|
1
|
Schaafsma BE, Mieog JS, Hutteman M, van
der Vorst JR, Kuppen PJ, Löwik CW, Frangioni JV, van de Velde CJ
and Vahrmeijer AL: The clinical use of indocyanine green as a
near-infrared fluorescent contrast agent for Image-guided oncologic
surgery. J Surg Oncol. 104:323–332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Keller DS, Ishizawa T, Cohen R and Chand
M: Indocyanine green fluorescence imaging in colorectal surgery:
Overview, applications, and future directions. Lancet Gastroenterol
Hepatol. 2:757–766. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Boni L, David G, Mangano A, Dionigi G,
Rausei S, Spampatti S, Cassinotti E and Fingerhut A: Clinical
applications of indocyanine green (ICG) enhanced fluorescence in
laparoscopic surgery. Surg Endosc. 29:2046–2055. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
De Gasperi A, Mazza E and Prosperi M:
Indocyanine green kinetics to assess liver function: Ready for a
clinical dynamic assessment in major liver surgery? World J
Hepatol. 8:355–367. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Luo S, Zhang E, Su Y, Cheng T and Shi C: A
review of NIR dyes in cancer targeting and imaging. Biomaterials.
32:7127–7138. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Daskalaki D, Fernandes E, Wang X, Bianco
FM, Elli EF, Ayloo S, Masrur M, Milone L and Giulianotti PC:
Indocyanine green (ICG) fluorescent cholangiography during robotic
cholecystectomy: Results of 184 consecutive cases in a single
institution. Surg Innov. 21:615–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sakamoto E, Dias AR, Ramos M,
Safatle-Ribeiro AV, Zilberstein B and Ribeiro Junior U: Indocyanine
green and Near-Infrared fluorescence imaging in gastric cancer
precision surgical approach. Arq Gastroenterol. 58:569–570. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Reuthebuch O, Kadner A, Lachat M, Kunzli
A, Schurr UP and Turina MI: Early bypass occlusion after deployment
of nitinol connector devices. J Thorac Cardiovasc Surg.
127:1421–1426. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sekijima M, Tojimbara T, Sato S, Nakamura
M, Kawase T, Kai K, Urashima Y, Nakajima I, Fuchinoue S and Teraoka
S: An intraoperative fluorescent imaging system in organ
transplantation. Transplant Proc. 36:2188–2190. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Desai ND, Miwa S, Kodama D, Koyama T,
Cohen G, Pelletier MP, Cohen EA, Christakis GT, Goldman BS and
Fremes SE: A randomized comparison of intraoperative indocyanine
green angiography and transit-time flow measurement to detect
technical errors in coronary bypass grafts. J Thorac Cardiovasc
Surg. 132:585–594. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kang Y, Lee J, Kwon K and Choi C:
Application of novel dynamic optical imaging for evaluation of
peripheral tissue perfusion. Int J Cardiol. 145:e99–e101. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kuo WS, Chang YT, Cho KC, Chiu KC, Lien
CH, Yeh CS and Chen SJ: Gold nanomaterials conjugated with
indocyanine green for dual-modality photodynamic and photothermal
therapy. Biomaterials. 33:3270–3278. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang YW, Fu YY, Peng Q, Guo SS, Liu G, Li
J, Yang HH and Chen GN: Dye-enhanced graphene oxide for
photothermal therapy and photoacoustic imaging. J Mater Chem B.
1:5762–5767. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kono Y, Ishizawa T, Tani K, Harada N,
Kaneko J, Saiura A, Bandai Y and Kokudo N: Techniques of
fluorescence cholangiography during laparoscopic cholecystectomy
for better delineation of the bile duct anatomy. Medicine
(Baltimore). 94:e10052015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baiocchi GL, Diana M and Boni L:
Indocyanine green-based fluorescence imaging in visceral and
hepatobiliary and pancreatic surgery: State of the art and future
directions. World J Gastroenterol. 24:2921–2930. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
McGlynn KA, Petrick JL and London WT:
Global epidemiology of hepatocellular carcinoma: An emphasis on
demographic and regional variability. Clin Liver Dis. 19:223–238.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Horn SR, Stoltzfus KC, Lehrer EJ, Dawson
LA, Tchelebi L, Gusani NJ, Sharma NK, Chen H, Trifiletti DM and
Zaorsky NG: Epidemiology of liver metastases. Cancer Epidemiol.
67:1017602020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ishizawa T, Masuda K, Urano Y, Kawaguchi
Y, Satou S, Kaneko J, Hasegawa K, Shibahara J, Fukayama M, Tsuji S,
et al: Mechanistic background and clinical applications of
indocyanine green fluorescence imaging of hepatocellular carcinoma.
Ann Surg Oncol. 21:440–448. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ishizawa T, Fukushima N, Shibahara J,
Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M and
Kokudo N: Real-time identification of liver cancers by using
indocyanine green fluorescent imaging. Cancer. 115:2491–2504. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shimada S, Ohtsubo S, Ogasawara K and
Kusano M: Macro- and microscopic findings of ICG fluorescence in
liver tumors. World J Surg Oncol. 13:1982015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Abo T, Nanashima A, Tobinaga S, Hidaka S,
Taura N, Takagi K, Arai J, Miyaaki H, Shibata H and Nagayasu T:
Usefulness of intraoperative diagnosis of hepatic tumors located at
the liver surface and hepatic segmental visualization using
indocyanine green-photodynamic eye imaging. Eur J Surg Oncol.
41:257–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Terasawa M, Ishizawa T, Mise Y, Inoue Y,
Ito H, Takahashi Y and Saiura A: Applications of
fusion-fluorescence imaging using indocyanine green in laparoscopic
hepatectomy. Surg Endosc. 31:5111–5118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Achterberg FB, Bijlstra OD, Slooter MD,
Sibinga Mulder BG, Boonstra MC, Bouwense SA, Bosscha K, Coolsen
MME, Derksen WJM, Gerhards MF and Gobardhan PD: ICG-Fluorescence
imaging for margin assessment during minimally invasive colorectal
liver metastasis resection. JAMA Netw Open. 7:e2465482024.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang X, Teh CSC, Ishizawa T, Aoki T,
Cavallucci D, Lee SY, Panganiban KM, Perini MV, Shah SR, Wang H, et
al: Consensus guidelines for the use of fluorescence imaging in
hepatobiliary surgery. Ann Surg. 274:97–106. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang Z, Fang C, Zhang Y, Su S, Li B, Liu
G, Hu Z and Tian J: NIR-II nano fluorescence image guided hepatic
carcinoma resection on cirrhotic patient. Photodiagnosis Photodyn
Ther. 40:1030982022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NCT and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kim W, Kim HH, Han SU, Kim MC, Hyung WJ,
Ryu SW, Cho GS, Kim CY, Yang HK, Park DJ, et al: Decreased
morbidity of laparoscopic distal gastrectomy compared with open
distal gastrectomy for stage I gastric cancer: Short-term outcomes
from a multicenter randomized controlled trial (KLASS-01). Ann
Surg. 263:28–35. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hu Y, Huang C, Sun Y, Su X, Cao H, Hu J,
Xue Y, Suo J, Tao K, He X, et al: Morbidity and mortality of
laparoscopic versus open D2 distal gastrectomy for advanced gastric
cancer: A randomized controlled trial. J Clin Oncol. 34:1350–1357.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Smyth EC, Verheij M, Allum W, Cunningham
D, Cervantes A and Arnold D: Gastric cancer: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol.
27:v38–v49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Katai H, Mizusawa J, Katayama H, Takagi M,
Yoshikawa T, Fukagawa T, Terashima M, Misawa K, Teshima S, Koeda K,
et al: Short-term surgical outcomes from a phase III study of
laparoscopy-assisted versus open distal gastrectomy with nodal
dissection for clinical stage IA/IB gastric cancer: Japan Clinical
Oncology Group Study JCOG0912. Gastric Cancer. 20:699–708. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He H, Li H, Su X, Li Z, Yu P, Huang H,
Huang C, Ye J, Li Y, Suo J, et al: Study on safety of laparoscopic
total gastrectomy for clinical stage I gastric cancer: The protocol
of the CLASS02-01 multicenter randomized controlled clinical trial.
BMC Cancer. 18:9442018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hyung WJ, Yang HK, Han SU, Lee YJ, Park
JM, Kim JJ, Kwon OK, Kong SH, Kim HI, Lee HJ, et al: A feasibility
study of laparoscopic total gastrectomy for clinical stage I
gastric cancer: A prospective multi-center phase II clinical trial,
KLASS 03. Gastric Cancern. 22:214–222. 2019. View Article : Google Scholar
|
|
33
|
Belia F, Biondi A, Agnes A, Santocchi P,
Laurino A, Lorenzon L, Pezzuto R, Tirelli F, Ferri L, D'Ugo D and
Persiani R: The use of indocyanine green (ICG) and Near-infrared
(NIR) Fluorescence-guided imaging in gastric cancer surgery: A
narrative review. Front Surg. 9:8807732022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Katai H, Mizusawa J, Katayama H, Kunisaki
C, Sakuramoto S, Inaki N, Kinoshita T, Iwasaki Y, Misawa K,
Takiguchi N, et al: Single-arm confirmatory trial of
laparoscopy-assisted total or proximal gastrectomy with nodal
dissection for clinical stage I gastric cancer: Japan Clinical
Oncology Group study JCOG1401. Gastric Cancer. 22:999–1008. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lee HJ, Hyung WJ, Yang HK, Han SU, Park
YK, An JY, Kim W, Kim HI, Kim HH, Ryu SW, et al: Short-term
outcomes of a multicenter randomized controlled trial comparing
laparoscopic distal gastrectomy with D2 lymphadenectomy to open
distal gastrectomy for locally advanced gastric cancer
(KLASS-02-RCT). Ann Surg. 270:983–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J,
Du X, Huang H, Hu J, Li G, et al: Morbidity and mortality of
laparoscopic vs open total gastrectomy for clinical stage i gastric
cancer: The CLASS02 multicenter randomized clinical trial. JAMA
Oncol. 6:1590–1597. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hyung WJ, Yang HK, Park YK, Lee HJ, An JY,
Kim W, Kim HI, Kim HH, Ryu SW, Hur H, et al: Long-Term outcomes of
laparoscopic distal gastrectomy for locally advanced gastric
cancer: The KLASS-02-RCT randomized clinical trial. J Clin Oncol.
38:3304–3313. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Japanese Gastric Cancer Association, .
Japanese gastric cancer treatment guidelines 2018 (5th edition).
Gastric Cancer. 24:1–21. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
van der Veen A, Brenkman HJF, Seesing MFJ,
Haverkamp L, Luyer MDP, Nieuwenhuijzen GAP, Stoot JHMB, Tegels JJW,
Wijnhoven BPL, Lagarde SM, et al: Laparoscopic versus open
gastrectomy for gastric cancer (LOGICA): A multicenter randomized
clinical trial. J Clin Oncol. 39:978–989. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yano K, Nimura H, Mitsumori N, Takahashi
N, Kashiwagi H and Yanaga K: The efficiency of micrometastasis by
sentinel node navigation surgery using indocyanine green and
infrared ray laparoscopy system for gastric cancer. Gastric Cancer.
15:287–291. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Takeuchi H and Kitagawa Y: Sentinel node
navigation surgery in patients with early gastric cancer. Digestive
surgery. 30:104–111. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ushimaru Y, Omori T, Fujiwara Y,
Yanagimoto Y, Sugimura K, Yamamoto K, Moon JH, Miyata H, Ohue M and
Yano M: The feasibility and safety of preoperative fluorescence
marking with indocyanine green (ICG) in laparoscopic gastrectomy
for gastric cancer. J Gastrointest Surg. 23:468–476. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Romanzi A, Mancini R, Ioni L, Picconi T
and Pernazza G: ICG-NIR-guided lymph node dissection during robotic
subtotal gastrectomy for gastric cancer. A single-centre
experience. Int J Med Robot. 17:e22132021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Smith DD, Schwarz RR and Schwarz RE:
Impact of total lymph node count on staging and survival after
gastrectomy for gastric cancer: Data from a large US-population
database. J Clin Oncol. 23:7114–7124. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Son T, Hyung WJ, Lee JH, Kim YM, Kim HI,
An JY, Cheong JH and Noh SH: Clinical implication of an
insufficient number of examined lymph nodes after curative
resection for gastric cancer. Cancer. 118:4687–4693. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kwon IG, Son T, Kim HI and Hyung WJ:
Fluorescent lymphography-guided lymphadenectomy during robotic
radical gastrectomy for gastric cancer. JAMA Surg. 154:150–158.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
An JY, Min JS, Hur H, Lee YJ, Cho GS, Park
YK, Jung MR, Park JH, Hyung WJ, Jeong SH, et al: Laparoscopic
sentinel node navigation surgery versus laparoscopic gastrectomy
with lymph node dissection for early gastric cancer. Br J Surg.
107:1429–1439. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lan YT, Huang KH, Chen PH, Liu CA, Lo SS,
Wu CW, Shyr YM and Fang WL: A pilot study of lymph node mapping
with indocyanine green in robotic gastrectomy for gastric cancer.
SAGE Open Med. 5:20503121177274442017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ma S, Xie YB, Zeng HM, Xu Q, Zhong YX, Liu
H, Ma FH, Zhao F, Li H, Li Y and Tian YT: Feasibility and efficacy
of indocyanine green used in laparoscopic gastrectomy for advanced
gastric cancer patients. Zhonghua Zhong Liu Za Zhi. 41:904–908.
2019.(In Chinese). PubMed/NCBI
|
|
50
|
Chen QY, Zhong Q, Liu ZY, Li P, Lin GT,
Zheng QL, Wang JB, Lin JX, Lu J, Cao LL, et al: Indocyanine green
fluorescence imaging-guided versus conventional laparoscopic
lymphadenectomy for gastric cancer: Long-term outcomes of a phase 3
randomised clinical trial. Nat Commun. 14:74132023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huang ZN, Tang YH, Zhong Q, Li P, Xie JW,
Wang JB, Lin JX, Lu J, Cao LL, Lin M, et al: Assessment of
laparoscopic indocyanine green Tracer-guided lymphadenectomy after
neoadjuvant chemotherapy for locally advanced gastric cancer: A
randomized controlled trial. Ann Surg. 279:923–931. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shimada S, Yagi Y, Shiomori K, Honmyo U,
Hayashi N, Matsuo A, Marutsuka T and Ogawa M: Characterization of
early gastric cancer and proposal of the optimal therapeutic
strategy. Surgery. 129:714–719. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Roh CK, Choi S, Seo WJ, Cho M, Son T, Kim
HI and Hyung WJ: Indocyanine green fluorescence lymphography during
gastrectomy after initial endoscopic submucosal dissection for
early gastric cancer. Br J Surg. 107:712–719. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Miyashiro I, Kishi K, Yano M, Tanaka K,
Motoori M, Ohue M, Ohigashi H, Takenaka A, Tomita Y and Ishikawa O:
Laparoscopic detection of sentinel node in gastric cancer surgery
by indocyanine green fluorescence imaging. Surg Endosc.
25:1672–1676. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lombardi PM, Mazzola M, Nicastro V,
Giacopuzzi S, Baiocchi GL, Castoro C, Rosati R, Fumagalli Romario
U, Bonavina L, Staderini F, et al: The iGreenGO Study: The clinical
role of indocyanine green imaging fluorescence in modifying the
Surgeon's conduct during the surgical treatment of advanced gastric
cancer-study protocol for an international multicenter prospective
study. Front Oncol. 12:8547542022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tanaka C, Kanda M, Funasaka K, Miyahara R,
Murotani K, Tanaka Y, Takeda S, Kobayashi D, Hirooka Y, Fujiwara M,
et al: Detection of indocyanine green fluorescence to determine
tumor location during laparoscopic gastrectomy for gastric cancer:
Results of a prospective study. Asian J Endosc Surg. 13:160–167.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen QY, Zhong Q, Li P, Xie JW, Liu ZY,
Huang XB, Lin GT, Wang JB, Lin JX, Lu J, et al: Comparison of
submucosal and subserosal approaches toward optimized indocyanine
green tracer-guided laparoscopic lymphadenectomy for patients with
gastric cancer (FUGES-019): A randomized controlled trial. BMC Med.
19:2762021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim TH, Kong SH, Park JH, Son YG, Huh YJ,
Suh YS, Lee HJ and Yang HK: Assessment of the completeness of lymph
node dissection using Near-infrared imaging with indocyanine green
in laparoscopic gastrectomy for gastric cancer. J Gastric Cancer.
18:161–171. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tajima Y, Murakami M, Yamazaki K, Masuda
Y, Kato M, Sato A, Goto S, Otsuka K, Kato T and Kusano M: Sentinel
node mapping guided by indocyanine green fluorescence imaging
during laparoscopic surgery in gastric cancer. Ann Surg Oncol.
17:1787–1793. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX,
Lu J, Cao LL, Lin M, Tu RH, Huang ZN, et al: Safety and efficacy of
indocyanine green Tracer-guided lymph node dissection during
laparoscopic radical gastrectomy in patients with gastric cancer: A
randomized clinical trial. JAMA Surg. 155:300–311. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Qian Y and Cai S: A safe and effective
surgical navigation technique in laparoscopic radical gastrectomy:
Indocyanine Green-mediated near-infrared fluorescent imaging.
Cancer Commun (Lond). 40:270–272. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shoji Y, Kumagai K, Kamiya S, Ida S,
Nunobe S, Ohashi M, Yoshimizu S, Horiuchi Y, Yoshio T, Ishiyama A,
et al: Prospective feasibility study for single-tracer sentinel
node mapping by ICG (indocyanine green) fluorescence and OSNA
(one-step nucleic acid amplification) assay in laparoscopic gastric
cancer surgery. Gastric Cancer. 22:873–880. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Uhlenhopp DJ, Then EO, Sunkara T and
Gaduputi V: Epidemiology of esophageal cancer: update in global
trends, etiology and risk factors. Clin J Gastroenterol.
13:1010–1021. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tachibana M, Kinugasa S, Shibakita M,
Tonomoto Y, Hattori S, Hyakudom R, Yoshimura H, Dhar DK and Nagasue
N: Surgical treatment of superficial esophageal cancer. Langenbecks
Arch Surg. 391:304–321. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nimura H, Narimiya N, Mitsumori N,
Yamazaki Y, Yanaga K and Urashima M: Infrared ray electronic
endoscopy combined with indocyanine green injection for detection
of sentinel nodes of patients with gastric cancer. Br J Surg.
91:575–579. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Picchetto A, Seeliger B, La Rocca S,
Barberio M, D'Ambrosio G, Marescaux J and Diana M:
Fluorescence-guided detection of lymph node metastases of
gastrointestinal tumors. Chirurg. 90:891–898. 2019.(In German).
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hachey KJ, Gilmore DM, Armstrong KW,
Harris SE, Hornick JL, Colson YL and Wee JO: Safety and feasibility
of Near-infrared image-guided lymphatic mapping of regional lymph
nodes in esophageal cancer. J Thorac Cardiovasc Surg. 152:546–554.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang X, Hu Y, Wu X, Liang M, Hu Z, Gan X,
Li D, Cao Q and Shan H: Near-infrared fluorescence imaging-guided
lymphatic mapping in thoracic esophageal cancer surgery. Surg
Endosc. 36:3994–4003. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Helminen O, Mrena J and Sihvo E:
Near-infrared image-guided lymphatic mapping in minimally invasive
oesophagectomy of distal oesophageal cancer. Eur J Cardiothorac
Surg. 52:952–957. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tamburini N, Chiozza M, Maniscalco P,
Resta G, Marino S, Quarantotto F, Anania G and Cavallesco G:
Application of indocyanine green enhanced fluorescence in
esophageal surgery: A mini review. Front Surg. 9:9618562022.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Koyanagi K, Ozawa S, Ninomiya Y, Yatabe K,
Higuchi T, Yamamoto M, Kanamori K and Tajima K: Indocyanine green
fluorescence imaging for evaluating blood flow in the reconstructed
conduit after esophageal cancer surgery. Surgery Today. 52:369–376.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rho J, Quan YH, Choi BH, Han KN, Kim BM,
Choi YH and Kim HK: Near-infrared fluorescent imaging with
indocyanine green in rabbit and patient specimens of esophageal
cancer. J Thorac Dis. 213:6314–6322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Romero-Zoghbi SE, Krumina E, López-Campos
F and Couñago F: Current and future perspectives in the management
and treatment of colorectal cancer. World J Clin Oncol.
16:1008072025. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Vallance A, Wexner S, Berho M, Cahill R,
Coleman M, Haboubi N, Heald RJ, Kennedy RH, Moran B, Mortensen N,
et al: A collaborative review of the current concepts and
challenges of anastomotic leaks in colorectal surgery. Colorectal
Dis. 19:O1–O12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rutegård M and Rutegård J: Anastomotic
leakage in rectal cancer surgery: The role of blood perfusion.
World J Gastrointest Surg. 7:289–292. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Iguchi K, Watanabe J, Suwa Y, Chida K,
Atsumi Y, Numata M, Sato T, Takeda K and Kunisaki C: The usefulness
of indocyanine green fluorescence imaging for intestinal perfusion
assessment of intracorporeal anastomosis in laparoscopic colon
cancer surgery. Int J Colorectal Dis. 38:72023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Peltrini R, Podda M, Castiglioni S, Di
Nuzzo MM, D'Ambra M, Lionetti R, Sodo M, Luglio G, Mucilli F, Di
Saverio S, et al: Intraoperative use of indocyanine green
fluorescence imaging in rectal cancer surgery: The state of the
art. World J Gastroenterol. 27:6374–6386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Maione F, Manigrasso M, Chini A, Vertaldi
S, Anoldo P, D'Amore A, Marello A, Sorrentino C, Cantore G, Maione
R, et al: The Role of indocyanine Near-infrared fluorescence in
colorectal surgery. Front Surg. 9:8864782022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
van Manen L, Handgraaf HJM, Diana M,
Dijkstra J, Ishizawa T, Vahrmeijer AL and Mieog JSD: A practical
guide for the use of indocyanine green and methylene blue in
fluorescence-guided abdominal surgery. J Surg Oncol. 118:283–300.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Watanabe J, Ishibe A, Suwa Y, Suwa H, Ota
M, Kunisaki C and Endo I: Indocyanine green fluorescence imaging to
reduce the risk of anastomotic leakage in laparoscopic low anterior
resection for rectal cancer: A propensity score-matched cohort
study. Surg Endosc. 34:202–208. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cahill RA, Anderson M, Wang LM, Lindsey I,
Cunningham C and Mortensen NJ: Near-infrared (NIR) laparoscopy for
intraoperative lymphatic road-mapping and sentinel node
identification during definitive surgical resection of early-stage
colorectal neoplasia. Surg Endosc. 26:197–204. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ahn HM, Son GM, Lee IY, Park SH, Kim NS
and Baek KR: Optimization of indocyanine green angiography for
colon perfusion during laparoscopic colorectal surgery. Colorectal
Dis. 23:1848–1859. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Watanabe J, Ishibe A, Ohya H, Suwa Y, Suwa
H, Kunisaki C and Endo I: Evaluating the effect of intraoperative
near-infrared observation on anastomotic leakage after stapled
side-to-side anastomosis in colon cancer surgery using propensity
score matching. Dis Colon Rectum. 64:1542–1550. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
De Nardi P, Elmore U, Maggi G, Maggiore R,
Boni L, Cassinotti E, Fumagalli U, Gardani M, De Pascale S, Parise
P, et al: Intraoperative angiography with indocyanine green to
assess anastomosis perfusion in patients undergoing laparoscopic
colorectal resection: Results of a multicenter randomized
controlled trial. Surg Endosc. 34:53–60. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Staniloaie D, Budin C, Ilco A, Vasile D,
Calinoiu AL, Rusu A, Iancu G, Ammar T, Georgescu CF, Tanasescu MD,
et al: In Vivo sentinel lymph node detection with indocyanine green
in colorectal cancer. Maedica. 17:264–270. 2022.PubMed/NCBI
|
|
87
|
Chand M and Dean M: Mapping the mesentery
using ICG. Clin Colon Rectal Surg. 35:338–341. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Watanabe J, Ota M, Suwa Y, Ishibe A, Masui
H and Nagahori K: Real-time indocyanine green fluorescence
imaging-guided complete mesocolic excision in laparoscopic flexural
colon cancer surgery. Dis Colon Rectum. 59:701–705. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Park SY, Park JS, Kim HJ, Woo IT, Park IK
and Choi GS: Indocyanine green fluorescence Imaging-guided
laparoscopic surgery could achieve radical D3 dissection in
patients with advanced right-sided colon cancer. Dis Colon Rectum.
63:441–449. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ahn HM, Son GM, Lee IY, Shin DH, Kim TK,
Park SB and Kim HW: Optimal ICG dosage of preoperative colonoscopic
tattooing for fluorescence-guided laparoscopic colorectal surgery.
Surg Endosc. 36:1152–1163. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Su H, Xu Z, Bao M, Luo S, Liang J, Pei W,
Guan X, Liu Z, Jiang Z, Zhang M, et al: Lateral pelvic sentinel
lymph node biopsy using indocyanine green fluorescence navigation:
Can it be a powerful supplement tool for predicting the status of
lateral pelvic lymph nodes in advanced lower rectal cancer. Surg
Endosc. 37:4088–4096. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim HJ, Choi GS, Park JS, Park SY, Cho SH,
Seo AN and Yoon GS: S122: Impact of fluorescence and 3D images to
completeness of lateral pelvic node dissection. Surg Endosc.
34:469–476. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Nagata J, Fukunaga Y, Akiyoshi T, Konishi
T, Fujimoto Y, Nagayama S, Yamamoto N and Ueno M: Colonic marking
with Near-infrared, Light-emitting, Diode-activated indocyanine
green for laparoscopic colorectal surgery. Dis Colon Rectum.
59:e14–e18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zako T, Ito M, Hyodo H, Yoshimoto M,
Watanabe M, Takemura H, Kishimoto H, Kaneko K, Soga K and Maeda M:
Extra-luminal detection of assumed colonic tumor site by
near-infrared laparoscopy. Surg Endosc. 30:4153–4159. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Watanabe M, Murakami M, Ozawa Y, Yoshizawa
S, Matsui N and Aoki T: Intraoperative identification of colonic
tumor sites using a Near-Infrared fluorescence endoscopic imaging
system and indocyanine green. Dig Surg. 34:495–501. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Park JH, Moon HS, Kwon IS, Yun GY, Lee SH,
Park DH, Kim JS, Kang SH, Lee ES, Kim SH, et al: Usefulness of
colonic tattooing using indocyanine green in patients with
colorectal tumors. World J Clin Cases. 6:632–640. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Magdassi S, Bar-David S, Friedman-Levi Y,
Zigmond E, Varol C, Lahat G, Klausner J, Eyal S and Nizri E:
Intraoperative localization of rectal tumors using liposomal
indocyanine green. Surg Innov. 24:139–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bar-David S, Larush L, Goder N, Aizic A,
Zigmond E, Varol C, Klausner J, Magdassi S and Nizri E: Size and
lipid modification determine liposomal Indocyanine green
performance for tumor imaging in a model of rectal cancer. Sci Rep.
9:85662019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Koual M, Benoit L, Nguyen-Xuan HT,
Bentivegna E, Azaïs H and Bats AS: Diagnostic value of indocyanine
green fluorescence guided sentinel lymph node biopsy in vulvar
cancer: A systematic review. Gynecol Oncol. 161:436–441. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Goonawardena J, Yong C and Law M: Use of
indocyanine green fluorescence compared to radioisotope for
sentinel lymph node biopsy in Early-stage breast cancer: Systematic
review and meta-analysis. Am J Surg. 220:665–676. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gerken ALH, Nowak K, Meyer A, Weiss C,
Krüger B, Nawroth N, Karampinis I, Heller K, Apel H, Reissfelder C,
et al: Quantitative assessment of intraoperative laser fluorescence
angiography with indocyanine green predicts early graft function
after kidney transplantation. Ann Surg. 276:391–397. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nguyen HN, Pertzborn D, Ziadat R, Ernst G,
Guntinas-Lichius O, Von Eggeling F and Hoffmann F: Indocyanine
green uptake by human tumor and non-tumor cell lines and tissue.
Biomed Rep. 21:1362024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jiang X, Du B, Huang Y, Yu M and Zheng J:
Cancer photothermal therapy with ICG-Conjugated gold nanoclusters.
Bioconjug Chem. 31:1522–1528. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tang W, Kang J, Yang L, Lin J, Song J,
Zhou D and Ye F: Thermosensitive nanocomposite components for
combined photothermal-photodynamic therapy in liver cancer
treatment. Colloids Surf B Biointerfaces. 226:1133172023.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Marker SC, Espinoza AF, King AP, Woodfield
SE, Patel RH, Baidoo K, Nix MN, Ciaramicoli LM, Chang YT, Escorcia
FE, et al: Development of iodinated indocyanine green analogs as a
strategy for targeted therapy of liver cancer. ACS Med Chem Lett.
14:1208–1215. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Debie P and Hernot S: Emerging fluorescent
molecular tracers to guide intra-operative surgical
decision-making. Front Pharmacol. 10:5102019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Okubo K, Uenosono Y, Arigami T, Matsushita
D, Yanagita S, Kijima T, Amatatsu M, Ishigami S, Maemura K and
Natsugoe S: Quantitative assessment of fluorescence intensity of
ICG in sentinel nodes in early gastric cancer. Gastric Cancer.
21:776–781. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Slooter MD, de Bruin DM, Eshuis WJ, Veelo
DP, van Dieren S, Gisbertz SS and van Berge Henegouwen MI:
Quantitative Fluorescence-guided perfusion assessment of the
gastric conduit to predict anastomotic complications after
esophagectomy. Dis Esophagus. 34:doaa1002021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Boogerd LSF, Hoogstins CES, Schaap DP,
Kusters M, Handgraaf HJM, van der Valk MJM, Hilling DE, Holman FA,
Peeters KCMJ, Mieog JSD, et al: Safety and effectiveness of
SGM-101, a fluorescent antibody targeting carcinoembryonic antigen,
for intraoperative detection of colorectal cancer: A
dose-escalation pilot study. Lancet Gastroenterol Hepatol.
3:181–191. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Park Y, Park MH and Hyun H:
Structure-inherent tumor-targeted IR-783 for near-infrared
fluorescence-guided photothermal therapy. Int J Mol Sci.
25:53092024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kawada K, Hasegawa S, Wada T, Takahashi R,
Hisamori S, Hida K and Sakai Y: Evaluation of intestinal perfusion
by ICG fluorescence imaging in laparoscopic colorectal surgery with
DST anastomosis. Surg Endosc. 31:1061–1069. 2017. View Article : Google Scholar : PubMed/NCBI
|