
Young HA and Liu G: Cytokines: From clinical significance to
quantification. Adv Sci (Weinh). 8:e20044332021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang YT, Wang XL, Wang ZZ, Lei L, Hu D and
Zhang Y: Antidepressant effects of the traditional Chinese herbal
formula Xiao-Yao-San and its bioactive ingredients. Phytomedicine.
109:1545582023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Webster JC, Oakley RH, Jewell CM and
Cidlowski JA: Proinflammatory cytokines regulate human
glucocorticoid receptor gene expression and lead to the
accumulation of the dominant negative beta isoform: A mechanism for
the generation of glucocorticoid resistance. Proc Natl Acad Sci
USA. 98:6865–6870. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li
C and He J: TGF-β signaling in health, disease, and therapeutics.
Signal Transduct Target Ther. 9:612024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guo W, Liu H, Yan Y, Wu D, Yao H, Lin K
and Li X: Targeting the TGF-β signaling pathway: An updated patent
review (2021-present). Expert Opin Ther Pat. 34:99–126. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Connolly EC, Freimuth J and Akhurst RJ:
Complexities of TGF-β targeted cancer therapy. Int J Biol Sci.
8:964–978. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Morikawa M, Derynck R and Miyazono K:
TGF-β and the TGF-β Family: Context-dependent roles in cell and
tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Brionne TC, Tesseur I, Masliah E and
Wyss-Coray T: Loss of TGF-beta 1 leads to increased neuronal cell
death and microgliosis in mouse brain. Neuron. 40:1133–1145. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jomova K, Raptova R, Alomar SY, Alwasel
SH, Nepovimova E, Kuca K and Valko M: Reactive oxygen species,
toxicity, oxidative stress, and antioxidants: chronic diseases and
aging. Arch Toxicol. 97:2499–2574. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bhatt S, Nagappa AN and Patil CR: Role of
oxidative stress in depression. Drug Discov Today. 25:1270–1276.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Correia AS, Cardoso A and Vale N:
Oxidative stress in depression: The link with the stress response,
neuroinflammation, serotonin, neurogenesis and synaptic plasticity.
Antioxidants (Basel). 12:4702023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bajpai A, Verma AK, Srivastava M and
Srivastava R: Oxidative stress and major depression. J Clin Diagn
Res. 8:CC04–7. 2014.PubMed/NCBI
|
|
46
|
Ferriani LO, Silva DA, Molina MDCB, Mill
JG, Brunoni AR, da Fonseca MJM, Moreno AB, Benseñor IM, de Aguiar
OB, Barreto SM and Viana MC: Associations of depression and intake
of antioxidants and vitamin B complex: Results of the Brazilian
longitudinal study of adult health (ELSA-Brasil). J Affect Disord.
297:259–268. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Massart R, Mongeau R and Lanfumey L:
Beyond the monoaminergic hypothesis: Neuroplasticity and epigenetic
changes in a transgenic mouse model of depression. Philos Trans R
Soc Lond B Biol Sci. 367:2485–2494. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Venneti S, Lopresti BJ and Wiley CA:
Molecular imaging of microglia/macrophages in the brain. Glia.
61:10–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang H, Wang J, Liu T, Leng Y and Yang W:
Stem cell-derived exosomal MicroRNAs: Potential therapies in
diabetic kidney disease. Biomed Pharmacother. 164:1149612023.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gandhi S and Abramov AY: Mechanism of
oxidative stress in neurodegeneration. Oxid Med Cell Longev.
2012:4280102012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kohen R and Nyska A: Oxidation of
biological systems: Oxidative stress phenomena, antioxidants, redox
reactions, and methods for their quantification. Toxicol Pathol.
30:620–650. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bishop NA, Lu T and Yankner BA: Neural
mechanisms of ageing and cognitive decline. Nature. 464:529–535.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Forlenza MJ and Miller GE: Increased serum
levels of 8-hydroxy-2′-deoxyguanosine in clinical depression.
Psychosom Med. 68:1–7. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Irie M, Miyata M and Kasai H: Depression
and possible cancer risk due to oxidative DNA damage. J Psychiatr
Res. 39:553–560. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ishikawa A, Matsushita H, Shimizu S,
Morita N, Hanai R, Sugiyama S, Watanabe K and Wakatsuki A: Impact
of menopause and the menstrual cycle on oxidative stress in
Japanese women. J Clin Med. 12:8292023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Signorelli SS, Neri S, Sciacchitano S,
Pino LD, Costa MP, Marchese G, Celotta G, Cassibba N, Pennisi G and
Caschetto S: Behaviour of some indicators of oxidative stress in
postmenopausal and fertile women. Maturitas. 53:77–82. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bellanti F, Matteo M, Rollo T, De Rosario
F, Greco P, Vendemiale G and Serviddio G: Sex hormones modulate
circulating antioxidant enzymes: Impact of estrogen therapy. Redox
Biol. 1:340–346. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Nguyen T, Nioi P and Pickett CB: The
Nrf2-antioxidant response element signaling pathway and its
activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Petri S, Körner S and Kiaei M: Nrf2/ARE
signaling pathway: Key mediator in oxidative stress and potential
therapeutic target in ALS. Neurol Res Int. 2012:8780302012.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Baird L and Dinkova-Kostova AT: The
cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol.
85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hybertson BM, Gao B, Bose SK and McCord
JM: Oxidative stress in health and disease: The therapeutic
potential of Nrf2 activation. Mol Aspects Med. 32:234–246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ma Q: Role of nrf2 in oxidative stress and
toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yu C and Xiao JH: The Keap1-Nrf2 System: A
mediator between oxidative stress and aging. Oxid Med Cell Longev.
2021:66354602021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee JM, Shih AY, Murphy TH and Johnson JA:
NF-E2-related factor-2 mediates neuroprotection against
mitochondrial complex I inhibitors and increased concentrations of
intracellular calcium in primary cortical neurons. J Biol Chem.
278:37948–37956. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Martín-de-Saavedra MD, Budni J, Cunha MP,
Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E,
Tordera RM, Rodrigues AL, et al: Nrf2 participates in depressive
disorders through an anti-inflammatory mechanism.
Psychoneuroendocrinology. 38:2010–2022. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Samy DM, Mostafa DK, Saleh SR, Hassaan PS,
Zeitoun TM, Ammar GAG and Elsokkary NH: Carnosic acid mitigates
depression-like behavior in ovariectomized mice via activation of
Nrf2/HO-1 pathway. Mol Neurobiol. 60:610–628. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Khan D and Ansar Ahmed S: The immune
system is a natural target for estrogen action: Opposing effects of
estrogen in two prototypical autoimmune diseases. Front Immunol.
6:6352015.PubMed/NCBI
|
|
68
|
Maggioli E, McArthur S, Mauro C, Kieswich
J, Kusters DHM, Reutelingsperger CPM, Yaqoob M and Solito E:
Estrogen protects the blood-brain barrier from inflammation-induced
disruption and increased lymphocyte trafficking. Brain Behav Immun.
51:212–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Iob E, Kirschbaum C and Steptoe A:
Persistent depressive symptoms, HPA-axis hyperactivity, and
inflammation: The role of cognitive-affective and somatic symptoms.
Mol Psychiatry. 25:1130–1140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Keller J, Gomez R, Williams G, Lembke A,
Lazzeroni L, Murphy GM Jr and Schatzberg AF: HPA axis in major
depression: Cortisol, clinical symptomatology and genetic variation
predict cognition. Mol Psychiatry. 22:527–536. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen X, Gianferante D, Hanlin L, Fiksdal
A, Breines JG, Thoma MV and Rohleder N: HPA-axis and inflammatory
reactivity to acute stress is related with basal HPA-axis activity.
Psychoneuroendocrinology. 78:168–176. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Stamper CE, Hassell JE Jr, Kapitz AJ,
Renner KJ, Orchinik M and Lowry CA: Activation of 5-HT(1A)
receptors in the rat dorsomedial hypothalamus inhibits
stress-induced activation of the hypothalamic-pituitary-adrenal
axis. Stress. 20:223–230. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Schmidt PJ, Wei SM, Martinez PE, Dor RRB,
Guerrieri GM, Palladino PP, Harsh VL, Li HJ, Wakim P, Nieman LK and
Rubinow DR: The short-term effects of estradiol, raloxifene, and a
phytoestrogen in women with perimenopausal depression. Menopause.
28:369–383. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pulst SM: Prenatal diagnosis of the
neurofibromatoses. Clin Perinatol. 17:829–844. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Westlund Tam L and Parry BL: Does estrogen
enhance the antidepressant effects of fluoxetine? J Affect Disord.
77:87–92. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Morgan ML, Cook IA, Rapkin AJ and Leuchter
AF: Estrogen augmentation of antidepressants in perimenopausal
depression: A pilot study. J Clin Psychiatry. 66:774–780. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang M, Liu W, Ge J and Liu S: The
immunomodulatory mechanisms for acupuncture practice. Front
Immunol. 14:11477182023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wen J, Chen X, Yang Y, Liu J, Li E, Liu J,
Zhou Z, Wu W and He K: Acupuncture medical therapy and its
underlying mechanisms: A systematic review. Am J Chin Med. 49:1–23.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Amorim D, Amado J, Brito I, Fiuza SM,
Amorim N, Costeira C and Machado J: Acupuncture and
electroacupuncture for anxiety disorders: A systematic review of
the clinical research. Complement Ther Clin Pract. 31:31–37. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cheuk DK, Yeung WF, Chung KF and Wong V:
Acupuncture for insomnia. Cochrane Database Syst Rev.
2012:CD0054722012.PubMed/NCBI
|
|
81
|
Yeung WF, Chung KF, Leung YK, Zhang SP and
Law AC: Traditional needle acupuncture treatment for insomnia: A
systematic review of randomized controlled trials. Sleep Med.
10:694–704. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang XW, Hou WB, Pu FL, Wang XF, Wang YR,
Yang M, Cheng K, Wang Y, Robinson N and Liu JP: Acupuncture for
cancer-related conditions: An overview of systematic reviews.
Phytomedicine. 106:1544302022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Baumelou A, Liu B, Wang XY and Nie GN:
Perspectives in clinical research of acupuncture on menopausal
symptoms. Chin J Integr Med. 17:893–897. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chon TY and Lee MC: Acupuncture. Mayo Clin
Proc. 88:1141–1146. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Smith CA, Armour M, Lee MS, Wang LQ and
Hay PJ: Acupuncture for depression. Cochrane Database Syst Rev.
3:CD0040462018.PubMed/NCBI
|
|
86
|
Xu MM, Guo P, Ma QY, Zhou X, Wei YL, Wang
L, Chen Y and Guo Y: Can acupuncture enhance therapeutic
effectiveness of antidepressants and reduce adverse drug reactions
in patients with depression? A systematic review and meta-analysis.
J Integr Med. 20:305–320. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jing Q, Ren L, Deng X, Zhang N, Fu M, Wang
G, Jiang XR, Lin SR and Ming CR: Electroacupuncture promotes neural
proliferation in hippocampus of perimenopausal depression rats via
Wnt/β-catenin signaling pathway. J Acupunct Meridian Stud.
13:94–103. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhou JH, Zhang DL, Ning BL, Xue XJ, Zhao
L, Wu Q, Yan LD, Liu M and Fu WB: The role of acupuncture in
hormonal shock-induced cognitive-related symptoms in perimenopausal
depression: A randomized clinical controlled trial. Front
Psychiatry. 12:7725232022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lokuge S, Frey BN, Foster JA, Soares CN
and Steiner M: Depression in women: Windows of vulnerability and
new insights into the link between estrogen and serotonin. J Clin
Psychiatry. 72:e1563–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pengo MF, Won CH and Bourjeily G: Sleep in
women across the life Span. Chest. 154:196–206. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tao C, Zhang GW, Huang JJ, Li Z, Tao HW
and Zhang LI: The medial preoptic area mediates depressive-like
behaviors induced by ovarian hormone withdrawal through distinct
GABAergic projections. Nat Neurosci. 26:1529–1540. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Johansson T, Fowler P, Ek WE, Skalkidou A,
Karlsson T and Johansson Å: Oral contraceptives, hormone
replacement therapy, and stroke risk. Stroke. 53:3107–3115. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rozenberg S, Di Pietrantonio V, Vandromme
J and Gilles C: Menopausal hormone therapy and breast cancer risk.
Best Pract Res Clin Endocrinol Metab. 35:1015772021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tandon VR, Sharma S, Mahajan A, Mahajan A
and Tandon A: Menopause and sleep disorders. J Midlife Health.
13:26–33. 2022.PubMed/NCBI
|
|
95
|
Di YM, Yang L, Shergis JL, Zhang AL, Li Y,
Guo X, Xue CC and Lu C: Clinical evidence of Chinese medicine
therapies for depression in women during perimenopause and
menopause. Complement Ther Med. 47:1020712019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xiao M, Xie K, Yuan L, Wang J, Liu X and
Chen Z: Effects of huolisu oral solution on depression-like
behavior in rats: Neurotransmitter and HPA Axis. Front Pharmacol.
13:8932832022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cao XJ, Huang XC and Wang X: Effectiveness
of Chinese herbal medicine granules and traditional Chinese
medicine-based psychotherapy for perimenopausal depression in
Chinese women: A randomized controlled trial. Menopause.
26:1193–1203. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhong D, Cheng H, Pan Z, Ou X, Liu P, Kong
X, Liu D, Chen J and Li J: Efficacy of scalp acupuncture combined
with conventional therapy in the intervention of post-stroke
depression: A systematic review and meta-analysis. Complement Ther
Med. 77:1029752023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang L, Li J, Chen Q, Di L and Li N:
Erxian decoction, a famous Chinese medicine formula, ameliorate
depression-like behavior in perimenopausal mice. Endocr Metab
Immune Disord Drug Targets. 21:2203–2212. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang L, Yang Y, Di L, Li JL and Li N:
Erxian decoction, a famous Chinese medicine formula, antagonizes
corticosterone-induced injury in PC12 cells, and improves
depression-like behaviours in mice. Pharm Biol. 58:498–509. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zeng NX, Li H, Su MY, Chen X, Yang XY and
Shen M: Therapeutic potential of Erxian decoction and its special
chemical markers in depression: A review of clinical and
preclinical studies. Front Pharmacol. 15:13770792024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang Y, Lou XT, Shi YH, Tong Q and Zheng
GQ: Erxian decoction, a Chinese herbal formula, for menopausal
syndrome: An updated systematic review. J Ethnopharmacol. 234:8–20.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo Z, Dong J and Wu J: Impact of Icariin
and its derivatives on inflammatory diseases and relevant signaling
pathways. Int Immunopharmacol. 108:1088612022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou
W, Sun X and Wu M: Icariin, an Up-and-coming bioactive compound
against neurological diseases: Network pharmacology-based study and
literature review. Drug Des Devel Ther. 15:3619–3641. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Seyedi Z, Amiri MS, Mohammadzadeh V,
Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, Qayoomian M,
Hashemzadeh MR, Simal-Gandara J and Taghavizadeh Yazdi ME: Icariin:
A Promising Natural Product in Biomedicine and Tissue Engineering.
J Funct Biomater. 14:442023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cao LH, Qiao JY, Huang HY, Fang XY, Zhang
R, Miao MS and Li XM: PI3K-AKT signaling activation and icariin:
The potential effects on the perimenopausal depression-like rat
model. Molecules. 24:37002019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang Y, Zhang Z, Cheng Z, Xie W, Qin H and
Sheng J: Astragaloside in cancer chemoprevention and therapy. Chin
Med J (Engl). 136:1144–1154. 2023.PubMed/NCBI
|
|
108
|
Rao Y, Li J, Qiao R, Luo J and Liu Y:
Synergistic effects of tetramethylpyrazine and astragaloside IV on
spinal cord injury via alteration of astrocyte A1/A2 polarization
through the Sirt1-NF-κB pathway. Int Immunopharmacol.
131:1116862024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang YL, Chio CC, Kuo SC, Yeh CH, Ma JT,
Liu WP, Lin MT, Lin KC and Chang CP: Exercise rehabilitation and/or
astragaloside attenuate amyloid-beta pathology by reversing
BDNF/TrkB signaling deficits and mitochondrial dysfunction. Mol
Neurobiol. 59:3091–3109. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yao G, Bai Z, Niu J, Zhang R, Lu Y, Gao T
and Wang H: Astragalin attenuates depression-like behaviors and
memory deficits and promotes M2 microglia polarization by
regulating IL-4R/JAK1/STAT6 signaling pathway in a murine model of
perimenopausal depression. Psychopharmacology (Berl).
239:2421–2443. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chauhan NS, Rao ChV and Dixit VK: Effect
of curculigo orchioides rhizomes on sexual behaviour of male rats.
Fitoterapia. 78:530–534. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shi K, Chen L, Chen L, Tan A, Xie G, Long
Q, Ning F, Lan Z and Wang P: Epimedii folium and curculiginis
rhizoma ameliorate lipopolysaccharides-induced cognitive impairment
by regulating the TREM2 signaling pathway. J Ethnopharmacol.
284:1147662022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jia X, Chen J, Huang R, Wang D and Wang X:
Effect-enhancing and toxicity-reducing effects of Chaihu Jia Longgu
Muli decoction in the treatment of multimorbidity with depression:
A systematic review and meta-analysis. Pharm Biol. 61:1094–1106.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wan R, Song R, Fan Y, Li L, Zhang J, Zhang
B, Li X and Wang S: Efficacy and safety of chaihu jia longgu muli
decoction in the treatment of poststroke depression: A systematic
review and meta-analysis. Evid Based Complement Alternat Med.
2021:76045372021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhao Y, Xu D, Wang J, Zhou D, Liu A, Sun
Y, Yuan Y, Li J and Guo W: The pharmacological mechanism of
chaihu-jia-longgu-muli-tang for treating depression: integrated
meta-analysis and network pharmacology analysis. Front Pharmacol.
14:12576172023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fan Q, Liu Y, Sheng L, Lv S, Yang L, Zhang
Z, Guo J, Fan Y and Hu D: Chaihu-Shugan-San inhibits
neuroinflammation in the treatment of post-stroke depression
through the JAK/STAT3-GSK3β/PTEN/Akt pathway. Biomed Pharmacother.
160:1143852023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Han SK, Kim JK, Park HS, Shin YJ and Kim
DH: Chaihu-Shugan-San (Shihosogansan) alleviates restraint
stress-generated anxiety and depression in mice by regulating
NF-κB-mediated BDNF expression through the modulation of gut
microbiota. Chin Med. 16:772021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu
H, Ge A, Zeng L, Chen S and Ge J: Mechanisms of ferroptosis in
Alzheimer's disease and therapeutic effects of natural plant
products: A review. Biomed Pharmacother. 164:1143122023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ,
Liao M and Chen JX: Saikosaponin a and its epimer saikosaponin d
exhibit anti-inflammatory activity by suppressing activation of
NF-κB signaling pathway. Int Immunopharmacol. 14:121–126. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen XQ, Chen SJ, Liang WN, Wang M, Li CF,
Wang SS, Dong SQ, Yi LT and Li CD: Saikosaponin A attenuates
perimenopausal depression-like symptoms by chronic unpredictable
mild stress. Neurosci Lett. 662:283–289. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang AR, Mi LF, Zhang ZL, Hu MZ, Zhao ZY,
Liu B, Li YB and Zheng S: Saikosaponin A improved depression-like
behavior and inhibited hippocampal neuronal apoptosis after
cerebral ischemia through p-CREB/BDNF pathway. Behav Brain Res.
403:1131382021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Bi Y, Li M, Wang Y, Yao J, Wang Y, Wang S,
Zhuang L, Liu S, Li Z, Hao Z, et al: Saikosaponins from Bupleurum
scorzonerifolium Willd. alleviates microglial pyroptosis in
depression by binding and inhibiting P2X7 expression.
Phytomedicine. 136:1562402025. View Article : Google Scholar : PubMed/NCBI
|