Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)

  • Authors:
    • Heng Zeng
    • Zhaohui Jin
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 192
    |
    Published online on: May 2, 2025
       https://doi.org/10.3892/mmr.2025.13557
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by insidious onset and progressive symptom deterioration. It extends beyond a simple aging process, involving irreversible and progressive neurological degeneration that impairs brain function through multiple etiologies. Iron dysregulation is implicated in the pathophysiology of AD; however, the precise mechanisms remain unclear. Additionally, vitamin E and selenium are key in regulating ferroptosis through their antioxidant properties. The present review examined the mechanistic pathways by which ferroptosis contributes to AD, the regulatory roles of vitamin E, selenium, ferrostatin‑1, N‑acetylcysteine and curcumin, and their potential as therapeutic agents to mitigate neurodegeneration.
View Figures

Figure 1

Figure 2

View References

1 

Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S and Ge J: Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother. 164:1143122023. View Article : Google Scholar : PubMed/NCBI

2 

Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT and Murray ME: New insights into atypical Alzheimer's disease in the era of biomarkers. Lancet Neurol. 20:222–234. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C and Li M: Ferroptosis, pyroptosis, and cuproptosis in Alzheimer's disease. ACS Chem Neurosci. 14:3564–3587. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Lane DJR, Metselaar B, Greenough M, Bush AI and Ayton SJ: Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays Biochem. 65:925–940. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Huang Q, Wu W, Wen Y, Lu S and Zhao C: Potential therapeutic natural compounds for the treatment of Alzheimer's disease. Phytomedicine. 132:1558222024. View Article : Google Scholar : PubMed/NCBI

6 

Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, et al: Regulation of neuroinflammation in Alzheimer's disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine. 122:1551502024. View Article : Google Scholar : PubMed/NCBI

7 

Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M and Schrag A: The neuropsychiatry of Parkinson's disease: Advances and challenges. Lancet Neurol. 21:89–102. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Markus HS, van Der Flier WM, Smith EE, Bath P, Biessels GJ, Briceno E, Brodtman A, Chabriat H, Chen C, de Leeuw FE, et al: Framework for clinical trials in cerebral small vessel disease (FINESSE): A Review. JAMA Neurol. 79:1187–1198. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Liu JB, Wang X and Cao J: The coherence and properties analysis of balanced 2 p-Ary tree networks. IEEE Trans Netw Sci Eng. 11:4719–4728. 2024. View Article : Google Scholar

10 

Liu JB, Zhang X, Cao J and Chen L: Mean first-passage time and robustness of complex cellular mobile communication network. IEEE Trans Netw Sci Eng. 11:3066–3076. 2024. View Article : Google Scholar

11 

Ashraf T, Idrees N and Belay MB: Regression analysis of topological indices for predicting efficacy of Alzheimer's drugs. PLoS One. 19:e03094772024. View Article : Google Scholar : PubMed/NCBI

12 

Wang Y, Song X, Wang R, Xu X, Du Y, Chen G and Mei J: Genome-wide mendelian randomization identifies ferroptosis-related drug targets for Alzheimer's disease. J Alzheimers Dis Rep. 8:1185–1197. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM and Thomas B: A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: New insights into emerging mechanisms and therapeutic targets. Front Pharmacol. 15:13907982024. View Article : Google Scholar : PubMed/NCBI

14 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

16 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Lei P, Ayton S and Bush AI: The essential elements of Alzheimer's disease. J Biol Chem. 296:1001052021. View Article : Google Scholar : PubMed/NCBI

18 

Yong YY, Yan L, Wang BD, Fan DS, Guo MS, Yu L, Wu JM, Qin DL, Law BY, Wong VK, et al: Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer's disease. Phytomedicine. 127:1554632024. View Article : Google Scholar : PubMed/NCBI

19 

Andrews NC: Disorders of iron metabolism. N Engl J Med. 341:1986–1995. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Buijs M, Doan NT, van Rooden S, Versluis MJ, van Lew B, Milles J, van der Grond J and van Buchem MA: In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-Tesla T2*-weighted phase imaging. Neurobiol Aging. 53:20–26. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Chu J, Li J, Sun L and Wei J: The role of cellular defense systems of ferroptosis in Parkinson's disease and Alzheimer's disease. Int J Mol Sci. 24:141082023. View Article : Google Scholar : PubMed/NCBI

22 

Yu J and Wang JQ: Research mechanisms of and pharmaceutical treatments for ferroptosis in liver diseases. Biochimie. 180:149–157. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, et al: Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab. 32:444–462. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Jakaria M, Belaidi AA, Bush AI and Ayton S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI

26 

Couto N, Wood J and Barber J: The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 95:27–42. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI

29 

Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng JC and Feng J: Emerging role of ferroptosis in the pathogenesis of ischemic stroke: A new therapeutic target? ASN Neuro. 13:175909142110375052021. View Article : Google Scholar : PubMed/NCBI

30 

Foley KE and Wilcock DM: Vascular considerations for amyloid immunotherapy. Curr Neurol Neurosci Rep. 22:709–719. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch J, Sachdev P, Bridge W and Braidy N: Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem Int. 144:1049312021. View Article : Google Scholar : PubMed/NCBI

32 

Chen LL, Fan YG, Zhao LX, Zhang Q and Wang ZY: The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem. 131:1063012023. View Article : Google Scholar : PubMed/NCBI

33 

Müller UC, Deller T and Korte M: Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 18:281–298. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Zhou ZD and Tan EK: Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 12:752017. View Article : Google Scholar : PubMed/NCBI

35 

Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T and Bali S: Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci. 15:9371332022. View Article : Google Scholar : PubMed/NCBI

36 

Wang J, Fu J, Zhao Y, Liu Q, Yan X and Su J: Iron and targeted iron therapy in Alzheimer's disease. Int J Mol Sci. 24:163532023. View Article : Google Scholar : PubMed/NCBI

37 

Boopathi S and Kolandaivel P: Fe2+ binding on amyloid β-peptide promotes aggregation. Proteins. 84:1257–1274. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Faraji P, Kühn H and Ahmadian S: Multiple roles of apolipoprotein E4 in oxidative lipid metabolism and ferroptosis during the pathogenesis of Alzheimer's disease. J Mol Neurosci. 74:622024. View Article : Google Scholar : PubMed/NCBI

39 

Gao Y and Tan L, Yu JT and Tan L: Tau in Alzheimer's disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res. 15:283–300. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Sinsky J, Pichlerova K and Hanes J: Tau protein interaction partners and their roles in Alzheimer's disease and other tauopathies. Int J Mol Sci. 22:92072021. View Article : Google Scholar : PubMed/NCBI

41 

Cody KA, Langhough RE, Zammit MD, Clark L, Chin N, Christian BT, Betthauser TJ and Johnson SC: Characterizing brain tau and cognitive decline along the amyloid timeline in Alzheimer's disease. Brain. 147:2144–2157. 2024. View Article : Google Scholar : PubMed/NCBI

42 

Wang F, Wang J, Shen Y, Li H, Rausch WD and Huang X: Iron dyshomeostasis and ferroptosis: A new Alzheimer's disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI

43 

Spotorno N, Acosta-Cabronero J, Stomrud E, Lampinen B, Strandberg OT, van Westen D and Hansson O: Relationship between cortical iron and tau aggregation in Alzheimer's disease. Brain. 143:1341–1349. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Guo C, Wang P, Zhong ML, Wang T, Huang XS, Li JY and Wang ZY: Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int. 62:165–172. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ and Mucke L: Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J Cell Biol. 209:419–433. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Kim AC, Lim S and Kim YK: Metal ion effects on Aβ and tau aggregation. Int J Mol Sci. 19:1282018. View Article : Google Scholar : PubMed/NCBI

47 

Mills E, Dong XP, Wang F and Xu H: Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Med Chem. 2:51–64. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Masaldan S, Bush AI, Devos D, Rolland AS and Moreau C: Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 133:221–233. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M and David S: TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 83:1098–1116. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Rao KS, Hegde ML, Anitha S, Musicco M, Zucca FA, Turro NJ and Zecca L: Amyloid β and neuromelanin-toxic or protective molecules?: The cellular context makes the difference. Prog Neurobiol. 78:364–373. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Guo JJ, Yue F, Song DY, Bousset L, Liang X, Tang J, Yuan L, Li W, Melki R, Tang Y, et al: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis. 12:812021. View Article : Google Scholar : PubMed/NCBI

52 

Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, IJsselsteijn ME, de Miranda NFCC, Lelieveldt BPF, Dijkstra J, van Roon-Mom WMC, Höllt T and van der Weerd L: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathol Commun. 9:272021. View Article : Google Scholar : PubMed/NCBI

53 

Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q and Li G: Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact. 375:1103872023. View Article : Google Scholar : PubMed/NCBI

54 

Li S, Wen P, Zhang D, Li D, Gao Q, Liu H and Di Y: PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2. Clin Exp Hypertens. 45:21625372023. View Article : Google Scholar : PubMed/NCBI

55 

Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG and Stockwell BR: Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32:602–619. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI

57 

Endale HT, Tesfaye W and Mengstie TA: ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev Biol. 11:12260442023. View Article : Google Scholar : PubMed/NCBI

58 

Hanseeuw BJ, Betensky RA, Jacobs HI, Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT, Mormino EC, et al: Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurol. 76:915–924. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Maher P: Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med. 115:92–104. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Tu W, Wang H, Li S, Liu Q and Sha H: The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10:637–651. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI

63 

Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Baird L, Swift S, Llères D and Dinkova-Kostova AT: Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol Adv. 32:1133–1144. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Kumar A and Mittal R: Nrf2: A potential therapeutic target for diabetic neuropathy. Inflammopharmacology. 25:393–402. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Sun Y, Xia X, Basnet D, Zheng JC, Huang J and Liu J: Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front Aging Neurosci. 14:9041522022. View Article : Google Scholar : PubMed/NCBI

67 

Shin CS, Mishra P, Watrous JD, Carelli V, D'Aurelio M, Jain M and Chan DC: The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun. 8:150742017. View Article : Google Scholar : PubMed/NCBI

68 

Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Finlay CA, Hinds PW and Levine AJ: The 53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI

73 

Kenzelmann Broz D and Attardi LD: In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis. 31:1311–1318. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Kamada R, Toguchi Y, Nomura T, Imagawa T and Sakaguchi K: Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 106:598–612. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Li H, Zhang Z, Li H, Pan X and Wang Y: New insights into the roles of p53 in central nervous system diseases. Int J Neuropsychopharmacol. 26:465–473. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, et al: Intracellular Abeta42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer's disease. FASEB J. 19:255–257. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Masaldan S, Belaidi AA, Ayton S and Bush AI: Cellular senescence and iron dyshomeostasis in Alzheimer's disease. Pharmaceuticals (Basel). 12:932019. View Article : Google Scholar : PubMed/NCBI

79 

Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T and Liu W: Ferroptosis and neurodegenerative diseases: Insights into the regulatory roles of SLC7A11. Cell Mol Neurobiol. 43:2627–2642. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Lee J and Roh JL: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI

81 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Iida Y, Okamoto-Katsuyama M, Maruoka S, Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K, Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol Lett. 21:712021. View Article : Google Scholar : PubMed/NCBI

83 

Shin D, Lee J and Roh JL: Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett. 585:2166452024. View Article : Google Scholar : PubMed/NCBI

84 

Hou CY, Suo YH, Lv P, Yuan HF, Zhao LN, Wang YF, Zhang HH, Sun J, Sun LL, Lu W, et al: Aristolochic acids-hijacked p53 promotes liver cancer cell growth by inhibiting ferroptosis. Acta Pharmacol Sin. 46:208–221. 2025. View Article : Google Scholar : PubMed/NCBI

85 

Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y and Gu W: Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17:366–373. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Zhang Y, Wang M and Chang W: Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD. Front Pharmacol. 13:9836232022. View Article : Google Scholar : PubMed/NCBI

89 

Dwivedi D, Megha K, Mishra R and Mandal PK: Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem Res. 45:1461–1480. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Rohr-Udilova N, Sieghart W, Eferl R, Stoiber D, Björkhem-Bergman L, Eriksson LC, Stolze K, Hayden H, Keppler B, Sagmeister S, et al: Antagonistic effects of selenium and lipid peroxides on growth control in early hepatocellular carcinoma. Hepatology. 55:1112–1121. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI

92 

Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Magtanong L, Ko PJ and Dixon SJ: Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ. 23:1099–1109. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, et al: Iron brain menace: The involvement of ferroptosis in Parkinson disease. Cells. 11:38292022. View Article : Google Scholar : PubMed/NCBI

95 

Shen W, Li C, Liu Q, Cai J, Wang Z, Pang Y, Ning G, Yao X, Kong X and Feng S: Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. Phytomedicine. 128:1553802024. View Article : Google Scholar : PubMed/NCBI

96 

Ward RJ, Zucca FA, Duyn JH, Crichton RR and Zecca L: The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13:1045–1060. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI

98 

Chaudhary S, Ashok A, McDonald D, Wise AS, Kritikos AE, Rana NA, Harding CV and Singh N: Upregulation of local hepcidin contributes to iron accumulation in Alzheimer's disease brains. J Alzheimers Dis. 82:1487–1497. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Li B, Xia M, Zorec R, Parpura V and Verkhratsky A: Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain research. 1752:1472342021. View Article : Google Scholar : PubMed/NCBI

100 

Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R and Sánchez-Alcázar JA: Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res. 18:1196–1202. 2023. View Article : Google Scholar : PubMed/NCBI

101 

Gugliandolo A, Bramanti P and Mazzon E: Role of vitamin E in the treatment of Alzheimer's disease: Evidence from animal models. Int J Mol Sci. 18:25042017. View Article : Google Scholar : PubMed/NCBI

102 

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019. View Article : Google Scholar : PubMed/NCBI

103 

Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI insight. 2:e907772017. View Article : Google Scholar : PubMed/NCBI

104 

Ikawa T, Sato M, Oh-Hashi K, Furuta K and Hirata Y: Oxindole-curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase. Eur J Pharmacol. 896:1738982021. View Article : Google Scholar : PubMed/NCBI

105 

Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C and Frye R: Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev. 55:294–321. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, et al: Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One. 13:e02013692018. View Article : Google Scholar : PubMed/NCBI

107 

Ashraf A and So PW: Spotlight on ferroptosis: Iron-dependent cell death in Alzheimer's disease. Front Aging Neurosci. 12:1962020. View Article : Google Scholar : PubMed/NCBI

108 

Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, Yee M, Crowley J and Schmitt FA: Association of antioxidant supplement use and dementia in the prevention of Alzheimer's disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 74:567–573. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Conrad M and Proneth B: Selenium: Tracing another essential element of ferroptotic cell death. Cell Chem Biol. 27:409–419. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422. e212018. View Article : Google Scholar : PubMed/NCBI

111 

R Cardoso B, Hare DJ, Lind M, McLean CA, Volitakis I, Laws SM, Masters CL, Bush AI and Roberts BR: The APOE ε4 allele is associated with lower selenium levels in the brain: Implications for Alzheimer's disease. ACS Chem Neurosci. 8:1459–1464. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 136:4551–4556. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI

115 

Asano M, Yamasaki K, Yamauchi T, Terui T and Aiba S: Epidermal iron metabolism for iron salvage. J Dermatol Sci. 87:101–109. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Kalyanaraman B: NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 57:1024972022. View Article : Google Scholar : PubMed/NCBI

117 

Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI

118 

Kerins MJ and Ooi A: The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 29:1756–1773. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the Hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Hara Y, McKeehan N, Dacks PA and Fillit HM: Evaluation of the neuroprotective potential of N-acetylcysteine for prevention and treatment of cognitive aging and dementia. J Prev Alzheimers Dis. 4:201–206. 2017.PubMed/NCBI

121 

Pocernich CB, La Fontaine M and Butterfield DA: In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int. 36:185–191. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Koppal T, Drake J and Butterfield DA: In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. Biochim Biophys Acta. 1453:407–411. 1999. View Article : Google Scholar : PubMed/NCBI

123 

Pocernich CB, Cardin AL, Racine CL, Lauderback CM and Butterfield DA: Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int. 39:141–149. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Prasad S, Tyagi AK and Aggarwal BB: Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 46:2–18. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Wei Z, Shaohuan Q, Pinfang K and Chao S: Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022:31597172022. View Article : Google Scholar : PubMed/NCBI

126 

Hirata Y, Ito Y, Takashima M, Yagyu K, Oh-Hashi K, Suzuki H, Ono K, Furuta K and Sawada M: novel oxindole-curcumin hybrid compound for antioxidative stress and neuroprotection. ACS Chem Neurosci. 11:76–85. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Hirata Y, Tsunekawa Y, Takahashi M, Oh-Hashi K, Kawaguchi K, Hayazaki M, Watanabe M, Koga KI, Hattori Y, Takemori H and Furuta K: Identification of novel neuroprotective N, N-dimethylaniline derivatives that prevent oxytosis/ferroptosis and localize to late endosomes and lysosomes. Free Radic Biol Med. 174:225–235. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Hirata Y, Okazaki R, Sato M, Oh-Hashi K, Takemori H and Furuta K: Effect of ferroptosis inhibitors oxindole-curcumin hybrid compound and N, N-dimethylaniline derivatives on rotenone-induced oxidative stress. Eur J Pharmacol. 928:1751192022. View Article : Google Scholar : PubMed/NCBI

129 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Li Y, Sun M, Cao F, Chen Y, Zhang L, Li H, Cao J, Song J, Ma Y, Mi W and Zhang X: The ferroptosis inhibitor liproxstatin-1 ameliorates LPS-induced cognitive impairment in mice. Nutrients. 14:45992022. View Article : Google Scholar : PubMed/NCBI

131 

Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Wang X, Ning GZ, Kong XH, Liu C, Yao X and Feng SQ: Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res. 16:561–566. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Singh VK, Beattie LA and Seed TM: Vitamin E: Tocopherols and tocotrienols as potential radiation countermeasures. J Radiat Res. 54:973–988. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Angeli JPF, Shah R, Pratt DA and Conrad M: Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci. 38:489–498. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ and Song GL: Selenium restores synaptic deficits by modulating NMDA receptors and selenoprotein K in an Alzheimer's disease model. Antioxid Redox Signal. 35:863–884. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Bao C, Liu C, Liu Q, Hua L, Hu J, Li Z and Xu S: Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. Int Immunopharmacol. 109:1087702022. View Article : Google Scholar : PubMed/NCBI

136 

Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang X, Wang S, Cui H, Lin P, Zhou G, et al: Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 57:1025092022. View Article : Google Scholar : PubMed/NCBI

137 

Li Z, Lu Y, Zhen Y, Jin W, Ma X, Yuan Z, Liu B, Zhou XL and Zhang L: Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer's disease by modulating the NOX4/Nrf2 axis. Phytomedicine. 135:1562092024. View Article : Google Scholar : PubMed/NCBI

138 

Wu Y, Wei M, Wang M, Guo M, Yu H, Chen Y, Xu T and Zhou Y: Schisandra total lignans ameliorate neuronal ferroptosis in 3×Tg-AD mice via regulating NADK/NADPH/GSH pathway. Phytomedicine. 140:1566122025. View Article : Google Scholar : PubMed/NCBI

139 

Li X, Chen J, Feng W, Wang C, Chen M, Li Y, Chen J, Liu X, Liu Q and Tian J: Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice. Phytomedicine. 118:1549622023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zeng H and Jin Z: The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 32: 192, 2025.
APA
Zeng, H., & Jin, Z. (2025). The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Molecular Medicine Reports, 32, 192. https://doi.org/10.3892/mmr.2025.13557
MLA
Zeng, H., Jin, Z."The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)". Molecular Medicine Reports 32.1 (2025): 192.
Chicago
Zeng, H., Jin, Z."The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)". Molecular Medicine Reports 32, no. 1 (2025): 192. https://doi.org/10.3892/mmr.2025.13557
Copy and paste a formatted citation
x
Spandidos Publications style
Zeng H and Jin Z: The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 32: 192, 2025.
APA
Zeng, H., & Jin, Z. (2025). The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Molecular Medicine Reports, 32, 192. https://doi.org/10.3892/mmr.2025.13557
MLA
Zeng, H., Jin, Z."The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)". Molecular Medicine Reports 32.1 (2025): 192.
Chicago
Zeng, H., Jin, Z."The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)". Molecular Medicine Reports 32, no. 1 (2025): 192. https://doi.org/10.3892/mmr.2025.13557
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team