
The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review)
- Authors:
- Heng Zeng
- Zhaohui Jin
-
Affiliations: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: May 2, 2025 https://doi.org/10.3892/mmr.2025.13557
- Article Number: 192
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S and Ge J: Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother. 164:1143122023. View Article : Google Scholar : PubMed/NCBI | |
Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT and Murray ME: New insights into atypical Alzheimer's disease in the era of biomarkers. Lancet Neurol. 20:222–234. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C and Li M: Ferroptosis, pyroptosis, and cuproptosis in Alzheimer's disease. ACS Chem Neurosci. 14:3564–3587. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lane DJR, Metselaar B, Greenough M, Bush AI and Ayton SJ: Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays Biochem. 65:925–940. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Wu W, Wen Y, Lu S and Zhao C: Potential therapeutic natural compounds for the treatment of Alzheimer's disease. Phytomedicine. 132:1558222024. View Article : Google Scholar : PubMed/NCBI | |
Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, et al: Regulation of neuroinflammation in Alzheimer's disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine. 122:1551502024. View Article : Google Scholar : PubMed/NCBI | |
Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M and Schrag A: The neuropsychiatry of Parkinson's disease: Advances and challenges. Lancet Neurol. 21:89–102. 2022. View Article : Google Scholar : PubMed/NCBI | |
Markus HS, van Der Flier WM, Smith EE, Bath P, Biessels GJ, Briceno E, Brodtman A, Chabriat H, Chen C, de Leeuw FE, et al: Framework for clinical trials in cerebral small vessel disease (FINESSE): A Review. JAMA Neurol. 79:1187–1198. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu JB, Wang X and Cao J: The coherence and properties analysis of balanced 2 p-Ary tree networks. IEEE Trans Netw Sci Eng. 11:4719–4728. 2024. View Article : Google Scholar | |
Liu JB, Zhang X, Cao J and Chen L: Mean first-passage time and robustness of complex cellular mobile communication network. IEEE Trans Netw Sci Eng. 11:3066–3076. 2024. View Article : Google Scholar | |
Ashraf T, Idrees N and Belay MB: Regression analysis of topological indices for predicting efficacy of Alzheimer's drugs. PLoS One. 19:e03094772024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Song X, Wang R, Xu X, Du Y, Chen G and Mei J: Genome-wide mendelian randomization identifies ferroptosis-related drug targets for Alzheimer's disease. J Alzheimers Dis Rep. 8:1185–1197. 2024. View Article : Google Scholar : PubMed/NCBI | |
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM and Thomas B: A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: New insights into emerging mechanisms and therapeutic targets. Front Pharmacol. 15:13907982024. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lei P, Ayton S and Bush AI: The essential elements of Alzheimer's disease. J Biol Chem. 296:1001052021. View Article : Google Scholar : PubMed/NCBI | |
Yong YY, Yan L, Wang BD, Fan DS, Guo MS, Yu L, Wu JM, Qin DL, Law BY, Wong VK, et al: Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer's disease. Phytomedicine. 127:1554632024. View Article : Google Scholar : PubMed/NCBI | |
Andrews NC: Disorders of iron metabolism. N Engl J Med. 341:1986–1995. 1999. View Article : Google Scholar : PubMed/NCBI | |
Buijs M, Doan NT, van Rooden S, Versluis MJ, van Lew B, Milles J, van der Grond J and van Buchem MA: In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-Tesla T2*-weighted phase imaging. Neurobiol Aging. 53:20–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chu J, Li J, Sun L and Wei J: The role of cellular defense systems of ferroptosis in Parkinson's disease and Alzheimer's disease. Int J Mol Sci. 24:141082023. View Article : Google Scholar : PubMed/NCBI | |
Yu J and Wang JQ: Research mechanisms of and pharmaceutical treatments for ferroptosis in liver diseases. Biochimie. 180:149–157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, et al: Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab. 32:444–462. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jakaria M, Belaidi AA, Bush AI and Ayton S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI | |
Couto N, Wood J and Barber J: The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 95:27–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng JC and Feng J: Emerging role of ferroptosis in the pathogenesis of ischemic stroke: A new therapeutic target? ASN Neuro. 13:175909142110375052021. View Article : Google Scholar : PubMed/NCBI | |
Foley KE and Wilcock DM: Vascular considerations for amyloid immunotherapy. Curr Neurol Neurosci Rep. 22:709–719. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch J, Sachdev P, Bridge W and Braidy N: Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem Int. 144:1049312021. View Article : Google Scholar : PubMed/NCBI | |
Chen LL, Fan YG, Zhao LX, Zhang Q and Wang ZY: The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem. 131:1063012023. View Article : Google Scholar : PubMed/NCBI | |
Müller UC, Deller T and Korte M: Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 18:281–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou ZD and Tan EK: Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 12:752017. View Article : Google Scholar : PubMed/NCBI | |
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T and Bali S: Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci. 15:9371332022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Fu J, Zhao Y, Liu Q, Yan X and Su J: Iron and targeted iron therapy in Alzheimer's disease. Int J Mol Sci. 24:163532023. View Article : Google Scholar : PubMed/NCBI | |
Boopathi S and Kolandaivel P: Fe2+ binding on amyloid β-peptide promotes aggregation. Proteins. 84:1257–1274. 2016. View Article : Google Scholar : PubMed/NCBI | |
Faraji P, Kühn H and Ahmadian S: Multiple roles of apolipoprotein E4 in oxidative lipid metabolism and ferroptosis during the pathogenesis of Alzheimer's disease. J Mol Neurosci. 74:622024. View Article : Google Scholar : PubMed/NCBI | |
Gao Y and Tan L, Yu JT and Tan L: Tau in Alzheimer's disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res. 15:283–300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sinsky J, Pichlerova K and Hanes J: Tau protein interaction partners and their roles in Alzheimer's disease and other tauopathies. Int J Mol Sci. 22:92072021. View Article : Google Scholar : PubMed/NCBI | |
Cody KA, Langhough RE, Zammit MD, Clark L, Chin N, Christian BT, Betthauser TJ and Johnson SC: Characterizing brain tau and cognitive decline along the amyloid timeline in Alzheimer's disease. Brain. 147:2144–2157. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang J, Shen Y, Li H, Rausch WD and Huang X: Iron dyshomeostasis and ferroptosis: A new Alzheimer's disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI | |
Spotorno N, Acosta-Cabronero J, Stomrud E, Lampinen B, Strandberg OT, van Westen D and Hansson O: Relationship between cortical iron and tau aggregation in Alzheimer's disease. Brain. 143:1341–1349. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Wang P, Zhong ML, Wang T, Huang XS, Li JY and Wang ZY: Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int. 62:165–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ and Mucke L: Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J Cell Biol. 209:419–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim AC, Lim S and Kim YK: Metal ion effects on Aβ and tau aggregation. Int J Mol Sci. 19:1282018. View Article : Google Scholar : PubMed/NCBI | |
Mills E, Dong XP, Wang F and Xu H: Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Med Chem. 2:51–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Masaldan S, Bush AI, Devos D, Rolland AS and Moreau C: Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 133:221–233. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M and David S: TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 83:1098–1116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rao KS, Hegde ML, Anitha S, Musicco M, Zucca FA, Turro NJ and Zecca L: Amyloid β and neuromelanin-toxic or protective molecules?: The cellular context makes the difference. Prog Neurobiol. 78:364–373. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guo JJ, Yue F, Song DY, Bousset L, Liang X, Tang J, Yuan L, Li W, Melki R, Tang Y, et al: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis. 12:812021. View Article : Google Scholar : PubMed/NCBI | |
Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, IJsselsteijn ME, de Miranda NFCC, Lelieveldt BPF, Dijkstra J, van Roon-Mom WMC, Höllt T and van der Weerd L: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathol Commun. 9:272021. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q and Li G: Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact. 375:1103872023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wen P, Zhang D, Li D, Gao Q, Liu H and Di Y: PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2. Clin Exp Hypertens. 45:21625372023. View Article : Google Scholar : PubMed/NCBI | |
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG and Stockwell BR: Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32:602–619. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Endale HT, Tesfaye W and Mengstie TA: ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev Biol. 11:12260442023. View Article : Google Scholar : PubMed/NCBI | |
Hanseeuw BJ, Betensky RA, Jacobs HI, Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT, Mormino EC, et al: Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurol. 76:915–924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maher P: Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med. 115:92–104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tu W, Wang H, Li S, Liu Q and Sha H: The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10:637–651. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baird L, Swift S, Llères D and Dinkova-Kostova AT: Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol Adv. 32:1133–1144. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar A and Mittal R: Nrf2: A potential therapeutic target for diabetic neuropathy. Inflammopharmacology. 25:393–402. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Xia X, Basnet D, Zheng JC, Huang J and Liu J: Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front Aging Neurosci. 14:9041522022. View Article : Google Scholar : PubMed/NCBI | |
Shin CS, Mishra P, Watrous JD, Carelli V, D'Aurelio M, Jain M and Chan DC: The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun. 8:150742017. View Article : Google Scholar : PubMed/NCBI | |
Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
Finlay CA, Hinds PW and Levine AJ: The 53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI | |
Kenzelmann Broz D and Attardi LD: In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis. 31:1311–1318. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kamada R, Toguchi Y, Nomura T, Imagawa T and Sakaguchi K: Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 106:598–612. 2016. View Article : Google Scholar : PubMed/NCBI | |
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang Z, Li H, Pan X and Wang Y: New insights into the roles of p53 in central nervous system diseases. Int J Neuropsychopharmacol. 26:465–473. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, et al: Intracellular Abeta42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer's disease. FASEB J. 19:255–257. 2005. View Article : Google Scholar : PubMed/NCBI | |
Masaldan S, Belaidi AA, Ayton S and Bush AI: Cellular senescence and iron dyshomeostasis in Alzheimer's disease. Pharmaceuticals (Basel). 12:932019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T and Liu W: Ferroptosis and neurodegenerative diseases: Insights into the regulatory roles of SLC7A11. Cell Mol Neurobiol. 43:2627–2642. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Roh JL: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iida Y, Okamoto-Katsuyama M, Maruoka S, Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K, Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol Lett. 21:712021. View Article : Google Scholar : PubMed/NCBI | |
Shin D, Lee J and Roh JL: Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett. 585:2166452024. View Article : Google Scholar : PubMed/NCBI | |
Hou CY, Suo YH, Lv P, Yuan HF, Zhao LN, Wang YF, Zhang HH, Sun J, Sun LL, Lu W, et al: Aristolochic acids-hijacked p53 promotes liver cancer cell growth by inhibiting ferroptosis. Acta Pharmacol Sin. 46:208–221. 2025. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y and Gu W: Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17:366–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang M and Chang W: Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD. Front Pharmacol. 13:9836232022. View Article : Google Scholar : PubMed/NCBI | |
Dwivedi D, Megha K, Mishra R and Mandal PK: Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem Res. 45:1461–1480. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rohr-Udilova N, Sieghart W, Eferl R, Stoiber D, Björkhem-Bergman L, Eriksson LC, Stolze K, Hayden H, Keppler B, Sagmeister S, et al: Antagonistic effects of selenium and lipid peroxides on growth control in early hepatocellular carcinoma. Hepatology. 55:1112–1121. 2012. View Article : Google Scholar : PubMed/NCBI | |
Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI | |
Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222. 2023. View Article : Google Scholar : PubMed/NCBI | |
Magtanong L, Ko PJ and Dixon SJ: Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ. 23:1099–1109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, et al: Iron brain menace: The involvement of ferroptosis in Parkinson disease. Cells. 11:38292022. View Article : Google Scholar : PubMed/NCBI | |
Shen W, Li C, Liu Q, Cai J, Wang Z, Pang Y, Ning G, Yao X, Kong X and Feng S: Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. Phytomedicine. 128:1553802024. View Article : Google Scholar : PubMed/NCBI | |
Ward RJ, Zucca FA, Duyn JH, Crichton RR and Zecca L: The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13:1045–1060. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary S, Ashok A, McDonald D, Wise AS, Kritikos AE, Rana NA, Harding CV and Singh N: Upregulation of local hepcidin contributes to iron accumulation in Alzheimer's disease brains. J Alzheimers Dis. 82:1487–1497. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Xia M, Zorec R, Parpura V and Verkhratsky A: Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain research. 1752:1472342021. View Article : Google Scholar : PubMed/NCBI | |
Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R and Sánchez-Alcázar JA: Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res. 18:1196–1202. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gugliandolo A, Bramanti P and Mazzon E: Role of vitamin E in the treatment of Alzheimer's disease: Evidence from animal models. Int J Mol Sci. 18:25042017. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI insight. 2:e907772017. View Article : Google Scholar : PubMed/NCBI | |
Ikawa T, Sato M, Oh-Hashi K, Furuta K and Hirata Y: Oxindole-curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase. Eur J Pharmacol. 896:1738982021. View Article : Google Scholar : PubMed/NCBI | |
Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C and Frye R: Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev. 55:294–321. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, et al: Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One. 13:e02013692018. View Article : Google Scholar : PubMed/NCBI | |
Ashraf A and So PW: Spotlight on ferroptosis: Iron-dependent cell death in Alzheimer's disease. Front Aging Neurosci. 12:1962020. View Article : Google Scholar : PubMed/NCBI | |
Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, Yee M, Crowley J and Schmitt FA: Association of antioxidant supplement use and dementia in the prevention of Alzheimer's disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 74:567–573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Proneth B: Selenium: Tracing another essential element of ferroptotic cell death. Cell Chem Biol. 27:409–419. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422. e212018. View Article : Google Scholar : PubMed/NCBI | |
R Cardoso B, Hare DJ, Lind M, McLean CA, Volitakis I, Laws SM, Masters CL, Bush AI and Roberts BR: The APOE ε4 allele is associated with lower selenium levels in the brain: Implications for Alzheimer's disease. ACS Chem Neurosci. 8:1459–1464. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 136:4551–4556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI | |
Asano M, Yamasaki K, Yamauchi T, Terui T and Aiba S: Epidermal iron metabolism for iron salvage. J Dermatol Sci. 87:101–109. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kalyanaraman B: NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 57:1024972022. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI | |
Kerins MJ and Ooi A: The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 29:1756–1773. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the Hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hara Y, McKeehan N, Dacks PA and Fillit HM: Evaluation of the neuroprotective potential of N-acetylcysteine for prevention and treatment of cognitive aging and dementia. J Prev Alzheimers Dis. 4:201–206. 2017.PubMed/NCBI | |
Pocernich CB, La Fontaine M and Butterfield DA: In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int. 36:185–191. 2000. View Article : Google Scholar : PubMed/NCBI | |
Koppal T, Drake J and Butterfield DA: In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. Biochim Biophys Acta. 1453:407–411. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pocernich CB, Cardin AL, Racine CL, Lauderback CM and Butterfield DA: Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int. 39:141–149. 2001. View Article : Google Scholar : PubMed/NCBI | |
Prasad S, Tyagi AK and Aggarwal BB: Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 46:2–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Shaohuan Q, Pinfang K and Chao S: Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022:31597172022. View Article : Google Scholar : PubMed/NCBI | |
Hirata Y, Ito Y, Takashima M, Yagyu K, Oh-Hashi K, Suzuki H, Ono K, Furuta K and Sawada M: novel oxindole-curcumin hybrid compound for antioxidative stress and neuroprotection. ACS Chem Neurosci. 11:76–85. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hirata Y, Tsunekawa Y, Takahashi M, Oh-Hashi K, Kawaguchi K, Hayazaki M, Watanabe M, Koga KI, Hattori Y, Takemori H and Furuta K: Identification of novel neuroprotective N, N-dimethylaniline derivatives that prevent oxytosis/ferroptosis and localize to late endosomes and lysosomes. Free Radic Biol Med. 174:225–235. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hirata Y, Okazaki R, Sato M, Oh-Hashi K, Takemori H and Furuta K: Effect of ferroptosis inhibitors oxindole-curcumin hybrid compound and N, N-dimethylaniline derivatives on rotenone-induced oxidative stress. Eur J Pharmacol. 928:1751192022. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Sun M, Cao F, Chen Y, Zhang L, Li H, Cao J, Song J, Ma Y, Mi W and Zhang X: The ferroptosis inhibitor liproxstatin-1 ameliorates LPS-induced cognitive impairment in mice. Nutrients. 14:45992022. View Article : Google Scholar : PubMed/NCBI | |
Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Wang X, Ning GZ, Kong XH, Liu C, Yao X and Feng SQ: Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res. 16:561–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
Singh VK, Beattie LA and Seed TM: Vitamin E: Tocopherols and tocotrienols as potential radiation countermeasures. J Radiat Res. 54:973–988. 2013. View Article : Google Scholar : PubMed/NCBI | |
Angeli JPF, Shah R, Pratt DA and Conrad M: Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci. 38:489–498. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ and Song GL: Selenium restores synaptic deficits by modulating NMDA receptors and selenoprotein K in an Alzheimer's disease model. Antioxid Redox Signal. 35:863–884. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bao C, Liu C, Liu Q, Hua L, Hu J, Li Z and Xu S: Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. Int Immunopharmacol. 109:1087702022. View Article : Google Scholar : PubMed/NCBI | |
Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang X, Wang S, Cui H, Lin P, Zhou G, et al: Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 57:1025092022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lu Y, Zhen Y, Jin W, Ma X, Yuan Z, Liu B, Zhou XL and Zhang L: Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer's disease by modulating the NOX4/Nrf2 axis. Phytomedicine. 135:1562092024. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wei M, Wang M, Guo M, Yu H, Chen Y, Xu T and Zhou Y: Schisandra total lignans ameliorate neuronal ferroptosis in 3×Tg-AD mice via regulating NADK/NADPH/GSH pathway. Phytomedicine. 140:1566122025. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen J, Feng W, Wang C, Chen M, Li Y, Chen J, Liu X, Liu Q and Tian J: Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice. Phytomedicine. 118:1549622023. View Article : Google Scholar : PubMed/NCBI |