
Studies on the functional role of UFMylation in cells (Review)
- Authors:
- Rong Qin
- Yu Tang
- Yuhang Yuan
- Fangyu Meng
- Kepu Zheng
- Xingyu Yang
- Jiumei Zhao
- Chuanhua Yang
-
Affiliations: Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China, Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China, Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: May 2, 2025 https://doi.org/10.3892/mmr.2025.13556
- Article Number: 191
-
Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A and Schulze WX: The scope, functions, and dynamics of posttranslational protein modifications. Annu Rev Plant Biol. 70:119–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hsu YC, Hsieh YH, Liao CC, Chong LW, Lee CY, Yu YL and Chou RH: Targeting post-translational modifications of histones for cancer therapy. Cell Mol Biol (Noisy-le-grand). 30:69–84. 2015. | |
Hitosugi T and Chen J: Post-translational modifications and the Warburg effect. Oncogene. 33:4279–4285. 2013. View Article : Google Scholar : PubMed/NCBI | |
Herhaus L and Dikic I: Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hochstrasser M: Origin and function of ubiquitin-like proteins. Nature. 458:422–429. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sahtoe DD and Sixma TK: Layers of DUB regulation. Trends Biochem Sci. 40:456–467. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karpiyevich M and Artavanis-Tsakonas K: Ubiquitin-like modifiers: Emerging regulators of protozoan parasites. Biomolecules. 10:14032020. View Article : Google Scholar : PubMed/NCBI | |
Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, Ueno T, Kominami E, Natsume T and Tanaka K: A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23:1977–1986. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gerakis Y, Quintero M, Li H and Hetz C: The UFMylation system in proteostasis and beyond. Trends Cell Biol. 29:974–986. 2019. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Kumar M and Wiener R: Decrypting UFMylation: How proteins are modified with UFM1. Biomolecules. 10:14422020. View Article : Google Scholar : PubMed/NCBI | |
Witting KF, van der Heden van Noort GJ, Kofoed C, Ormeno CT, El Atmioui D, Mulder MPC and Ovaa H: Generation of the UFM1 toolkit for profiling UFM1-specific proteases and ligases. Angew Chem Int Ed Engl. 57:14164–14168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lorenz S, Cantor AJ, Rape M and Kuriyan J: Macromolecular juggling by ubiquitylation enzymes. BMC Biol. 11:652013. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Mao Z and Chen F: UFMylation system: An emerging player in tumorigenesis. Cancers (Basel). 14:35012022. View Article : Google Scholar : PubMed/NCBI | |
Clague MJ, Urbe S and Komander D: Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Zheng X and Jin J: Nontraditional translation is the key to UFMylation and beyond. J Biol Chem. 298:1024312022. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Wang H, Kang B, Chen B, Shi Y, Yang S, Sun L, Liu Y, Xiao W, Zhang T, et al: CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development. 146:dev1692352019. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Moy N and Yang R: The UFM1 conjugation system in mammalian development. Dev Dyn. 252:976–985. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Pi W, Sivaprakasam S, Zhu X, Zhang M, Chen J, Makala L, Lu C, Wu J, Teng Y, et al: UFBP1, a key component of the ufm1 conjugation system, is essential for ufmylation-mediated regulation of erythroid development. PLoS Genet. 11:e10056432015. View Article : Google Scholar : PubMed/NCBI | |
Tandra V, Anderson T, Ayala JD, Weintraub NL, Singh N, Li H and Li J: Ufmylation of UFBP1 is dispensable for endoplasmic reticulum stress response, embryonic development, and cardiac and intestinal homeostasis. Cells. 12:19232023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lv X, Ma J and Xu G: UFMylation: An integral post-translational modification for the regulation of proteostasis and cellular functions. Pharmacol Ther. 260:1086802024. View Article : Google Scholar : PubMed/NCBI | |
Ding LJ, Jiang X, Li T and Wang S: Role of UFMylation in tumorigenesis and cancer immunotherapy. Front Immunol. 15:14548232024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xu X and Wang Z: The post-translational role of UFMylation in physiology and disease. Cells. 12:25432023. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhou T, Wang X, Xia Y, Cao X, Cheng X, Cao Y, Ma P, Ma H, Qin A and Zhao J: Loss of DDRGK1 impairs IRE1α UFMylation in spondyloepiphyseal dysplasia. Int J Biol Sci. 19:4709–4725. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Tang S, Wang H, Pan H, Zhang W, Huang Y, Kong J and Wang Y, Gu J and Wang Y: UFSP2-related spondyloepimetaphyseal dysplasia: A confirmatory report. Eur J Med Genet. 63:1040212020. View Article : Google Scholar : PubMed/NCBI | |
Colin E, Daniel J, Ziegler A, Wakim J, Scrivo A, Haack TB, Khiati S, Denommé AS, Amati-Bonneau P, Charif M, et al: Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am J Hum Genet. 99:695–703. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sasakawa H, Sakata E, Yamaguchi Y, Komatsu M, Tatsumi K, Kominami E, Tanaka K and Kato K: Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun. 343:21–26. 2006. View Article : Google Scholar : PubMed/NCBI | |
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A and Kulathu Y: Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep. 40:1111682022. View Article : Google Scholar : PubMed/NCBI | |
Kang SH, Kim GR, Seong M, Baek SH, Seol JH, Bang OS, Ovaa H, Tatsumi K, Komatsu M, Tanaka K and Chung CH: Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J Biol Chem. 282:5256–5262. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ha BH, Jeon YJ, Shin SC, Tatsumi K, Komatsu M, Tanaka K, Watson CM, Wallis G, Chung CH and Kim EE: Structure of ubiquitin-fold modifier 1-specific protease UfSP2. J Biol Chem. 286:10248–10257. 2011. View Article : Google Scholar : PubMed/NCBI | |
Millrine D, Peter JJ and Kulathu Y: A guide to UFMylation, an emerging posttranslational modification. FEBS J. 290:5040–5056. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Jin Y, Xu S, Zhou J, Mao J, Ma X, Wang M and Cong YS: Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. J Biol Chem. 298:1020162022. View Article : Google Scholar : PubMed/NCBI | |
Mashahreh B, Hassouna F, Soudah N, Cohen-Kfir E, Strulovich R, Haitin Y and Wiener R: Trans-binding of UFM1 to UBA5 stimulates UBA5 homodimerization and ATP binding. FASEB J. 32:2794–2802. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soudah N, Padala P, Hassouna F, Kumar M, Mashahreh B, Lebedev AA, Isupov MN, Cohen-Kfir E and Wiener R: An N-terminal extension to UBA5 adenylation domain boosts UFM1 activation: isoform-specific differences in ubiquitin-like protein activation. J Mol Biol. 431:463–478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, et al: Structural basis for UFM1 transfer from UBA5 to UFC1. Nat Commun. 12:57082021. View Article : Google Scholar : PubMed/NCBI | |
Tolmachova KA, Farnung J, Liang JR, Corn JE and Bode JW: Facile preparation of UFMylation activity-based probes by chemoselective installation of electrophiles at the C-terminus of recombinant UFM1. ACS Cent Sci. 8:756–762. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kumari S, Banerjee S, Kumar M, Hayashi A, Solaimuthu B, Cohen-Kfir E, Shaul YD, Rouvinski A and Wiener R: Overexpression of UBA5 in cells mimics the phenotype of cells lacking UBA5. Int J Mol Sci. 23:74452022. View Article : Google Scholar : PubMed/NCBI | |
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, et al: Autoinhibition mechanism of the ubiquitin-conjugating enzyme UBE2S by autoubiquitination. Structure. 27:1195–1210. e72019. View Article : Google Scholar : PubMed/NCBI | |
Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, et al: A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem. 285:5417–5427. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR and Kulathu Y: A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J. 41:e1110152022. View Article : Google Scholar : PubMed/NCBI | |
Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deol KK, Lorenz S and Strieter ER: Enzymatic logic of ubiquitin chain assembly. Front Physiol. 10:8352019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Wang Y, Xiang M, Hua J, Zhou T, Chen F, Lv X, Huang J and Cai Y: UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Front Endocrinol (Lausanne). 14:11231242023. View Article : Google Scholar : PubMed/NCBI | |
Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, et al: Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development. Mol Cell. 56:261–274. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee L, Oliva AB, Martinez-Balsalobre E, Churikov D, Peter J, Rahmouni D, Audoly G, Azzoni V, Audebert S, Camoin L, et al: UFMylation of MRE11 is essential for telomere length maintenance and hematopoietic stem cell survival. Sci Adv. 7:eabc73712021. View Article : Google Scholar : PubMed/NCBI | |
Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, Li H, Wang L and Lou Z: UFL1 promotes histone H4 ufmylation and ATM activation. Nat Commun. 10:12422019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, Zhu M, Zhang H, Lou Z, Zhou J, et al: MRE11 UFMylation promotes ATM activation. Nucleic Acids Res. 47:4124–4135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, Song L, Xu L, Bai J, Liu C, et al: UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol. 22:1056–1063. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Paull TT: Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bakkenist CJ and Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 421:499–506. 2003. View Article : Google Scholar : PubMed/NCBI | |
Qin B, Yu J, Nowsheen S, Zhao F, Wang L and Lou Z: STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation. Sci Adv. 6:eaax82142020. View Article : Google Scholar : PubMed/NCBI | |
Fang Z and Pan Z: Essential role of ubiquitin-fold modifier 1 conjugation in DNA damage response. DNA Cell Biol. 38:1030–1039. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Jiang X, Chen S, Fernandes N and Price BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA. 102:13182–13187. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, Chen H, Wang M, Ju Z and Cong YS: A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 8:141862017. View Article : Google Scholar : PubMed/NCBI | |
Rusiecki R, Witkowski J and Jaszczewska-Adamczak J: MDM2-p53 interaction inhibitors: The current state-of-art and updated patent review (2010-Present). Recent Pat Anticancer Drug Discov. 14:324–369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhao Y, Aguilar A, Bernard D and Yang CY: Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: Progress and challenges. Cold Spring Harb Perspect Med. 7:a0262452017. View Article : Google Scholar : PubMed/NCBI | |
Adams KE, Medhurst AL, Dart DA and Lakin ND: Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene. 25:3894–3904. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, Stanslas J and Sekawi Z: Effects of HSV-G47Delta oncolytic virus on telomerase and telomere length alterations in glioblastoma multiforme cancer stem cells under hypoxia and normoxia conditions. Curr Cancer Drug Targets. 24:1262–1274. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ufmylation of ASC1 is essential for breast cancer development. Cancer Discov. 4:OF102014. View Article : Google Scholar | |
Chen Q, Xiao Y, Chai P, Zheng P, Teng J and Chen J: ATL3 is a tubular ER-Phagy receptor for GABARAP-mediated selective autophagy. Curr Biol. 29:846–855. e62019. View Article : Google Scholar : PubMed/NCBI | |
Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, de Medina Hernandez V, Mohseni A, Clavel M, Zeng Y, Naumann C, et al: A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 9:e583962020. View Article : Google Scholar : PubMed/NCBI | |
Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY and Barna M: The mammalian Ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell. 169:1051–1065. e182017. View Article : Google Scholar : PubMed/NCBI | |
Komatsu M, Inada T and Noda NN: The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell. 84:156–169. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ishimura R, Ito S, Mao G, Komatsu-Hirota S, Inada T, Noda NN and Komatsu M: Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci Adv. 9:eadh36352023. View Article : Google Scholar : PubMed/NCBI | |
Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, Ingolia NT, Elias JE and Kopito RR: Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA. 116:1299–1308. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scavone F, Gumbin SC, Da Rosa PA and Kopito RR: RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Proc Natl Acad Sci USA. 120:e22203401202023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Xu Y, Rogers H, Saidi L, Noguchi CT, Li H, Yewdell JW, Guydosh NR and Ye Y: UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res. 30:5–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
French SW, Masouminia M, Samadzadeh S, Tillman BC, Mendoza A and French BA: Role of protein quality control failure in alcoholic hepatitis pathogenesis. Biomolecules. 7:112017. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Jiao QB, Shen CB, Gong WY, Yuan JH, Liu YY, Chen Z, Liu J, Xu XL, Cong YS and Zhang XW: UFMylation of HRD1 regulates endoplasmic reticulum homeostasis. FASEB J. 37:e232212023. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson S: Emerging principles of selective ER autophagy. J Mol Biol. 432:185–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chino H and Mizushima N: ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30:384–398. 2020. View Article : Google Scholar : PubMed/NCBI | |
Picchianti L, de Medina Hernandez V, Zhan N, Irwin NA, Groh R, Stephani M, Hornegger H, Beveridge R, Sawa-Makarska J, Lendl T, et al: Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. EMBO J. 42:e1120532023. View Article : Google Scholar : PubMed/NCBI | |
Stephani M, Picchianti L and Dagdas Y: C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum. Autophagy. 17:586–587. 2020. View Article : Google Scholar : PubMed/NCBI | |
Klebanovych A, Vinopal S, Draberova E, Sladkova V, Sulimenko T, Sulimenko V, Vosecká V, Macůrek L, Legido A and Dráber P: C53 Interacting with UFM1-protein ligase 1 regulates microtubule nucleation in response to ER stress. Cells. 11:5552022. View Article : Google Scholar : PubMed/NCBI | |
Reggiori F and Molinari M: ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev. 102:1393–1448. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina SK, Patel N, Savage NM, Sharma A, Kaufman RJ, et al: Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 10:10842019. View Article : Google Scholar : PubMed/NCBI | |
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, et al: The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun. 13:78572022. View Article : Google Scholar : PubMed/NCBI | |
Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA and Corn JE: A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell. 180:1160–1177. e202020. View Article : Google Scholar : PubMed/NCBI | |
Raymundo DP, Doultsinos D, Guillory X, Carlesso A, Eriksson LA and Chevet E: Pharmacological targeting of IRE1 in cancer. Trends Cancer. 6:1018–1030. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole CJ, Lu C, Zhu H, Islam B, Riggelen JV, et al: Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 5:72019. View Article : Google Scholar : PubMed/NCBI | |
Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lemaire K, Moura RF, Granvik M, Igoillo-Esteve M, Hohmeier HE, Hendrickx N, Newgard CB, Waelkens E, Cnop M and Schuit F: Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One. 6:e185172011. View Article : Google Scholar : PubMed/NCBI | |
DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wachalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, et al: UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature. 627:445–452. 2024. View Article : Google Scholar : PubMed/NCBI | |
Makhlouf L, Peter JJ, Magnussen HM, Thakur R, Millrine D, Minshull TC, Harrison G, Varghese J, Lamoliatte F, Foglizzo M, et al: The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Nature. 627:437–444. 2024. View Article : Google Scholar : PubMed/NCBI | |
von der Malsburg K, Shao S and Hegde RS: The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell. 26:2168–2180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brandman O and Hegde RS: Ribosome-associated protein quality control. Nat Struct Mol Biol. 23:7–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Juszkiewicz S, Blears D, Bajpe PK, Han Z, Faull P, Mitter R, Stewart A, Snijders AP, Hegde RS and Svejstrup JQ: Translation stress and collided ribosomes are co-activators of cGAS. Mol Cell. 81:2808–2822. e102021. View Article : Google Scholar : PubMed/NCBI | |
Inada T: Quality controls induced by aberrant translation. Nucleic Acids Res. 48:1084–1096. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Xu Y, Yun S, Yuan Q, Satpute-Krishnan P and Ye Y: SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum. Cell Rep. 42:1120282023. View Article : Google Scholar : PubMed/NCBI | |
Joazeiro CAP: Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol. 20:368–383. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Singh N and Li H: Essential role of Ufm1 conjugation in the hematopoietic system. Exp Hematol. 44:442–446. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hattangadi SM, Wong P, Zhang L, Flygare J and Lodish HF: From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 118:6258–6268. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tatsumi K, Yamamoto-Mukai H, Shimizu R, Waguri S, Sou YS, Sakamoto A, Taya C, Shitara H, Hara T, Chung CH, et al: The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat Commun. 2:1812011. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhu X, Zhang Y, Cai Y, Chen J, Sivaprakasam S, Gurav A, Pi W, Makala L, Wu J, et al: RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ. 22:1922–1934. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang M, Wu J, Lei G and Li H: Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS One. 7:e485872012. View Article : Google Scholar : PubMed/NCBI | |
Di Rocco M, Rusmini M, Caroli F, Madeo A, Bertamino M, Marre-Brunenghi G and Ceccherini I: Novel spondyloepimetaphyseal dysplasia due to UFSP2 gene mutation. Clin Genet. 93:671–674. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Tang S, Wang H, Pan H, Zhang W, Huang Y, Kong J and Wang Y, Gu J and Wang Y: Corrigendum to UFSP2-related spondyloepimetaphyseal dysplasia: A confirmatory report. Eur J Med Genet. 63:1040212020. View Article : Google Scholar : PubMed/NCBI | |
Franceschi R, Iascone M, Maitz S, Marchetti D, Mariani M, Selicorni A, Soffiati M and Maines E: A missense mutation in DDRGK1 gene associated to Shohat-type spondyloepimetaphyseal dysplasia: Two case reports and a review of literature. Am J Med Genet A. 188:2434–2437. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B and Bae Y: DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet. 31:2820–2830. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ni M, Afroze B, Xing C, Pan C, Shao Y, Cai L, Cantarel BL, Pei J, Grishin NV, Hewson S, et al: A pathogenic UFSP2 variant in an autosomal recessive form of pediatric neurodevelopmental anomalies and epilepsy. Genet Med. 23:900–908. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muona M, Ishimura R, Laari A, Ichimura Y, Linnankivi T, Keski-Filppula R, Herva R, Rantala H, Paetau A, Pöyhönen M, et al: Biallelic variants in UBA5 link dysfunctional ufm1 ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. Am J Hum Genet. 99:683–694. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y and Li H: Deficiency of murine UFM1-Specific E3 ligase causes microcephaly and inflammation. Mol Neurobiol. 59:6363–6372. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arnadottir GA, Jensson BO, Marelsson SE, Sulem G, Oddsson A, Kristjansson RP, Benonisdottir S, Gudjonsson SA, Masson G, Thorisson GA, et al: Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters. BMC Med Genet. 18:1032017. View Article : Google Scholar : PubMed/NCBI | |
Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima T, Guzmán-Vega FJ, Obata M, Ichimura Y, et al: Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain. 141:1934–1945. 2018. View Article : Google Scholar : PubMed/NCBI | |
Serrano RJ, Oorschot V, Palipana D, Calcinotto V, Sonntag C, Ramm G and Bryson-Richardson RJ: Genetic model of UBA5 deficiency highlights the involvement of both peripheral and central nervous systems and identifies widespread mitochondrial abnormalities. Brain Commun. 5:fcad3172023. View Article : Google Scholar : PubMed/NCBI | |
Cabrera-Serrano M, Coote DJ, Azmanov D, Goullee H, Andersen E, McLean C, Davis M, Ishimura R, Stark Z, Vallat JM, et al: A homozygous UBA5 pathogenic variant causes a fatal congenital neuropathy. J Med Genet. 57:835–842. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mignon-Ravix C, Milh M, Kaiser CS, Daniel J, Riccardi F, Cacciagli P, Nagara M, Busa T, Liebau E and Villard L: Abnormal function of the UBA5 protein in a case of early developmental and epileptic encephalopathy with suppression-burst. Hum Mutat. 39:934–938. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, Guo J, Wang J, Shen L, Jiang H, et al: UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia. PLoS One. 11:e01490392016. View Article : Google Scholar : PubMed/NCBI | |
Al-Saady ML, Kaiser CS, Wakasuqui F, Korenke GC, Waisfisz Q, Polstra A, Pouwels PJW, Bugiani M, van der Knaap MS, Lunsing RJ, et al: Homozygous UBA5 variant leads to hypomyelination with thalamic involvement and axonal neuropathy. Neuropediatrics. 52:489–494. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yiu SPT, Zerbe C, Vanderwall D, Huttlin EL, Weekes MP and Gewurz BE: An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation. Mol Cell. 83:2367–2386. e152023. View Article : Google Scholar : PubMed/NCBI | |
Snider DL, Park M, Murphy KA, Beachboard DC and Horner SM: Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proc Natl Acad Sci USA. 119:e21195311192022. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Fang Z and Pan Z: Ufl1/RCAD, a Ufm1 E3 ligase, has an intricate connection with ER stress. Int J Biol Macromol. 135:760–767. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wei H, Li S, Wu P and Mao X: The role of progesterone receptors in breast cancer. Drug Des Devel Ther. 16:305–314. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jozwik KM and Carroll JS: Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 12:381–385. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yoo HM, Park JH, Kim JY and Chung CH: Modification of ERα by UFM1 increases its stability and transactivity for breast cancer development. Mol Cells. 45:425–434. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yoo HM, Park JH, Jeon YJ and Chung CH: Ubiquitin-fold modifier 1 acts as a positive regulator of breast cancer. Front Endocrinol (Lausanne). 6:362015. View Article : Google Scholar : PubMed/NCBI | |
Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM and Corbo L: Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev. 32:597–622. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schulten HJ: Pleiotropic effects of metformin on cancer. Int J Mol Sci. 19:28502018. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI | |
Mao M, Chen Y, Yang J, Cheng Y, Xu L, Ji F, Zhou J, Zhang X, Li Z, Chen C, et al: Modification of PLAC8 by UFM1 affects tumorous proliferation and immune response by impacting PD-L1 levels in triple-negative breast cancer. J Immunother Cancer. 10:e0056682022. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Wei Z, Tao X, Du Y, Wu J, Yu Y, Yu H and Zhao H: PLAC8 promotes the autophagic activity and improves the growth priority of human trophoblast cells. FASEB J. 35:e213512021. View Article : Google Scholar : PubMed/NCBI | |
Hsu JM, Li CW, Lai YJ and Hung MC: Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 78:6349–6353. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH, et al: Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 30:925–939. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kulsuptrakul J, Wang R, Meyers NL, Ott M and Puschnik AS: A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep. 34:1088592021. View Article : Google Scholar : PubMed/NCBI | |
French SW, Bardag-Gorce F, Li J, French BA and Oliva J: Mallory-Denk body pathogenesis revisited. World J Hepatol. 2:295–301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bardag-Gorce F, Oliva J, Villegas J, Fraley S, Amidi F, Li J, Dedes J, French B and French SW: Epigenetic mechanisms regulate Mallory Denk body formation in the livers of drug-primed mice. Exp Mol Pathol. 84:113–121. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li XM, Caudill M, Malysheva O, Bardag-Gorce F, Oliva J, French BA, Gorce E, Morgan K, Kathirvel E, et al: Betaine feeding prevents the blood alcohol cycle in rats fed alcohol continuously for 1 month using the rat intragastric tube feeding model. Exp Mol Pathol. 91:540–547. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oliva J, Bardag-Gorce F, Li J, French BA, Nguyen SK, Lu SC and French SW: Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms. Exp Mol Pathol. 86:77–86. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Gong M, French BA, Li J, Tillman B and French SW: Mallory-Denk body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). Exp Mol Pathol. 97:477–483. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dong Y and Wang A: Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (Review). Oncol Lett. 8:963–968. 2014. View Article : Google Scholar : PubMed/NCBI | |
Esteller M, Corn PG, Baylin SB and Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 61:3225–3229. 2001.PubMed/NCBI | |
Liu H, Li J, Tillman B, French BA and French SW: Ufmylation and FATylation pathways are downregulated in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs) form. Exp Mol Pathol. 97:81–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li H, Rauch T, Chen ZX, Szabo PE, Riggs AD and Pfeifer GP: The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 281:19489–19500. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen E, Zhou B, Bian S, Ni W and Chen Z: The lncRNA B3GALT5-AS1 functions as an HCC suppressor by regulating the miR-934/UFM1 axis. J Oncol. 2021:17764322021. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Yang R, Wang H, Huang Y and Jia Y: CDK5RAP3 deficiency restrains liver regeneration after partial hepatectomy triggering endoplasmic reticulum stress. Am J Pathol. 190:2403–2416. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sheng L, Li J, Rao S, Yang Z and Huang Y: Cyclin-dependent kinase 5 regulatory subunit associated protein 3: Potential functions and implications for development and disease. Front Oncol. 11:7604292021. View Article : Google Scholar : PubMed/NCBI | |
Bade BC and Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nabet BY, Hamidi H, Lee MC, Banchereau R, Morris S, Adler L, Gayevskiy V, Elhossiny AM, Srivastava MK, Patil NS, et al: Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade. Cancer Cell. 42:429–443. e42024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu Y, Gu J and Xu J: Tumor-associated macrophages in lung carcinoma: From mechanism to therapy. Pathol Res Pract. 229:1537472022. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F, Sun L, Li S, Li D, Wang J, et al: Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med. 15:142023. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Zhang D, Wei W and Zhang C: UBA5 inhibition restricts lung adenocarcinoma via blocking macrophage M2 polarization and cisplatin resistance. Exp Cell Res. 440:1141482024. View Article : Google Scholar : PubMed/NCBI | |
Kim CH, Nam HS, Lee EH, Han SH, Cho HJ, Chung HJ, Lee NS, Choi SJ, Kim H, Ryu JS, et al: Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation. Cell Cycle. 12:2443–2453. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Ma X, Xu L, Liang Q, Mao J, Liu J, Wang M, Yuan J and Cong YS: Genomic profiling of the UFMylation family genes identifies UFSP2 as a potential tumour suppressor in colon cancer. Clin Transl Med. 11:e6422021. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI | |
Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F: Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 23:700–713. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Lian NZ, Cao LL, Huang CM, Zheng CH, Li P, Xie JW, Wang JB, Lu J, Chen QY, et al: Down-regulated expression of CDK5RAP3 and UFM1 suggests a poor prognosis in gastric cancer patients. Front Oncol. 12:9277512022. View Article : Google Scholar : PubMed/NCBI | |
Shiwaku H, Yoshimura N, Tamura T, Sone M, Ogishima S, Watase K, Tagawa K and Okazawa H: Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J. 29:2446–2460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Lei G, Mei M, Tang Y and Li H: A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-kappaB signaling. J Biol Chem. 285:15126–15136. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, et al: Low expression of CDK5RAP3 and DDRGK1 indicates a poor prognosis in patients with gastric cancer. World J Gastroenterol. 24:3898–3907. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xi P, Ding D, Zhou J, Wang M and Cong YS: DDRGK1 regulates NF-κB activity by modulating IκBα stability. PLoS One. 8:e642312013. View Article : Google Scholar : PubMed/NCBI | |
Lin JX, Xie XS, Weng XF, Qiu SL, Yoon C, Lian NZ, Xie JW, Wang JB, Lu J, Chen QY, et al: UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expres7sion of PDK1 through PI3K/AKT signaling. J Exp Clin Cancer Res. 38:4102019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, Xu L, Wang K, Guan D, Liang Q, et al: Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics. 48:403–410. 2021. View Article : Google Scholar : PubMed/NCBI | |
Momayyezi P, Bilev E, Ljunggren HG and Hammer Q: Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy? Eur J Immunol. 53:e23504652023. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Ma X, He X, Chen B, Yuan J, Jin Z, Li L, Wang Z, Xiao Q, Cai Y, et al: Dysregulation of PD-L1 by UFMylation imparts tumor immune evasion and identified as a potential therapeutic target. Proc Natl Acad Sci USA. 120:e22157321202023. View Article : Google Scholar : PubMed/NCBI | |
Ma EH, Poffenberger MC, Wong AH and Jones RG: The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 46:45–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
He C, Xing X, Chen HY, Gao M, Shi J, Xiang B, Xiao X, Sun Y, Yu H, Xu G, et al: UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity. Mol Cell. 84:1120–1138. e82024. View Article : Google Scholar : PubMed/NCBI | |
Zhu MMT, Shenasa E and Nielsen TO: Sarcomas: Immune biomarker expression and checkpoint inhibitor trials. Cancer Treat Rev. 91:1021152020. View Article : Google Scholar : PubMed/NCBI | |
Brown HK, Schiavone K, Gouin F, Heymann MF and Heymann D: Biology of bone sarcomas and new therapeutic developments. Calcif Tissue Int. 102:174–195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng H, Ai H, Li D, Jiang X, Zhang H, Xu J and Huang S: Bombyx mori UFBP1 regulates apoptosis and promotes BmNPV proliferation by affecting the expression of ER chaperone BmBIP. Int J Biol Macromol. 283:1376812024. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Chen S, Wu Y, Wang Y, Lu Y, Sun Y and Chen Y: The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma. Cell Death Dis. 14:3502023. View Article : Google Scholar : PubMed/NCBI | |
MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z, Kushida MM, Yu H, Coutinho FJ, Cavalli FMG, et al: Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep. 27:971–986.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Jia M, Su M, Hu X, Li J, Xu Y and Qiu W: Ufmylation is activated in renal cancer and is not associated with von hippel-lindau mutation. DNA Cell Biol. 39:654–660. 2020. View Article : Google Scholar : PubMed/NCBI |