
Effects of chloroquine and hydroxychloroquine on bone health (Review)
- Authors:
- Sok Kuan Wong
-
Affiliations: Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia - Published online on: April 11, 2025 https://doi.org/10.3892/mmr.2025.13533
- Article Number: 168
-
Copyright: © Wong . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY and Muhammad N: Mechanistic insights and therapeutic strategies in osteoporosis: A comprehensive review. Biomedicines. 12:16352024. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Ye Z, Yan Y, Zhan X, Ren L, Zhou C, Chen T, Yao Y, Zhu J, Wu S, et al: The causal relationship between autoimmune diseases and osteoporosis: A study based on Mendelian randomization. Front Endocrinol (Lausanne). 14:11962692023. View Article : Google Scholar : PubMed/NCBI | |
Avouac J, Koumakis E, Toth E, Meunier M, Maury E, Kahan A, Cormier C and Allanore Y: Increased risk of osteoporosis and fracture in women with systemic sclerosis: A comparative study with rheumatoid arthritis. Arthritis Care Res (Hoboken). 64:1871–1878. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caffarelli C, Cameli P, Al Refaie A, Giglio E, Manzana G, Mondillo C, Noacco Y, Olivieri C, Bargagli E and Gonnelli S: Bone fragility and sarcoidosis: An underestimated relationship. Front Med (Lausanne). 9:10260282022. View Article : Google Scholar : PubMed/NCBI | |
Amarasekara DS, Yu J and Rho J: Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res. 2015:8321272015. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Li L, Sun Y, Wang W, Wang X, Ye Y, Chen X and Xu Y: IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology. 144:472–485. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kao FC, Hsu YC, Tu YK, Chen TS, Wang HH and Lin JC: Long-term use of immunosuppressive agents increased the risk of fractures in patients with autoimmune diseases: An 18-year population-based cohort study. Biomedicines. 11:27642023. View Article : Google Scholar : PubMed/NCBI | |
Satoh K, Mark H, Zachrisson P, Rydevik B, Byröd G, Kikuchi S, Konno S and Sekiguchi M: Effect of methotrexate on fracture healing. Fukushima J Med Sci. 57:11–18. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong SK: Repurposing new use for old drug chloroquine against metabolic syndrome: A review on animal and human evidence. Int J Med Sci. 18:2673–2688. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dima A, Jurcut C and Arnaud L: Hydroxychloroquine in systemic and autoimmune diseases: Where are we now? Joint Bone Spine. 88:1051432021. View Article : Google Scholar : PubMed/NCBI | |
Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, Agostinis P and Bouche G: Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 11:7812017. View Article : Google Scholar : PubMed/NCBI | |
Hashem AM, Alghamdi BS, Algaissi AA, Alshehri FS, Bukhari A, Alfaleh MA and Memish ZA: Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review. Travel Med Infect Dis. 35:1017352020. View Article : Google Scholar : PubMed/NCBI | |
Hong WJ, Chen W, Yeo KJ, Huang PH, Chen DY and Lan JL: Increased risk of osteoporotic vertebral fracture in rheumatoid arthritis patients with new-onset cardiovascular diseases: A retrospective nationwide cohort study in Taiwan. Osteoporos Int. 30:1617–1625. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakajima T, Doi H, Watanabe R, Murata K, Takase Y, Inaba R, Itaya T, Iwasaki T, Shirakashi M, Tsuji H, et al: Factors associated with osteoporosis and fractures in patients with systemic lupus erythematosus: Kyoto Lupus Cohort. Mod Rheumatol. 34:113–121. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ekenstam EA, Ljunghall S and Hällgren R: Serum osteocalcin in rheumatoid arthritis and other inflammatory arthritides: Relation between inflammatory activity and the effect of glucocorticoids and remission inducing drugs. Ann Rheum Dis. 45:484–490. 1986. View Article : Google Scholar : PubMed/NCBI | |
Both T, Zillikens MC, Schreuders-Koedam M, Vis M, Lam WK, Weel A, van Leeuwen J, van Hagen PM, van der Eerden BCJ and van Daele PLA: Hydroxychloroquine affects bone resorption both in vitro and in vivo. J Cell Physiol. 233:1424–1433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu JJ, Wu F, Ma RR, Wu TJ, Zhang Y and Ying ZH: The effects of iguratimod combined with methotrexate and hydroxychloroquine on bone mineral density in patients with rheumatoid arthritis. Pharmazie. 76:507–510. 2021.PubMed/NCBI | |
Park SJ, Sim SY, Jeong DC, Suh BK and Ahn MB: Factors affecting bone mineral density in children and adolescents with systemic lupus erythematosus. Ann Pediatr Endocrinol Metab. 29:191–200. 2024. View Article : Google Scholar : PubMed/NCBI | |
Heidari B, Monadi M and Ghazi Mirsaed MA: Bone mineral density changes during treatment of rheumatoid arthritis with disease-modifying-anti-rheumatic drugs. Caspian J Intern Med. 3:354–357. 2012.PubMed/NCBI | |
Carbone L, Vasan S, Elam R, Gupta S, Tolaymat O, Crandall C, Wactawski-Wende J and Johnson KC: The association of methotrexate, sulfasalazine, and hydroxychloroquine use with fracture in postmenopausal women with rheumatoid arthritis: Findings from the women's health initiative. JBMR Plus. 4:e103932020. View Article : Google Scholar : PubMed/NCBI | |
Fischer VW and Fitch CD: Affinity of chloroquine for bone. J Pharm Pharmacol. 27:527–529. 1975. View Article : Google Scholar : PubMed/NCBI | |
Chaichit S, Sato T, Yu H, Tanaka YK, Ogra Y, Mizoguchi T and Itoh M: Evaluation of Dexamethasone-induced osteoporosis in vivo using zebrafish scales. Pharmaceuticals (Basel). 14:5362021. View Article : Google Scholar : PubMed/NCBI | |
Aoki S, Shimizu K and Ito K: Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation. Biochem Biophys Res Commun. 527:874–880. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin NY, Chen CW, Kagwiria R, Liang R, Beyer C, Distler A, Luther J, Engelke K, Schett G and Distler JH: Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Ann Rheum Dis. 75:1203–1210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yousefzadeh N, Kashfi K, Jeddi S and Ghasemi A: Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 19:89–107. 2020.PubMed/NCBI | |
Xiong Y, Huang CW, Shi C, Peng L, Cheng YT, Hong W and Liao J: Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp Biol Med (Maywood). 248:2363–2380. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao Z, Xing L and Boyce BF: Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest. 124:297–310. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Hou Z, Xie Y, Yan F, Li S, Zhu X and Cai L: Icariin promotes osteogenic differentiation of bone marrow stromal cells and prevents bone loss in OVX mice via activating autophagy. J Cell Biochem. 120:13121–13132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ke D, Wang Y, Yu Y, Wang Y, Zheng W, Fu X, Han J, Zhang G and Xu J: Curcumin-activated autophagy plays a negative role in its anti-osteoclastogenic effect. Mol Cell Endocrinol. 500:1106372020. View Article : Google Scholar : PubMed/NCBI | |
Al-Bari MAA, Shinohara M, Nagai Y and Takayanagi H: Inhibitory effect of chloroquine on bone resorption reveals the key role of lysosomes in osteoclast differentiation and function. Inflammation and Regeneration. 32:222–231. 2012. View Article : Google Scholar | |
Wang S, Feng W, Liu J, Wang X, Zhong L, Lv C, Feng M, An N and Mao Y: Alginate oligosaccharide alleviates senile osteoporosis via the RANKL-RANK pathway in D-galactose-induced C57BL/6J mice. Chem Biol Drug Des. 99:46–55. 2022. View Article : Google Scholar : PubMed/NCBI | |
Imerb N, Thonusin C, Pratchayasakul W, Arunsak B, Nawara W, Ongnok B, Aeimlapa R, Charoenphandhu N, Chattipakorn N and Chattipakorn SC: D-galactose-induced aging aggravates obesity-induced bone dyshomeostasis. Sci Rep. 12:85802022. View Article : Google Scholar : PubMed/NCBI | |
Mahmoud MAA, Saleh DO, Safar MM, Agha AM and Khattab MM: Chloroquine ameliorates bone loss induced by d-galactose in male rats via inhibition of ERK associated osteoclastogenesis and antioxidant effect. Toxicol Rep. 8:366–375. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alam I, Gerard-O'Riley RL, Acton D, Hardman SL, Hong JM, Bruzzaniti A and Econs MJ: Chloroquine increases osteoclast activity in vitro but does not improve the osteopetrotic bone phenotype of ADO2 mice. Bone. 153:1161602021. View Article : Google Scholar : PubMed/NCBI | |
Teixeira CC, Liu Y, Thant LM, Pang J, Palmer G and Alikhani M: Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem. 285:31055–31065. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Luo W, Zhou F, Gong P and Xiong Y: The role of FOXO1-mediated autophagy in the regulation of bone formation. Cell Cycle. 22:829–840. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Yue T, Du X, Tang Z, Cui J, Wang W, Xia W, Ren B, Kan S, Li C, et al: HSC70 mediated autophagic degradation of oxidized PRL2 is responsible for osteoclastogenesis and inflammatory bone destruction. Cell Death Differ. 30:647–659. 2023. View Article : Google Scholar : PubMed/NCBI | |
Topak D, Gürbüz K, Doğar F, Bakır E, Gürbüz P, Kılınç E, Bilal Ö and Eken A: Hydroxychloroquine induces oxidative stress and impairs fracture healing in rats. Jt Dis Relat Surg. 34:346–355. 2023. View Article : Google Scholar : PubMed/NCBI | |
Önaloğlu Y, Beytemür O, Saraç EY, Biçer O, Güleryüz Y and Güleç MA: The effects of hydroxychloroquine-induced oxidative stress on fracture healing in an experimental rat model. Jt Dis Relat Surg. 35:146–155. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tekçe G, Arıcan M, Karaduman ZO, Turhan Y, Sağlam S, Yücel MO, Coşkun SK, Tuncer C and Uludağ V: Radiologic and histopathologic effects of favipiravir and hydroxychloroquine on fracture healing in rats. Naunyn Schmiedebergs Arch Pharmacol. 397:7857–7864. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Li X, Zhu Z, Wang H and Bai X: Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells. Biol Trace Elem Res. 199:3781–3792. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yu P, Gao Y, Ma Z, Wang H, Long Y, Ma Z and Liu R: Effects of the combination of Epimedii Folium and Ligustri Lucidi Fructus on apoptosis and autophagy in SOP rats and osteoblasts via PI3K/AKT/mTOR pathway. Biomed Pharmacother. 173:1163462024. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Zhao Y, Long Z, Song A, Huang P, Wang K, Xu L, Molloy DP and He G: Liquiritigenin promotes osteogenic differentiation and prevents bone loss via inducing auto-lysosomal degradation and inhibiting apoptosis. Genes Dis. 10:284–300. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 52:524–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lai Q and Li Y, Xu C, Tang X, Ci J, Sun S, Xu B and Li Y: Acidic pH environment induces autophagy in osteoblasts. Sci Rep. 7:461612017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ and Hou JM: Nbr1-regulated autophagy in Lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem. 84:1191–1200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yi L, Zhong T, Huang Y and Huang S: Triiodothyronine promotes the osteoblast formation by activating autophagy. Biophys Chem. 267:1064832020. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Huang B, Wang H, Ni N, He F, Liu Q, Shi D, Chen C, Zhao P, Wang X, et al: A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res. 13:4233–4250. 2021.PubMed/NCBI | |
Xu X, Wang R, Wu R, Yan W, Shi T, Jiang Q and Shi D: Trehalose reduces bone loss in experimental biliary cirrhosis rats via ERK phosphorylation regulation by enhancing autophagosome formation. FASEB J. 34:8402–8415. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ni Y, Zhang H and Li Z and Li Z: Connective tissue growth factor (CCN2) inhibits TNF-α-induced apoptosis by enhancing autophagy through the Akt and Erk pathways in osteoblasts. Pharmazie. 75:213–217. 2020.PubMed/NCBI | |
Liu W, Dai N, Wang Y, Xu C, Zhao H, Xia P, Gu J, Liu X, Bian J, Yuan Y, et al: Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts. Sci Rep. 6:204042016. View Article : Google Scholar : PubMed/NCBI | |
Both T, van de Peppel HJ, Zillikens MC, Koedam M, van Leeuwen J, van Hagen PM, van Daele PLA and van der Eerden BCJ: Hydroxychloroquine decreases human MSC-derived osteoblast differentiation and mineralization in vitro. J Cell Mol Med. 22:873–882. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zeng XY, Song CC and Zhang L: Lipopolysaccharide promotes the osteoclastogenesis through the autophagic degradation of TNF receptor-associated factor 3. Scienceasia. 48:697–704. 2022. View Article : Google Scholar | |
Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S and Chu T: Nox4 Promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2α/ATF4 pathway. Front Pharmacol. 12:7518452021. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Ou CH, Yen IC and Lee SY: 4-Acetylantroquinonol B inhibits osteoclastogenesis by inhibiting the autophagy pathway in a simulated microgravity model. Int J Mol Sci. 21:69712020. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Lei W, Duan R, Li Y, Luo L and Boyce BF: RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem. 292:10169–10179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Gu J, Song R, Wang D, Sun Z, Sui C, Zhang C, Liu X, Bian J and Liu Z: Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. J Cell Biochem. 120:1630–1642. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Sun Z, Ma Y, Song R, Yuan Y, Bian J, Gu J and Liu Z: Antiosteoclastic bone resorption activity of osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic pathway. J Cell Physiol. 235:3002–3012. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, Wei Y and Chen L: Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 19:4743–4752. 2019.PubMed/NCBI | |
Ke D, Fu X, Xue Y, Wu H, Zhang Y, Chen X and Hou J: IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro. Biochem Biophys Res Commun. 497:890–896. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rieman DJ, McClung HA, Dodds RA, Hwang SM, Holmes MW, James IE, Drake FH and Gowen M: Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone. 28:282–289. 2001. View Article : Google Scholar : PubMed/NCBI | |
Su B, Li D, Xu J, Zhang Y, Cai Z, Kauther MD and Ma R: Wear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis. Iran J Basic Med Sci. 21:806–812. 2018.PubMed/NCBI | |
Voronov I, Ochotny N, Jaumouillé V, Owen C, Manolson MF and Aubin JE: The R740S mutation in the V-ATPase a3 subunit increases lysosomal pH, impairs NFATc1 translocation, and decreases in vitro osteoclastogenesis. J Bone Miner Res. 28:108–118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Gao X, An Y, Zeng P, Chen C, Ma W and Yao X: Inhibitory effect of jinwujiangu prescription on peripheral blood osteoclasts in patients with rheumatoid arthritis and the relevant molecular mechanism. Mediators Inflamm. 2023:48144122023. View Article : Google Scholar : PubMed/NCBI | |
Lee CK, Lee EY, Chung SM, Mun SH, Yoo B and Moon HB: Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis Rheum. 50:3831–3843. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kar R, Riquelme MA, Hua R and Jiang JX: Glucocorticoid-induced autophagy protects osteocytes against oxidative stress through activation of MAPK/ERK signaling. JBMR Plus. 3:e100772019. View Article : Google Scholar : PubMed/NCBI | |
Wong SK, Chin KY and Ima-Nirwana S: Berberine and musculoskeletal disorders: The therapeutic potential and underlying molecular mechanisms. Phytomedicine. 73:1528922020. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Inoue D, Kido S and Matsumoto T: c-Fos degradation by the ubiquitin-proteasome proteolytic pathway in osteoclast progenitors. Bone. 37:842–849. 2005. View Article : Google Scholar : PubMed/NCBI | |
Okusha Y, Tran MT, Itagaki M, Sogawa C, Eguchi T, Okui T, Kadowaki T, Sakai E, Tsukuba T and Okamoto K: Rab11A functions as a negative regulator of osteoclastogenesis through dictating lysosome-induced proteolysis of c-fms and RANK surface receptors. Cells. 9:23842020. View Article : Google Scholar : PubMed/NCBI | |
Tran MT, Okusha Y, Feng Y, Morimatsu M, Wei P, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Okamura H, et al: The inhibitory role of Rab11b in osteoclastogenesis through triggering lysosome-induced degradation of c-Fms and RANK surface receptors. Int J Mol Sci. 21:93522020. View Article : Google Scholar : PubMed/NCBI | |
Florencio-Silva R, Sasso GR, Simões MJ, Simões RS, Baracat MC, Sasso-Cerri E and Cerri PS: Osteoporosis and autophagy: What is the relationship? Rev Assoc Med Bras (1992). 63:173–179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hansen M, Rubinsztein DC and Walker DW: Autophagy as a promoter of longevity: Insights from model organisms. Nat Rev Mol Cell Biol. 19:579–593. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wong SK, Chin KY and Ima-Nirwana S: The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther. 13:3497–3514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, et al: The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q and Zou S: Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 7:282019. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Liao J, Wang X and Feng Z: High glucose promotes apoptosis and autophagy of MC3T3-E1 osteoblasts. Arch Med Sci. 19:138–150. 2023.PubMed/NCBI | |
Ni Y, Zhang H, Zhang J and Li Z and Li Z: Inhibition of JAK2 by AG490 promotes TNF-α-induced apoptosis by inhibiting autophagy in MC3T3-E1 cells. Pharmazie. 75:255–260. 2020.PubMed/NCBI | |
Liu F, Yuan Y, Bai L, Yuan L, Li L, Liu J, Chen Y, Lu Y, Cheng J and Zhang J: LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 43:1019632021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H, Zhang Z, Tan J, Zhou J, Yang Y, et al: PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis. 1869:1667952023. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH and Voronov I: Lysosomal pH plays a key role in regulation of mTOR activity in osteoclasts. J Cell Biochem. 117:413–425. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wong SK, Chin KY and Ima-Nirwana S: Quercetin as an agent for protecting the bone: A review of the current evidence. Int J Mol Sci. 21:64482020. View Article : Google Scholar : PubMed/NCBI | |
Wong SK, Mohamad NV, Ibrahim N, Chin KY, Shuid AN and Ima-Nirwana S: The molecular mechanism of Vitamin E as a bone-protecting agent: A review on current evidence. Int J Mol Sci. 20:14532019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xu J, Dai B, Wang X, Guo Q and Qin L: Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI | |
Askarian F, Firoozi Z, Ebadollahi-Natanzi A, Bahrami S and Rahimi HR: A review on the pharmacokinetic properties and toxicity considerations for chloroquine and hydroxychloroquine to potentially treat coronavirus patients. Toxicol Res. 38:137–148. 2022. View Article : Google Scholar : PubMed/NCBI | |
Browning DJ: Pharmacology of chloroquine and hydroxychloroquine. Hydroxychloroquine and Chloroquine Retinopathy. Springer Nature. 35–63. 2014. | |
Stokkermans TJ, Falkowitz DM and Trichonas G: Chloroquine and Hydroxychloroquine Toxicity. Treasure Island: StatPearls Publishing; 2024 | |
Ruamviboonsuk P, Lai TYY, Chang A, Lai CC, Mieler WF and Lam DSC: Chloroquine and hydroxychloroquine retinal toxicity consideration in the treatment of COVID-19. Asia Pac J Ophthalmol (Phila). 9:85–87. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cohen IV, Makunts T, Moumedjian T, Issa MA and Abagyan R: Cardiac adverse events associated with chloroquine and hydroxychloroquine exposure in 20 years of drug safety surveillance reports. Sci Rep. 10:191992020. View Article : Google Scholar : PubMed/NCBI | |
National Institute for Health and Care Excellence, . Guidelines, in Osteoporosis: assessing the risk of fragility fracture. https://www.nice.org.uk/guidance/cg146April 29–2024 | |
Jehoon O, Kwon HJ, Cho TH, Woo SH, Rhee YH and Yang HM: Micro-computed tomography with contrast enhancement: An excellent technique for soft tissue examination in humans. PLoS One. 16:e02542642021. View Article : Google Scholar : PubMed/NCBI | |
Greenblatt MB, Tsai JN and Wein MN: Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 63:464–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ and Siris ES: The Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 33:2049–2102. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stevens DM, Crist RM and Stern ST: Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules. 26:1752020. View Article : Google Scholar : PubMed/NCBI | |
Al-Bari MA: Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 70:1608–1621. 2015. View Article : Google Scholar : PubMed/NCBI |