
Perimenopausal depression: Targeting inflammation and oxidative stress (Review)
- Authors:
- Yang Yu
- Tianyang Yu
- Kaili Liu
- Yushuai Li
- Yifeng Luan
- Tianyi Yang
- Wenzhong Li
- Huifang Cong
- Xiuhong Wu
-
Affiliations: Department of Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, Department of Respiratory Medicine, Heilongjiang Academy of Sciences of Traditional Chinese Medicine, Harbin, Heilongjiang 150036, P.R. China, Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China - Published online on: April 10, 2025 https://doi.org/10.3892/mmr.2025.13526
- Article Number: 161
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Maki PM, Kornstein SG, Joffe H, Bromberger JT, Freeman EW, Athappilly G, Bobo WV, Rubin LH, Koleva HK, Cohen LS and Soares CN: Guidelines for the evaluation and treatment of perimenopausal depression: summary and recommendations. J Womens Health (Larchmt). 28:117–134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Toffol E, Heikinheimo O and Partonen T: Hormone therapy and mood in perimenopausal and postmenopausal women: A narrative review. Menopause. 22:564–578. 2015. View Article : Google Scholar : PubMed/NCBI | |
Williams K: Perimenopausal depression: Review of recent findings and implications for future research. Curr Opin Obstet Gynecol. 35:150–153. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kang D, Dong H, Shen Y, Ou J and Zhao J: The clinical application of Chinese herbal medication to depression: A narrative review. Front Public Health. 11:11206832023. View Article : Google Scholar : PubMed/NCBI | |
Dobrek L and Głowacka K: Depression and its phytopharmacotherapy-a narrative review. Int J Mol Sci. 24:47722023. View Article : Google Scholar : PubMed/NCBI | |
Braillon A, Fried EI, Cristea IA, Cosgrove L and Naudet F: Treatments for major depression. Lancet. 401:21102023. View Article : Google Scholar : PubMed/NCBI | |
Zhao FY, Fu QQ, Spencer SJ, Kennedy GA, Conduit R, Zhang WJ and Zheng Z: Acupuncture: A promising approach for comorbid depression and insomnia in perimenopause. Nat Sci Sleep. 13:1823–1863. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bromberger JT and Epperson CN: Depression during and after the perimenopause: Impact of hormones, genetics, and environmental determinants of disease. Obstet Gynecol Clin North Am. 45:663–678. 2018. View Article : Google Scholar : PubMed/NCBI | |
Herson M and Kulkarni J: Hormonal agents for the treatment of depression associated with the menopause. Drugs Aging. 39:607–618. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Palasuberniam P and Pare R: Exploring the feasibility of estrogen replacement therapy as a treatment for perimenopausal depression: A comprehensive literature review. Medicina (Kaunas). 60:10762024. View Article : Google Scholar : PubMed/NCBI | |
Gilmor ML, Owens MJ and Nemeroff CB: Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. Am J Psychiatry. 159:1702–1710. 2002. View Article : Google Scholar : PubMed/NCBI | |
Garay RP, Charpeaud T, Logan S, Hannaert P, Garay RG, Llorca PM and Shorey S: Pharmacotherapeutic approaches to treating depression during the perimenopause. Expert Opin Pharmacother. 20:1837–1845. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Pan F, Tang Y and Huang JH: Editorial: Early life stress-induced epigenetic changes involved in mental disorders. Front Genet. 12:6848442021. View Article : Google Scholar : PubMed/NCBI | |
Kasper S and Hamon M: Beyond the monoaminergic hypothesis: Agomelatine, a new antidepressant with an innovative mechanism of action. World J Biol Psychiatry. 10:117–126. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP and Horowitz MA: The serotonin theory of depression: A systematic umbrella review of the evidence. Mol Psychiatry. 28:3243–3256. 2023. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Gu S, Li Y, Qian X, Wang F and Huang JH: Neuroendocrine pathogenesis of perimenopausal depression. Front Psychiatry. 14:11625012023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu Y, Sheng H, Ni X and Lu J: Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus. Behav Brain Res. 307:18–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park HJ, Shim HS and Shim I: The differential role of cytokines on stress responses in a menopause rat model. Front Psychiatry. 11:5775612020. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Chen X, Gong P, Li Z, Wu Y, Zhang J, Wang J, Yao W, Yang W and Chen F: Advances in the mechanisms of polysaccharides in alleviating depression and its complications. Phytomedicine. 109:1545662023. View Article : Google Scholar : PubMed/NCBI | |
Bakunina N, Pariante CM and Zunszain PA: Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 144:365–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lopresti AL, Maker GL, Hood SD and Drummond PD: A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry. 48:102–111. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q and Wang X: Peripheral and central neuroimmune mechanisms in Alzheimer's disease pathogenesis. Mol Neurodegener. 20:222025. View Article : Google Scholar : PubMed/NCBI | |
Garofalo S, Cocozza G, Bernardini G, Savage J, Raspa M, Aronica E, Tremblay ME, Ransohoff RM, Santoni A and Limatola C: Blocking immune cell infiltration of the central nervous system to tame Neuroinflammation in Amyotrophic lateral sclerosis. Brain Behav Immun. 105:1–14. 2022. View Article : Google Scholar : PubMed/NCBI | |
Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, Aronica E, Bernardini G, Peng L, Ransohoff RM, et al: Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun. 11:17732020. View Article : Google Scholar : PubMed/NCBI | |
Malutan AM, Dan M, Nicolae C and Carmen M: Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz Menopauzalny. 13:162–168. 2014.PubMed/NCBI | |
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC and Lee MT: Menopause-associated depression: impact of oxidative stress and neuroinflammation on the central nervous system-a review. Biomedicines. 12:1842024. View Article : Google Scholar : PubMed/NCBI | |
Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G and Yirmiya R: Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 13:826–834. 2003. View Article : Google Scholar : PubMed/NCBI | |
Patterson SL: Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology. 96((Pt A)): 11–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW and Ho YC: Neurobiology of depression: Chronic stress alters the glutamatergic system in the brain-focusing on AMPA receptor. Biomedicines. 10:10052022. View Article : Google Scholar : PubMed/NCBI | |
Viviani B and Boraso M: Cytokines and neuronal channels: A molecular basis for age-related decline of neuronal function? Exp Gerontol. 46:199–206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Min SS, Quan HY, Ma J, Han JS, Jeon BH and Seol GH: Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci Lett. 456:20–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nisticò R, Mango D, Mandolesi G, Piccinin S, Berretta N, Pignatelli M, Feligioni M, Musella A, Gentile A, Mori F, et al: Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS One. 8:e546662013. View Article : Google Scholar : PubMed/NCBI | |
Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL and Behrens MM: IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One. 4:e55182009. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA and Liu G: Cytokines: From clinical significance to quantification. Adv Sci (Weinh). 8:e20044332021. View Article : Google Scholar : PubMed/NCBI | |
Wang YT, Wang XL, Wang ZZ, Lei L, Hu D and Zhang Y: Antidepressant effects of the traditional Chinese herbal formula Xiao-Yao-San and its bioactive ingredients. Phytomedicine. 109:1545582023. View Article : Google Scholar : PubMed/NCBI | |
Webster JC, Oakley RH, Jewell CM and Cidlowski JA: Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: A mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA. 98:6865–6870. 2001. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C and He J: TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 9:612024. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Liu H, Yan Y, Wu D, Yao H, Lin K and Li X: Targeting the TGF-β signaling pathway: An updated patent review (2021-present). Expert Opin Ther Pat. 34:99–126. 2024. View Article : Google Scholar : PubMed/NCBI | |
Connolly EC, Freimuth J and Akhurst RJ: Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. 8:964–978. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β Family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016. View Article : Google Scholar : PubMed/NCBI | |
Brionne TC, Tesseur I, Masliah E and Wyss-Coray T: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 40:1133–1145. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 97:2499–2574. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bhatt S, Nagappa AN and Patil CR: Role of oxidative stress in depression. Drug Discov Today. 25:1270–1276. 2020. View Article : Google Scholar : PubMed/NCBI | |
Correia AS, Cardoso A and Vale N: Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants (Basel). 12:4702023. View Article : Google Scholar : PubMed/NCBI | |
Bajpai A, Verma AK, Srivastava M and Srivastava R: Oxidative stress and major depression. J Clin Diagn Res. 8:CC04–7. 2014.PubMed/NCBI | |
Ferriani LO, Silva DA, Molina MDCB, Mill JG, Brunoni AR, da Fonseca MJM, Moreno AB, Benseñor IM, de Aguiar OB, Barreto SM and Viana MC: Associations of depression and intake of antioxidants and vitamin B complex: Results of the Brazilian longitudinal study of adult health (ELSA-Brasil). J Affect Disord. 297:259–268. 2022. View Article : Google Scholar : PubMed/NCBI | |
Massart R, Mongeau R and Lanfumey L: Beyond the monoaminergic hypothesis: Neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond B Biol Sci. 367:2485–2494. 2012. View Article : Google Scholar : PubMed/NCBI | |
Venneti S, Lopresti BJ and Wiley CA: Molecular imaging of microglia/macrophages in the brain. Glia. 61:10–23. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang J, Liu T, Leng Y and Yang W: Stem cell-derived exosomal MicroRNAs: Potential therapies in diabetic kidney disease. Biomed Pharmacother. 164:1149612023. View Article : Google Scholar : PubMed/NCBI | |
Gandhi S and Abramov AY: Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012:4280102012. View Article : Google Scholar : PubMed/NCBI | |
Kohen R and Nyska A: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 30:620–650. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bishop NA, Lu T and Yankner BA: Neural mechanisms of ageing and cognitive decline. Nature. 464:529–535. 2010. View Article : Google Scholar : PubMed/NCBI | |
Forlenza MJ and Miller GE: Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom Med. 68:1–7. 2006. View Article : Google Scholar : PubMed/NCBI | |
Irie M, Miyata M and Kasai H: Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res. 39:553–560. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa A, Matsushita H, Shimizu S, Morita N, Hanai R, Sugiyama S, Watanabe K and Wakatsuki A: Impact of menopause and the menstrual cycle on oxidative stress in Japanese women. J Clin Med. 12:8292023. View Article : Google Scholar : PubMed/NCBI | |
Signorelli SS, Neri S, Sciacchitano S, Pino LD, Costa MP, Marchese G, Celotta G, Cassibba N, Pennisi G and Caschetto S: Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas. 53:77–82. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G and Serviddio G: Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol. 1:340–346. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen T, Nioi P and Pickett CB: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Petri S, Körner S and Kiaei M: Nrf2/ARE signaling pathway: Key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012:8780302012. View Article : Google Scholar : PubMed/NCBI | |
Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hybertson BM, Gao B, Bose SK and McCord JM: Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol Aspects Med. 32:234–246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu C and Xiao JH: The Keap1-Nrf2 System: A mediator between oxidative stress and aging. Oxid Med Cell Longev. 2021:66354602021. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Shih AY, Murphy TH and Johnson JA: NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem. 278:37948–37956. 2003. View Article : Google Scholar : PubMed/NCBI | |
Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, et al: Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology. 38:2010–2022. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samy DM, Mostafa DK, Saleh SR, Hassaan PS, Zeitoun TM, Ammar GAG and Elsokkary NH: Carnosic acid mitigates depression-like behavior in ovariectomized mice via activation of Nrf2/HO-1 pathway. Mol Neurobiol. 60:610–628. 2023. View Article : Google Scholar : PubMed/NCBI | |
Khan D and Ansar Ahmed S: The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol. 6:6352015.PubMed/NCBI | |
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M and Solito E: Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun. 51:212–222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iob E, Kirschbaum C and Steptoe A: Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: The role of cognitive-affective and somatic symptoms. Mol Psychiatry. 25:1130–1140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr and Schatzberg AF: HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 22:527–536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Gianferante D, Hanlin L, Fiksdal A, Breines JG, Thoma MV and Rohleder N: HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity. Psychoneuroendocrinology. 78:168–176. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stamper CE, Hassell JE Jr, Kapitz AJ, Renner KJ, Orchinik M and Lowry CA: Activation of 5-HT(1A) receptors in the rat dorsomedial hypothalamus inhibits stress-induced activation of the hypothalamic-pituitary-adrenal axis. Stress. 20:223–230. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmidt PJ, Wei SM, Martinez PE, Dor RRB, Guerrieri GM, Palladino PP, Harsh VL, Li HJ, Wakim P, Nieman LK and Rubinow DR: The short-term effects of estradiol, raloxifene, and a phytoestrogen in women with perimenopausal depression. Menopause. 28:369–383. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pulst SM: Prenatal diagnosis of the neurofibromatoses. Clin Perinatol. 17:829–844. 1990. View Article : Google Scholar : PubMed/NCBI | |
Westlund Tam L and Parry BL: Does estrogen enhance the antidepressant effects of fluoxetine? J Affect Disord. 77:87–92. 2003. View Article : Google Scholar : PubMed/NCBI | |
Morgan ML, Cook IA, Rapkin AJ and Leuchter AF: Estrogen augmentation of antidepressants in perimenopausal depression: A pilot study. J Clin Psychiatry. 66:774–780. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Liu W, Ge J and Liu S: The immunomodulatory mechanisms for acupuncture practice. Front Immunol. 14:11477182023. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Chen X, Yang Y, Liu J, Li E, Liu J, Zhou Z, Wu W and He K: Acupuncture medical therapy and its underlying mechanisms: A systematic review. Am J Chin Med. 49:1–23. 2021. View Article : Google Scholar : PubMed/NCBI | |
Amorim D, Amado J, Brito I, Fiuza SM, Amorim N, Costeira C and Machado J: Acupuncture and electroacupuncture for anxiety disorders: A systematic review of the clinical research. Complement Ther Clin Pract. 31:31–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheuk DK, Yeung WF, Chung KF and Wong V: Acupuncture for insomnia. Cochrane Database Syst Rev. 2012:CD0054722012.PubMed/NCBI | |
Yeung WF, Chung KF, Leung YK, Zhang SP and Law AC: Traditional needle acupuncture treatment for insomnia: A systematic review of randomized controlled trials. Sleep Med. 10:694–704. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Hou WB, Pu FL, Wang XF, Wang YR, Yang M, Cheng K, Wang Y, Robinson N and Liu JP: Acupuncture for cancer-related conditions: An overview of systematic reviews. Phytomedicine. 106:1544302022. View Article : Google Scholar : PubMed/NCBI | |
Baumelou A, Liu B, Wang XY and Nie GN: Perspectives in clinical research of acupuncture on menopausal symptoms. Chin J Integr Med. 17:893–897. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chon TY and Lee MC: Acupuncture. Mayo Clin Proc. 88:1141–1146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Smith CA, Armour M, Lee MS, Wang LQ and Hay PJ: Acupuncture for depression. Cochrane Database Syst Rev. 3:CD0040462018.PubMed/NCBI | |
Xu MM, Guo P, Ma QY, Zhou X, Wei YL, Wang L, Chen Y and Guo Y: Can acupuncture enhance therapeutic effectiveness of antidepressants and reduce adverse drug reactions in patients with depression? A systematic review and meta-analysis. J Integr Med. 20:305–320. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jing Q, Ren L, Deng X, Zhang N, Fu M, Wang G, Jiang XR, Lin SR and Ming CR: Electroacupuncture promotes neural proliferation in hippocampus of perimenopausal depression rats via Wnt/β-catenin signaling pathway. J Acupunct Meridian Stud. 13:94–103. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou JH, Zhang DL, Ning BL, Xue XJ, Zhao L, Wu Q, Yan LD, Liu M and Fu WB: The role of acupuncture in hormonal shock-induced cognitive-related symptoms in perimenopausal depression: A randomized clinical controlled trial. Front Psychiatry. 12:7725232022. View Article : Google Scholar : PubMed/NCBI | |
Lokuge S, Frey BN, Foster JA, Soares CN and Steiner M: Depression in women: Windows of vulnerability and new insights into the link between estrogen and serotonin. J Clin Psychiatry. 72:e1563–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pengo MF, Won CH and Bourjeily G: Sleep in women across the life Span. Chest. 154:196–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tao C, Zhang GW, Huang JJ, Li Z, Tao HW and Zhang LI: The medial preoptic area mediates depressive-like behaviors induced by ovarian hormone withdrawal through distinct GABAergic projections. Nat Neurosci. 26:1529–1540. 2023. View Article : Google Scholar : PubMed/NCBI | |
Johansson T, Fowler P, Ek WE, Skalkidou A, Karlsson T and Johansson Å: Oral contraceptives, hormone replacement therapy, and stroke risk. Stroke. 53:3107–3115. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rozenberg S, Di Pietrantonio V, Vandromme J and Gilles C: Menopausal hormone therapy and breast cancer risk. Best Pract Res Clin Endocrinol Metab. 35:1015772021. View Article : Google Scholar : PubMed/NCBI | |
Tandon VR, Sharma S, Mahajan A, Mahajan A and Tandon A: Menopause and sleep disorders. J Midlife Health. 13:26–33. 2022.PubMed/NCBI | |
Di YM, Yang L, Shergis JL, Zhang AL, Li Y, Guo X, Xue CC and Lu C: Clinical evidence of Chinese medicine therapies for depression in women during perimenopause and menopause. Complement Ther Med. 47:1020712019. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, Xie K, Yuan L, Wang J, Liu X and Chen Z: Effects of huolisu oral solution on depression-like behavior in rats: Neurotransmitter and HPA Axis. Front Pharmacol. 13:8932832022. View Article : Google Scholar : PubMed/NCBI | |
Cao XJ, Huang XC and Wang X: Effectiveness of Chinese herbal medicine granules and traditional Chinese medicine-based psychotherapy for perimenopausal depression in Chinese women: A randomized controlled trial. Menopause. 26:1193–1203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhong D, Cheng H, Pan Z, Ou X, Liu P, Kong X, Liu D, Chen J and Li J: Efficacy of scalp acupuncture combined with conventional therapy in the intervention of post-stroke depression: A systematic review and meta-analysis. Complement Ther Med. 77:1029752023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li J, Chen Q, Di L and Li N: Erxian decoction, a famous Chinese medicine formula, ameliorate depression-like behavior in perimenopausal mice. Endocr Metab Immune Disord Drug Targets. 21:2203–2212. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang Y, Di L, Li JL and Li N: Erxian decoction, a famous Chinese medicine formula, antagonizes corticosterone-induced injury in PC12 cells, and improves depression-like behaviours in mice. Pharm Biol. 58:498–509. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng NX, Li H, Su MY, Chen X, Yang XY and Shen M: Therapeutic potential of Erxian decoction and its special chemical markers in depression: A review of clinical and preclinical studies. Front Pharmacol. 15:13770792024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lou XT, Shi YH, Tong Q and Zheng GQ: Erxian decoction, a Chinese herbal formula, for menopausal syndrome: An updated systematic review. J Ethnopharmacol. 234:8–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Dong J and Wu J: Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol. 108:1088612022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X and Wu M: Icariin, an Up-and-coming bioactive compound against neurological diseases: Network pharmacology-based study and literature review. Drug Des Devel Ther. 15:3619–3641. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, Qayoomian M, Hashemzadeh MR, Simal-Gandara J and Taghavizadeh Yazdi ME: Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J Funct Biomater. 14:442023. View Article : Google Scholar : PubMed/NCBI | |
Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS and Li XM: PI3K-AKT signaling activation and icariin: The potential effects on the perimenopausal depression-like rat model. Molecules. 24:37002019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Z, Cheng Z, Xie W, Qin H and Sheng J: Astragaloside in cancer chemoprevention and therapy. Chin Med J (Engl). 136:1144–1154. 2023.PubMed/NCBI | |
Rao Y, Li J, Qiao R, Luo J and Liu Y: Synergistic effects of tetramethylpyrazine and astragaloside IV on spinal cord injury via alteration of astrocyte A1/A2 polarization through the Sirt1-NF-κB pathway. Int Immunopharmacol. 131:1116862024. View Article : Google Scholar : PubMed/NCBI | |
Wang YL, Chio CC, Kuo SC, Yeh CH, Ma JT, Liu WP, Lin MT, Lin KC and Chang CP: Exercise rehabilitation and/or astragaloside attenuate amyloid-beta pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction. Mol Neurobiol. 59:3091–3109. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao G, Bai Z, Niu J, Zhang R, Lu Y, Gao T and Wang H: Astragalin attenuates depression-like behaviors and memory deficits and promotes M2 microglia polarization by regulating IL-4R/JAK1/STAT6 signaling pathway in a murine model of perimenopausal depression. Psychopharmacology (Berl). 239:2421–2443. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chauhan NS, Rao ChV and Dixit VK: Effect of curculigo orchioides rhizomes on sexual behaviour of male rats. Fitoterapia. 78:530–534. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shi K, Chen L, Chen L, Tan A, Xie G, Long Q, Ning F, Lan Z and Wang P: Epimedii folium and curculiginis rhizoma ameliorate lipopolysaccharides-induced cognitive impairment by regulating the TREM2 signaling pathway. J Ethnopharmacol. 284:1147662022. View Article : Google Scholar : PubMed/NCBI | |
Jia X, Chen J, Huang R, Wang D and Wang X: Effect-enhancing and toxicity-reducing effects of Chaihu Jia Longgu Muli decoction in the treatment of multimorbidity with depression: A systematic review and meta-analysis. Pharm Biol. 61:1094–1106. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wan R, Song R, Fan Y, Li L, Zhang J, Zhang B, Li X and Wang S: Efficacy and safety of chaihu jia longgu muli decoction in the treatment of poststroke depression: A systematic review and meta-analysis. Evid Based Complement Alternat Med. 2021:76045372021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Xu D, Wang J, Zhou D, Liu A, Sun Y, Yuan Y, Li J and Guo W: The pharmacological mechanism of chaihu-jia-longgu-muli-tang for treating depression: integrated meta-analysis and network pharmacology analysis. Front Pharmacol. 14:12576172023. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Liu Y, Sheng L, Lv S, Yang L, Zhang Z, Guo J, Fan Y and Hu D: Chaihu-Shugan-San inhibits neuroinflammation in the treatment of post-stroke depression through the JAK/STAT3-GSK3β/PTEN/Akt pathway. Biomed Pharmacother. 160:1143852023. View Article : Google Scholar : PubMed/NCBI | |
Han SK, Kim JK, Park HS, Shin YJ and Kim DH: Chaihu-Shugan-San (Shihosogansan) alleviates restraint stress-generated anxiety and depression in mice by regulating NF-κB-mediated BDNF expression through the modulation of gut microbiota. Chin Med. 16:772021. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S and Ge J: Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother. 164:1143122023. View Article : Google Scholar : PubMed/NCBI | |
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ, Liao M and Chen JX: Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int Immunopharmacol. 14:121–126. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen XQ, Chen SJ, Liang WN, Wang M, Li CF, Wang SS, Dong SQ, Yi LT and Li CD: Saikosaponin A attenuates perimenopausal depression-like symptoms by chronic unpredictable mild stress. Neurosci Lett. 662:283–289. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang AR, Mi LF, Zhang ZL, Hu MZ, Zhao ZY, Liu B, Li YB and Zheng S: Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav Brain Res. 403:1131382021. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Li M, Wang Y, Yao J, Wang Y, Wang S, Zhuang L, Liu S, Li Z, Hao Z, et al: Saikosaponins from Bupleurum scorzonerifolium Willd. alleviates microglial pyroptosis in depression by binding and inhibiting P2X7 expression. Phytomedicine. 136:1562402025. View Article : Google Scholar : PubMed/NCBI |