Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Studies on the functional role of UFMylation in cells (Review)

  • Authors:
    • Rong Qin
    • Yu Tang
    • Yuhang Yuan
    • Fangyu Meng
    • Kepu Zheng
    • Xingyu Yang
    • Jiumei Zhao
    • Chuanhua Yang
  • View Affiliations / Copyright

    Affiliations: Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Hepato-Biliary-­Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China, Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China, Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 191
    |
    Published online on: May 2, 2025
       https://doi.org/10.3892/mmr.2025.13556
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Protein post‑translational modifications (PTMs) play crucial roles in various life activities and aberrant protein modifications are closely associated with numerous major human diseases. Ubiquitination, the first identified protein modification system, involves the covalent attachment of ubiquitin molecules to lysine residues of target proteins. UFMylation, a recently discovered ubiquitin‑like modification, shares similarities with ubiquitination. The precursor form of ubiquitin fold modifier 1 (UFM1) undergoes synthesis and cleavage by UFM1‑specific protease 1 or UFM1‑specific protease 2 to generate activated UFM1‑G83. Subsequently, UFM1‑G83 is activated by a specific E1‑like activase, UFM1‑activating enzyme 5. UFM1‑conjugating enzyme 1 and an E3‑like ligase, UFM1‑specific ligase 1, recognize the target protein and facilitate UFMylation, leading to the degradation of the target protein. Current knowledge regarding UFMylation remains limited. Previous studies have demonstrated that defects in the UFMylation pathway can result in embryonic lethality in mice and various human diseases, highlighting the critical biological functions of UFMylation. However, the precise mechanisms underlying UFMylation remain elusive. This present review aimed to summarize recent research advances in UFMylation, with the aim of providing novel insights and perspectives for future investigations into this essential protein modification system.
View Figures

Figure 1

Figure 2

View References

1 

Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A and Schulze WX: The scope, functions, and dynamics of posttranslational protein modifications. Annu Rev Plant Biol. 70:119–151. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Hsu YC, Hsieh YH, Liao CC, Chong LW, Lee CY, Yu YL and Chou RH: Targeting post-translational modifications of histones for cancer therapy. Cell Mol Biol (Noisy-le-grand). 30:69–84. 2015.

3 

Hitosugi T and Chen J: Post-translational modifications and the Warburg effect. Oncogene. 33:4279–4285. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Herhaus L and Dikic I: Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Hochstrasser M: Origin and function of ubiquitin-like proteins. Nature. 458:422–429. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Sahtoe DD and Sixma TK: Layers of DUB regulation. Trends Biochem Sci. 40:456–467. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Karpiyevich M and Artavanis-Tsakonas K: Ubiquitin-like modifiers: Emerging regulators of protozoan parasites. Biomolecules. 10:14032020. View Article : Google Scholar : PubMed/NCBI

8 

Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, Ueno T, Kominami E, Natsume T and Tanaka K: A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23:1977–1986. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Gerakis Y, Quintero M, Li H and Hetz C: The UFMylation system in proteostasis and beyond. Trends Cell Biol. 29:974–986. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Banerjee S, Kumar M and Wiener R: Decrypting UFMylation: How proteins are modified with UFM1. Biomolecules. 10:14422020. View Article : Google Scholar : PubMed/NCBI

11 

Witting KF, van der Heden van Noort GJ, Kofoed C, Ormeno CT, El Atmioui D, Mulder MPC and Ovaa H: Generation of the UFM1 toolkit for profiling UFM1-specific proteases and ligases. Angew Chem Int Ed Engl. 57:14164–14168. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Lorenz S, Cantor AJ, Rape M and Kuriyan J: Macromolecular juggling by ubiquitylation enzymes. BMC Biol. 11:652013. View Article : Google Scholar : PubMed/NCBI

13 

Jing Y, Mao Z and Chen F: UFMylation system: An emerging player in tumorigenesis. Cancers (Basel). 14:35012022. View Article : Google Scholar : PubMed/NCBI

14 

Clague MJ, Urbe S and Komander D: Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Lin M, Zheng X and Jin J: Nontraditional translation is the key to UFMylation and beyond. J Biol Chem. 298:1024312022. View Article : Google Scholar : PubMed/NCBI

16 

Yang R, Wang H, Kang B, Chen B, Shi Y, Yang S, Sun L, Liu Y, Xiao W, Zhang T, et al: CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development. 146:dev1692352019. View Article : Google Scholar : PubMed/NCBI

17 

Yang S, Moy N and Yang R: The UFM1 conjugation system in mammalian development. Dev Dyn. 252:976–985. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Cai Y, Pi W, Sivaprakasam S, Zhu X, Zhang M, Chen J, Makala L, Lu C, Wu J, Teng Y, et al: UFBP1, a key component of the ufm1 conjugation system, is essential for ufmylation-mediated regulation of erythroid development. PLoS Genet. 11:e10056432015. View Article : Google Scholar : PubMed/NCBI

19 

Tandra V, Anderson T, Ayala JD, Weintraub NL, Singh N, Li H and Li J: Ufmylation of UFBP1 is dispensable for endoplasmic reticulum stress response, embryonic development, and cardiac and intestinal homeostasis. Cells. 12:19232023. View Article : Google Scholar : PubMed/NCBI

20 

Wang X, Lv X, Ma J and Xu G: UFMylation: An integral post-translational modification for the regulation of proteostasis and cellular functions. Pharmacol Ther. 260:1086802024. View Article : Google Scholar : PubMed/NCBI

21 

Ding LJ, Jiang X, Li T and Wang S: Role of UFMylation in tumorigenesis and cancer immunotherapy. Front Immunol. 15:14548232024. View Article : Google Scholar : PubMed/NCBI

22 

Wang X, Xu X and Wang Z: The post-translational role of UFMylation in physiology and disease. Cells. 12:25432023. View Article : Google Scholar : PubMed/NCBI

23 

Yang X, Zhou T, Wang X, Xia Y, Cao X, Cheng X, Cao Y, Ma P, Ma H, Qin A and Zhao J: Loss of DDRGK1 impairs IRE1α UFMylation in spondyloepiphyseal dysplasia. Int J Biol Sci. 19:4709–4725. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Zhang G, Tang S, Wang H, Pan H, Zhang W, Huang Y, Kong J and Wang Y, Gu J and Wang Y: UFSP2-related spondyloepimetaphyseal dysplasia: A confirmatory report. Eur J Med Genet. 63:1040212020. View Article : Google Scholar : PubMed/NCBI

25 

Colin E, Daniel J, Ziegler A, Wakim J, Scrivo A, Haack TB, Khiati S, Denommé AS, Amati-Bonneau P, Charif M, et al: Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am J Hum Genet. 99:695–703. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Sasakawa H, Sakata E, Yamaguchi Y, Komatsu M, Tatsumi K, Kominami E, Tanaka K and Kato K: Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun. 343:21–26. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A and Kulathu Y: Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep. 40:1111682022. View Article : Google Scholar : PubMed/NCBI

28 

Kang SH, Kim GR, Seong M, Baek SH, Seol JH, Bang OS, Ovaa H, Tatsumi K, Komatsu M, Tanaka K and Chung CH: Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J Biol Chem. 282:5256–5262. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Ha BH, Jeon YJ, Shin SC, Tatsumi K, Komatsu M, Tanaka K, Watson CM, Wallis G, Chung CH and Kim EE: Structure of ubiquitin-fold modifier 1-specific protease UfSP2. J Biol Chem. 286:10248–10257. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Millrine D, Peter JJ and Kulathu Y: A guide to UFMylation, an emerging posttranslational modification. FEBS J. 290:5040–5056. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Liang Q, Jin Y, Xu S, Zhou J, Mao J, Ma X, Wang M and Cong YS: Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. J Biol Chem. 298:1020162022. View Article : Google Scholar : PubMed/NCBI

32 

Mashahreh B, Hassouna F, Soudah N, Cohen-Kfir E, Strulovich R, Haitin Y and Wiener R: Trans-binding of UFM1 to UBA5 stimulates UBA5 homodimerization and ATP binding. FASEB J. 32:2794–2802. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Soudah N, Padala P, Hassouna F, Kumar M, Mashahreh B, Lebedev AA, Isupov MN, Cohen-Kfir E and Wiener R: An N-terminal extension to UBA5 adenylation domain boosts UFM1 activation: isoform-specific differences in ubiquitin-like protein activation. J Mol Biol. 431:463–478. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, et al: Structural basis for UFM1 transfer from UBA5 to UFC1. Nat Commun. 12:57082021. View Article : Google Scholar : PubMed/NCBI

35 

Tolmachova KA, Farnung J, Liang JR, Corn JE and Bode JW: Facile preparation of UFMylation activity-based probes by chemoselective installation of electrophiles at the C-terminus of recombinant UFM1. ACS Cent Sci. 8:756–762. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Kumari S, Banerjee S, Kumar M, Hayashi A, Solaimuthu B, Cohen-Kfir E, Shaul YD, Rouvinski A and Wiener R: Overexpression of UBA5 in cells mimics the phenotype of cells lacking UBA5. Int J Mol Sci. 23:74452022. View Article : Google Scholar : PubMed/NCBI

37 

Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, et al: Autoinhibition mechanism of the ubiquitin-conjugating enzyme UBE2S by autoubiquitination. Structure. 27:1195–1210. e72019. View Article : Google Scholar : PubMed/NCBI

38 

Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, et al: A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem. 285:5417–5427. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR and Kulathu Y: A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J. 41:e1110152022. View Article : Google Scholar : PubMed/NCBI

40 

Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Deol KK, Lorenz S and Strieter ER: Enzymatic logic of ubiquitin chain assembly. Front Physiol. 10:8352019. View Article : Google Scholar : PubMed/NCBI

42 

Jiang Q, Wang Y, Xiang M, Hua J, Zhou T, Chen F, Lv X, Huang J and Cai Y: UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Front Endocrinol (Lausanne). 14:11231242023. View Article : Google Scholar : PubMed/NCBI

43 

Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, et al: Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development. Mol Cell. 56:261–274. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Lee L, Oliva AB, Martinez-Balsalobre E, Churikov D, Peter J, Rahmouni D, Audoly G, Azzoni V, Audebert S, Camoin L, et al: UFMylation of MRE11 is essential for telomere length maintenance and hematopoietic stem cell survival. Sci Adv. 7:eabc73712021. View Article : Google Scholar : PubMed/NCBI

45 

Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, Li H, Wang L and Lou Z: UFL1 promotes histone H4 ufmylation and ATM activation. Nat Commun. 10:12422019. View Article : Google Scholar : PubMed/NCBI

46 

Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, Zhu M, Zhang H, Lou Z, Zhou J, et al: MRE11 UFMylation promotes ATM activation. Nucleic Acids Res. 47:4124–4135. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, Song L, Xu L, Bai J, Liu C, et al: UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol. 22:1056–1063. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Lee JH and Paull TT: Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Bakkenist CJ and Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 421:499–506. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Qin B, Yu J, Nowsheen S, Zhao F, Wang L and Lou Z: STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation. Sci Adv. 6:eaax82142020. View Article : Google Scholar : PubMed/NCBI

51 

Fang Z and Pan Z: Essential role of ubiquitin-fold modifier 1 conjugation in DNA damage response. DNA Cell Biol. 38:1030–1039. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Sun Y, Jiang X, Chen S, Fernandes N and Price BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA. 102:13182–13187. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, Chen H, Wang M, Ju Z and Cong YS: A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 8:141862017. View Article : Google Scholar : PubMed/NCBI

54 

Rusiecki R, Witkowski J and Jaszczewska-Adamczak J: MDM2-p53 interaction inhibitors: The current state-of-art and updated patent review (2010-Present). Recent Pat Anticancer Drug Discov. 14:324–369. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Wang S, Zhao Y, Aguilar A, Bernard D and Yang CY: Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: Progress and challenges. Cold Spring Harb Perspect Med. 7:a0262452017. View Article : Google Scholar : PubMed/NCBI

56 

Adams KE, Medhurst AL, Dart DA and Lakin ND: Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene. 25:3894–3904. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, Stanslas J and Sekawi Z: Effects of HSV-G47Delta oncolytic virus on telomerase and telomere length alterations in glioblastoma multiforme cancer stem cells under hypoxia and normoxia conditions. Curr Cancer Drug Targets. 24:1262–1274. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Ufmylation of ASC1 is essential for breast cancer development. Cancer Discov. 4:OF102014. View Article : Google Scholar

59 

Chen Q, Xiao Y, Chai P, Zheng P, Teng J and Chen J: ATL3 is a tubular ER-Phagy receptor for GABARAP-mediated selective autophagy. Curr Biol. 29:846–855. e62019. View Article : Google Scholar : PubMed/NCBI

60 

Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, de Medina Hernandez V, Mohseni A, Clavel M, Zeng Y, Naumann C, et al: A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 9:e583962020. View Article : Google Scholar : PubMed/NCBI

61 

Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY and Barna M: The mammalian Ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell. 169:1051–1065. e182017. View Article : Google Scholar : PubMed/NCBI

62 

Komatsu M, Inada T and Noda NN: The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell. 84:156–169. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Ishimura R, Ito S, Mao G, Komatsu-Hirota S, Inada T, Noda NN and Komatsu M: Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci Adv. 9:eadh36352023. View Article : Google Scholar : PubMed/NCBI

64 

Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, Ingolia NT, Elias JE and Kopito RR: Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA. 116:1299–1308. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Scavone F, Gumbin SC, Da Rosa PA and Kopito RR: RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Proc Natl Acad Sci USA. 120:e22203401202023. View Article : Google Scholar : PubMed/NCBI

66 

Wang L, Xu Y, Rogers H, Saidi L, Noguchi CT, Li H, Yewdell JW, Guydosh NR and Ye Y: UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res. 30:5–20. 2019. View Article : Google Scholar : PubMed/NCBI

67 

French SW, Masouminia M, Samadzadeh S, Tillman BC, Mendoza A and French BA: Role of protein quality control failure in alcoholic hepatitis pathogenesis. Biomolecules. 7:112017. View Article : Google Scholar : PubMed/NCBI

68 

Luo H, Jiao QB, Shen CB, Gong WY, Yuan JH, Liu YY, Chen Z, Liu J, Xu XL, Cong YS and Zhang XW: UFMylation of HRD1 regulates endoplasmic reticulum homeostasis. FASEB J. 37:e232212023. View Article : Google Scholar : PubMed/NCBI

69 

Wilkinson S: Emerging principles of selective ER autophagy. J Mol Biol. 432:185–205. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Chino H and Mizushima N: ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30:384–398. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Picchianti L, de Medina Hernandez V, Zhan N, Irwin NA, Groh R, Stephani M, Hornegger H, Beveridge R, Sawa-Makarska J, Lendl T, et al: Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. EMBO J. 42:e1120532023. View Article : Google Scholar : PubMed/NCBI

72 

Stephani M, Picchianti L and Dagdas Y: C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum. Autophagy. 17:586–587. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Klebanovych A, Vinopal S, Draberova E, Sladkova V, Sulimenko T, Sulimenko V, Vosecká V, Macůrek L, Legido A and Dráber P: C53 Interacting with UFM1-protein ligase 1 regulates microtubule nucleation in response to ER stress. Cells. 11:5552022. View Article : Google Scholar : PubMed/NCBI

74 

Reggiori F and Molinari M: ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev. 102:1393–1448. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina SK, Patel N, Savage NM, Sharma A, Kaufman RJ, et al: Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 10:10842019. View Article : Google Scholar : PubMed/NCBI

76 

Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, et al: The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun. 13:78572022. View Article : Google Scholar : PubMed/NCBI

77 

Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA and Corn JE: A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell. 180:1160–1177. e202020. View Article : Google Scholar : PubMed/NCBI

78 

Raymundo DP, Doultsinos D, Guillory X, Carlesso A, Eriksson LA and Chevet E: Pharmacological targeting of IRE1 in cancer. Trends Cancer. 6:1018–1030. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole CJ, Lu C, Zhu H, Islam B, Riggelen JV, et al: Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 5:72019. View Article : Google Scholar : PubMed/NCBI

80 

Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Lemaire K, Moura RF, Granvik M, Igoillo-Esteve M, Hohmeier HE, Hendrickx N, Newgard CB, Waelkens E, Cnop M and Schuit F: Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One. 6:e185172011. View Article : Google Scholar : PubMed/NCBI

82 

DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wachalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, et al: UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature. 627:445–452. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Makhlouf L, Peter JJ, Magnussen HM, Thakur R, Millrine D, Minshull TC, Harrison G, Varghese J, Lamoliatte F, Foglizzo M, et al: The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Nature. 627:437–444. 2024. View Article : Google Scholar : PubMed/NCBI

84 

von der Malsburg K, Shao S and Hegde RS: The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell. 26:2168–2180. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Brandman O and Hegde RS: Ribosome-associated protein quality control. Nat Struct Mol Biol. 23:7–15. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Wan L, Juszkiewicz S, Blears D, Bajpe PK, Han Z, Faull P, Mitter R, Stewart A, Snijders AP, Hegde RS and Svejstrup JQ: Translation stress and collided ribosomes are co-activators of cGAS. Mol Cell. 81:2808–2822. e102021. View Article : Google Scholar : PubMed/NCBI

87 

Inada T: Quality controls induced by aberrant translation. Nucleic Acids Res. 48:1084–1096. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Wang L, Xu Y, Yun S, Yuan Q, Satpute-Krishnan P and Ye Y: SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum. Cell Rep. 42:1120282023. View Article : Google Scholar : PubMed/NCBI

89 

Joazeiro CAP: Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol. 20:368–383. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Cai Y, Singh N and Li H: Essential role of Ufm1 conjugation in the hematopoietic system. Exp Hematol. 44:442–446. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Hattangadi SM, Wong P, Zhang L, Flygare J and Lodish HF: From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 118:6258–6268. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Tatsumi K, Yamamoto-Mukai H, Shimizu R, Waguri S, Sou YS, Sakamoto A, Taya C, Shitara H, Hara T, Chung CH, et al: The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat Commun. 2:1812011. View Article : Google Scholar : PubMed/NCBI

93 

Zhang M, Zhu X, Zhang Y, Cai Y, Chen J, Sivaprakasam S, Gurav A, Pi W, Makala L, Wu J, et al: RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ. 22:1922–1934. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Zhang Y, Zhang M, Wu J, Lei G and Li H: Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS One. 7:e485872012. View Article : Google Scholar : PubMed/NCBI

95 

Di Rocco M, Rusmini M, Caroli F, Madeo A, Bertamino M, Marre-Brunenghi G and Ceccherini I: Novel spondyloepimetaphyseal dysplasia due to UFSP2 gene mutation. Clin Genet. 93:671–674. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Zhang G, Tang S, Wang H, Pan H, Zhang W, Huang Y, Kong J and Wang Y, Gu J and Wang Y: Corrigendum to UFSP2-related spondyloepimetaphyseal dysplasia: A confirmatory report. Eur J Med Genet. 63:1040212020. View Article : Google Scholar : PubMed/NCBI

97 

Franceschi R, Iascone M, Maitz S, Marchetti D, Mariani M, Selicorni A, Soffiati M and Maines E: A missense mutation in DDRGK1 gene associated to Shohat-type spondyloepimetaphyseal dysplasia: Two case reports and a review of literature. Am J Med Genet A. 188:2434–2437. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B and Bae Y: DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet. 31:2820–2830. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Ni M, Afroze B, Xing C, Pan C, Shao Y, Cai L, Cantarel BL, Pei J, Grishin NV, Hewson S, et al: A pathogenic UFSP2 variant in an autosomal recessive form of pediatric neurodevelopmental anomalies and epilepsy. Genet Med. 23:900–908. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Muona M, Ishimura R, Laari A, Ichimura Y, Linnankivi T, Keski-Filppula R, Herva R, Rantala H, Paetau A, Pöyhönen M, et al: Biallelic variants in UBA5 link dysfunctional ufm1 ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. Am J Hum Genet. 99:683–694. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y and Li H: Deficiency of murine UFM1-Specific E3 ligase causes microcephaly and inflammation. Mol Neurobiol. 59:6363–6372. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Arnadottir GA, Jensson BO, Marelsson SE, Sulem G, Oddsson A, Kristjansson RP, Benonisdottir S, Gudjonsson SA, Masson G, Thorisson GA, et al: Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters. BMC Med Genet. 18:1032017. View Article : Google Scholar : PubMed/NCBI

103 

Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima T, Guzmán-Vega FJ, Obata M, Ichimura Y, et al: Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain. 141:1934–1945. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Serrano RJ, Oorschot V, Palipana D, Calcinotto V, Sonntag C, Ramm G and Bryson-Richardson RJ: Genetic model of UBA5 deficiency highlights the involvement of both peripheral and central nervous systems and identifies widespread mitochondrial abnormalities. Brain Commun. 5:fcad3172023. View Article : Google Scholar : PubMed/NCBI

105 

Cabrera-Serrano M, Coote DJ, Azmanov D, Goullee H, Andersen E, McLean C, Davis M, Ishimura R, Stark Z, Vallat JM, et al: A homozygous UBA5 pathogenic variant causes a fatal congenital neuropathy. J Med Genet. 57:835–842. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Mignon-Ravix C, Milh M, Kaiser CS, Daniel J, Riccardi F, Cacciagli P, Nagara M, Busa T, Liebau E and Villard L: Abnormal function of the UBA5 protein in a case of early developmental and epileptic encephalopathy with suppression-burst. Hum Mutat. 39:934–938. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, Guo J, Wang J, Shen L, Jiang H, et al: UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia. PLoS One. 11:e01490392016. View Article : Google Scholar : PubMed/NCBI

108 

Al-Saady ML, Kaiser CS, Wakasuqui F, Korenke GC, Waisfisz Q, Polstra A, Pouwels PJW, Bugiani M, van der Knaap MS, Lunsing RJ, et al: Homozygous UBA5 variant leads to hypomyelination with thalamic involvement and axonal neuropathy. Neuropediatrics. 52:489–494. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Yiu SPT, Zerbe C, Vanderwall D, Huttlin EL, Weekes MP and Gewurz BE: An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation. Mol Cell. 83:2367–2386. e152023. View Article : Google Scholar : PubMed/NCBI

110 

Snider DL, Park M, Murphy KA, Beachboard DC and Horner SM: Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proc Natl Acad Sci USA. 119:e21195311192022. View Article : Google Scholar : PubMed/NCBI

111 

Xie Z, Fang Z and Pan Z: Ufl1/RCAD, a Ufm1 E3 ligase, has an intricate connection with ER stress. Int J Biol Macromol. 135:760–767. 2019. View Article : Google Scholar : PubMed/NCBI

112 

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Li Z, Wei H, Li S, Wu P and Mao X: The role of progesterone receptors in breast cancer. Drug Des Devel Ther. 16:305–314. 2022. View Article : Google Scholar : PubMed/NCBI

115 

Jozwik KM and Carroll JS: Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 12:381–385. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Yoo HM, Park JH, Kim JY and Chung CH: Modification of ERα by UFM1 increases its stability and transactivity for breast cancer development. Mol Cells. 45:425–434. 2022. View Article : Google Scholar : PubMed/NCBI

117 

Yoo HM, Park JH, Jeon YJ and Chung CH: Ubiquitin-fold modifier 1 acts as a positive regulator of breast cancer. Front Endocrinol (Lausanne). 6:362015. View Article : Google Scholar : PubMed/NCBI

118 

Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM and Corbo L: Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev. 32:597–622. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Schulten HJ: Pleiotropic effects of metformin on cancer. Int J Mol Sci. 19:28502018. View Article : Google Scholar : PubMed/NCBI

120 

Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI

121 

Mao M, Chen Y, Yang J, Cheng Y, Xu L, Ji F, Zhou J, Zhang X, Li Z, Chen C, et al: Modification of PLAC8 by UFM1 affects tumorous proliferation and immune response by impacting PD-L1 levels in triple-negative breast cancer. J Immunother Cancer. 10:e0056682022. View Article : Google Scholar : PubMed/NCBI

122 

Feng X, Wei Z, Tao X, Du Y, Wu J, Yu Y, Yu H and Zhao H: PLAC8 promotes the autophagic activity and improves the growth priority of human trophoblast cells. FASEB J. 35:e213512021. View Article : Google Scholar : PubMed/NCBI

123 

Hsu JM, Li CW, Lai YJ and Hung MC: Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 78:6349–6353. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH, et al: Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 30:925–939. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Kulsuptrakul J, Wang R, Meyers NL, Ott M and Puschnik AS: A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep. 34:1088592021. View Article : Google Scholar : PubMed/NCBI

126 

French SW, Bardag-Gorce F, Li J, French BA and Oliva J: Mallory-Denk body pathogenesis revisited. World J Hepatol. 2:295–301. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Bardag-Gorce F, Oliva J, Villegas J, Fraley S, Amidi F, Li J, Dedes J, French B and French SW: Epigenetic mechanisms regulate Mallory Denk body formation in the livers of drug-primed mice. Exp Mol Pathol. 84:113–121. 2008. View Article : Google Scholar : PubMed/NCBI

128 

Li J, Li XM, Caudill M, Malysheva O, Bardag-Gorce F, Oliva J, French BA, Gorce E, Morgan K, Kathirvel E, et al: Betaine feeding prevents the blood alcohol cycle in rats fed alcohol continuously for 1 month using the rat intragastric tube feeding model. Exp Mol Pathol. 91:540–547. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Oliva J, Bardag-Gorce F, Li J, French BA, Nguyen SK, Lu SC and French SW: Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms. Exp Mol Pathol. 86:77–86. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Liu H, Gong M, French BA, Li J, Tillman B and French SW: Mallory-Denk body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). Exp Mol Pathol. 97:477–483. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Dong Y and Wang A: Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (Review). Oncol Lett. 8:963–968. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Esteller M, Corn PG, Baylin SB and Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 61:3225–3229. 2001.PubMed/NCBI

133 

Liu H, Li J, Tillman B, French BA and French SW: Ufmylation and FATylation pathways are downregulated in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs) form. Exp Mol Pathol. 97:81–88. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Li H, Rauch T, Chen ZX, Szabo PE, Riggs AD and Pfeifer GP: The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 281:19489–19500. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI

136 

Chen E, Zhou B, Bian S, Ni W and Chen Z: The lncRNA B3GALT5-AS1 functions as an HCC suppressor by regulating the miR-934/UFM1 axis. J Oncol. 2021:17764322021. View Article : Google Scholar : PubMed/NCBI

137 

Yang S, Yang R, Wang H, Huang Y and Jia Y: CDK5RAP3 deficiency restrains liver regeneration after partial hepatectomy triggering endoplasmic reticulum stress. Am J Pathol. 190:2403–2416. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Sheng L, Li J, Rao S, Yang Z and Huang Y: Cyclin-dependent kinase 5 regulatory subunit associated protein 3: Potential functions and implications for development and disease. Front Oncol. 11:7604292021. View Article : Google Scholar : PubMed/NCBI

139 

Bade BC and Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Nabet BY, Hamidi H, Lee MC, Banchereau R, Morris S, Adler L, Gayevskiy V, Elhossiny AM, Srivastava MK, Patil NS, et al: Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade. Cancer Cell. 42:429–443. e42024. View Article : Google Scholar : PubMed/NCBI

142 

Wang X, Wu Y, Gu J and Xu J: Tumor-associated macrophages in lung carcinoma: From mechanism to therapy. Pathol Res Pract. 229:1537472022. View Article : Google Scholar : PubMed/NCBI

143 

Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F, Sun L, Li S, Li D, Wang J, et al: Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med. 15:142023. View Article : Google Scholar : PubMed/NCBI

144 

Xu D, Zhang D, Wei W and Zhang C: UBA5 inhibition restricts lung adenocarcinoma via blocking macrophage M2 polarization and cisplatin resistance. Exp Cell Res. 440:1141482024. View Article : Google Scholar : PubMed/NCBI

145 

Kim CH, Nam HS, Lee EH, Han SH, Cho HJ, Chung HJ, Lee NS, Choi SJ, Kim H, Ryu JS, et al: Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation. Cell Cycle. 12:2443–2453. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Zhou J, Ma X, Xu L, Liang Q, Mao J, Liu J, Wang M, Yuan J and Cong YS: Genomic profiling of the UFMylation family genes identifies UFSP2 as a potential tumour suppressor in colon cancer. Clin Transl Med. 11:e6422021. View Article : Google Scholar : PubMed/NCBI

147 

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F: Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 23:700–713. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Lin M, Lian NZ, Cao LL, Huang CM, Zheng CH, Li P, Xie JW, Wang JB, Lu J, Chen QY, et al: Down-regulated expression of CDK5RAP3 and UFM1 suggests a poor prognosis in gastric cancer patients. Front Oncol. 12:9277512022. View Article : Google Scholar : PubMed/NCBI

150 

Shiwaku H, Yoshimura N, Tamura T, Sone M, Ogishima S, Watase K, Tagawa K and Okazawa H: Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J. 29:2446–2460. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Wu J, Lei G, Mei M, Tang Y and Li H: A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-kappaB signaling. J Biol Chem. 285:15126–15136. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, et al: Low expression of CDK5RAP3 and DDRGK1 indicates a poor prognosis in patients with gastric cancer. World J Gastroenterol. 24:3898–3907. 2018. View Article : Google Scholar : PubMed/NCBI

153 

Xi P, Ding D, Zhou J, Wang M and Cong YS: DDRGK1 regulates NF-κB activity by modulating IκBα stability. PLoS One. 8:e642312013. View Article : Google Scholar : PubMed/NCBI

154 

Lin JX, Xie XS, Weng XF, Qiu SL, Yoon C, Lian NZ, Xie JW, Wang JB, Lu J, Chen QY, et al: UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expres7sion of PDK1 through PI3K/AKT signaling. J Exp Clin Cancer Res. 38:4102019. View Article : Google Scholar : PubMed/NCBI

155 

Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, Xu L, Wang K, Guan D, Liang Q, et al: Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics. 48:403–410. 2021. View Article : Google Scholar : PubMed/NCBI

156 

Momayyezi P, Bilev E, Ljunggren HG and Hammer Q: Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy? Eur J Immunol. 53:e23504652023. View Article : Google Scholar : PubMed/NCBI

157 

Zhou J, Ma X, He X, Chen B, Yuan J, Jin Z, Li L, Wang Z, Xiao Q, Cai Y, et al: Dysregulation of PD-L1 by UFMylation imparts tumor immune evasion and identified as a potential therapeutic target. Proc Natl Acad Sci USA. 120:e22157321202023. View Article : Google Scholar : PubMed/NCBI

158 

Ma EH, Poffenberger MC, Wong AH and Jones RG: The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 46:45–52. 2017. View Article : Google Scholar : PubMed/NCBI

159 

He C, Xing X, Chen HY, Gao M, Shi J, Xiang B, Xiao X, Sun Y, Yu H, Xu G, et al: UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity. Mol Cell. 84:1120–1138. e82024. View Article : Google Scholar : PubMed/NCBI

160 

Zhu MMT, Shenasa E and Nielsen TO: Sarcomas: Immune biomarker expression and checkpoint inhibitor trials. Cancer Treat Rev. 91:1021152020. View Article : Google Scholar : PubMed/NCBI

161 

Brown HK, Schiavone K, Gouin F, Heymann MF and Heymann D: Biology of bone sarcomas and new therapeutic developments. Calcif Tissue Int. 102:174–195. 2017. View Article : Google Scholar : PubMed/NCBI

162 

Meng H, Ai H, Li D, Jiang X, Zhang H, Xu J and Huang S: Bombyx mori UFBP1 regulates apoptosis and promotes BmNPV proliferation by affecting the expression of ER chaperone BmBIP. Int J Biol Macromol. 283:1376812024. View Article : Google Scholar : PubMed/NCBI

163 

Wang K, Chen S, Wu Y, Wang Y, Lu Y, Sun Y and Chen Y: The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma. Cell Death Dis. 14:3502023. View Article : Google Scholar : PubMed/NCBI

164 

MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z, Kushida MM, Yu H, Coutinho FJ, Cavalli FMG, et al: Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep. 27:971–986.e9. 2019. View Article : Google Scholar : PubMed/NCBI

165 

Wang S, Jia M, Su M, Hu X, Li J, Xu Y and Qiu W: Ufmylation is activated in renal cancer and is not associated with von hippel-lindau mutation. DNA Cell Biol. 39:654–660. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J and Yang C: Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 32: 191, 2025.
APA
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X. ... Yang, C. (2025). Studies on the functional role of UFMylation in cells (Review). Molecular Medicine Reports, 32, 191. https://doi.org/10.3892/mmr.2025.13556
MLA
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X., Zhao, J., Yang, C."Studies on the functional role of UFMylation in cells (Review)". Molecular Medicine Reports 32.1 (2025): 191.
Chicago
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X., Zhao, J., Yang, C."Studies on the functional role of UFMylation in cells (Review)". Molecular Medicine Reports 32, no. 1 (2025): 191. https://doi.org/10.3892/mmr.2025.13556
Copy and paste a formatted citation
x
Spandidos Publications style
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J and Yang C: Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 32: 191, 2025.
APA
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X. ... Yang, C. (2025). Studies on the functional role of UFMylation in cells (Review). Molecular Medicine Reports, 32, 191. https://doi.org/10.3892/mmr.2025.13556
MLA
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X., Zhao, J., Yang, C."Studies on the functional role of UFMylation in cells (Review)". Molecular Medicine Reports 32.1 (2025): 191.
Chicago
Qin, R., Tang, Y., Yuan, Y., Meng, F., Zheng, K., Yang, X., Zhao, J., Yang, C."Studies on the functional role of UFMylation in cells (Review)". Molecular Medicine Reports 32, no. 1 (2025): 191. https://doi.org/10.3892/mmr.2025.13556
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team