|
1
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu
H, Ge A, Zeng L, Chen S and Ge J: Mechanisms of ferroptosis in
Alzheimer's disease and therapeutic effects of natural plant
products: A review. Biomed Pharmacother. 164:1143122023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Graff-Radford J, Yong KXX, Apostolova LG,
Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM,
Jones DT and Murray ME: New insights into atypical Alzheimer's
disease in the era of biomarkers. Lancet Neurol. 20:222–234. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng
L, Fan C and Li M: Ferroptosis, pyroptosis, and cuproptosis in
Alzheimer's disease. ACS Chem Neurosci. 14:3564–3587. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lane DJR, Metselaar B, Greenough M, Bush
AI and Ayton SJ: Ferroptosis and NRF2: An emerging battlefield in
the neurodegeneration of Alzheimer's disease. Essays Biochem.
65:925–940. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Huang Q, Wu W, Wen Y, Lu S and Zhao C:
Potential therapeutic natural compounds for the treatment of
Alzheimer's disease. Phytomedicine. 132:1558222024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nayak V, Patra S, Rout S, Jena AB, Sharma
R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, et al:
Regulation of neuroinflammation in Alzheimer's disease via
nanoparticle-loaded phytocompounds with anti-inflammatory and
autophagy-inducing properties. Phytomedicine. 122:1551502024.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Weintraub D, Aarsland D, Chaudhuri KR,
Dobkin RD, Leentjens AF, Rodriguez-Violante M and Schrag A: The
neuropsychiatry of Parkinson's disease: Advances and challenges.
Lancet Neurol. 21:89–102. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Markus HS, van Der Flier WM, Smith EE,
Bath P, Biessels GJ, Briceno E, Brodtman A, Chabriat H, Chen C, de
Leeuw FE, et al: Framework for clinical trials in cerebral small
vessel disease (FINESSE): A Review. JAMA Neurol. 79:1187–1198.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu JB, Wang X and Cao J: The coherence
and properties analysis of balanced 2 p-Ary tree networks. IEEE
Trans Netw Sci Eng. 11:4719–4728. 2024. View Article : Google Scholar
|
|
10
|
Liu JB, Zhang X, Cao J and Chen L: Mean
first-passage time and robustness of complex cellular mobile
communication network. IEEE Trans Netw Sci Eng. 11:3066–3076. 2024.
View Article : Google Scholar
|
|
11
|
Ashraf T, Idrees N and Belay MB:
Regression analysis of topological indices for predicting efficacy
of Alzheimer's drugs. PLoS One. 19:e03094772024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang Y, Song X, Wang R, Xu X, Du Y, Chen G
and Mei J: Genome-wide mendelian randomization identifies
ferroptosis-related drug targets for Alzheimer's disease. J
Alzheimers Dis Rep. 8:1185–1197. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Soni P, Ammal Kaidery N, Sharma SM,
Gazaryan I, Nikulin SV, Hushpulian DM and Thomas B: A critical
appraisal of ferroptosis in Alzheimer's and Parkinson's disease:
New insights into emerging mechanisms and therapeutic targets.
Front Pharmacol. 15:13907982024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lei P, Ayton S and Bush AI: The essential
elements of Alzheimer's disease. J Biol Chem. 296:1001052021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yong YY, Yan L, Wang BD, Fan DS, Guo MS,
Yu L, Wu JM, Qin DL, Law BY, Wong VK, et al: Penthorum chinense
Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans
models of Alzheimer's disease. Phytomedicine. 127:1554632024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Andrews NC: Disorders of iron metabolism.
N Engl J Med. 341:1986–1995. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Buijs M, Doan NT, van Rooden S, Versluis
MJ, van Lew B, Milles J, van der Grond J and van Buchem MA: In vivo
assessment of iron content of the cerebral cortex in healthy aging
using 7-Tesla T2*-weighted phase imaging. Neurobiol Aging.
53:20–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chu J, Li J, Sun L and Wei J: The role of
cellular defense systems of ferroptosis in Parkinson's disease and
Alzheimer's disease. Int J Mol Sci. 24:141082023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yu J and Wang JQ: Research mechanisms of
and pharmaceutical treatments for ferroptosis in liver diseases.
Biochimie. 180:149–157. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ajoolabady A, Aslkhodapasandhokmabad H,
Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang
D, Zhou H, Wang S, et al: Ferritinophagy and ferroptosis in the
management of metabolic diseases. Trends Endocrinol Metab.
32:444–462. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jakaria M, Belaidi AA, Bush AI and Ayton
S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's
disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y,
Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of
ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Couto N, Wood J and Barber J: The role of
glutathione reductase and related enzymes on cellular redox
homoeostasis network. Free Radic Biol Med. 95:27–42. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hu H, Chen Y, Jing L, Zhai C and Shen L:
The link between ferroptosis and cardiovascular diseases: A novel
target for treatment. Front Cardiovasc Med. 8:7109632021.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng
JC and Feng J: Emerging role of ferroptosis in the pathogenesis of
ischemic stroke: A new therapeutic target? ASN Neuro.
13:175909142110375052021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Foley KE and Wilcock DM: Vascular
considerations for amyloid immunotherapy. Curr Neurol Neurosci Rep.
22:709–719. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch
J, Sachdev P, Bridge W and Braidy N: Supplementation with
γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain
inflammation and amyloid pathology and improves spatial memory in a
murine model of AD. Neurochem Int. 144:1049312021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen LL, Fan YG, Zhao LX, Zhang Q and Wang
ZY: The metal ion hypothesis of Alzheimer's disease and the
anti-neuroinflammatory effect of metal chelators. Bioorg Chem.
131:1063012023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Müller UC, Deller T and Korte M: Not just
amyloid: physiological functions of the amyloid precursor protein
family. Nat Rev Neurosci. 18:281–298. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou ZD and Tan EK: Iron regulatory
protein (IRP)-iron responsive element (IRE) signaling pathway in
human neurodegenerative diseases. Mol Neurodegener. 12:752017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Goel P, Chakrabarti S, Goel K, Bhutani K,
Chopra T and Bali S: Neuronal cell death mechanisms in Alzheimer's
disease: An insight. Front Mol Neurosci. 15:9371332022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang J, Fu J, Zhao Y, Liu Q, Yan X and Su
J: Iron and targeted iron therapy in Alzheimer's disease. Int J Mol
Sci. 24:163532023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Boopathi S and Kolandaivel P: Fe2+ binding
on amyloid β-peptide promotes aggregation. Proteins. 84:1257–1274.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Faraji P, Kühn H and Ahmadian S: Multiple
roles of apolipoprotein E4 in oxidative lipid metabolism and
ferroptosis during the pathogenesis of Alzheimer's disease. J Mol
Neurosci. 74:622024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gao Y and Tan L, Yu JT and Tan L: Tau in
Alzheimer's disease: Mechanisms and therapeutic strategies. Curr
Alzheimer Res. 15:283–300. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sinsky J, Pichlerova K and Hanes J: Tau
protein interaction partners and their roles in Alzheimer's disease
and other tauopathies. Int J Mol Sci. 22:92072021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cody KA, Langhough RE, Zammit MD, Clark L,
Chin N, Christian BT, Betthauser TJ and Johnson SC: Characterizing
brain tau and cognitive decline along the amyloid timeline in
Alzheimer's disease. Brain. 147:2144–2157. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang F, Wang J, Shen Y, Li H, Rausch WD
and Huang X: Iron dyshomeostasis and ferroptosis: A new Alzheimer's
disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Spotorno N, Acosta-Cabronero J, Stomrud E,
Lampinen B, Strandberg OT, van Westen D and Hansson O: Relationship
between cortical iron and tau aggregation in Alzheimer's disease.
Brain. 143:1341–1349. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Guo C, Wang P, Zhong ML, Wang T, Huang XS,
Li JY and Wang ZY: Deferoxamine inhibits iron induced hippocampal
tau phosphorylation in the Alzheimer transgenic mouse brain.
Neurochem Int. 62:165–172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Vossel KA, Xu JC, Fomenko V, Miyamoto T,
Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ and Mucke L: Tau
reduction prevents Aβ-induced axonal transport deficits by blocking
activation of GSK3β. J Cell Biol. 209:419–433. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim AC, Lim S and Kim YK: Metal ion
effects on Aβ and tau aggregation. Int J Mol Sci. 19:1282018.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mills E, Dong XP, Wang F and Xu H:
Mechanisms of brain iron transport: Insight into neurodegeneration
and CNS disorders. Future Med Chem. 2:51–64. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Masaldan S, Bush AI, Devos D, Rolland AS
and Moreau C: Striking while the iron is hot: Iron metabolism and
ferroptosis in neurodegeneration. Free Radic Biol Med. 133:221–233.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kroner A, Greenhalgh AD, Zarruk JG, Passos
Dos Santos R, Gaestel M and David S: TNF and increased
intracellular iron alter macrophage polarization to a detrimental
M1 phenotype in the injured spinal cord. Neuron. 83:1098–1116.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rao KS, Hegde ML, Anitha S, Musicco M,
Zucca FA, Turro NJ and Zecca L: Amyloid β and neuromelanin-toxic or
protective molecules?: The cellular context makes the difference.
Prog Neurobiol. 78:364–373. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Guo JJ, Yue F, Song DY, Bousset L, Liang
X, Tang J, Yuan L, Li W, Melki R, Tang Y, et al: Intranasal
administration of α-synuclein preformed fibrils triggers microglial
iron deposition in the substantia nigra of Macaca fascicularis.
Cell Death Dis. 12:812021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kenkhuis B, Somarakis A, de Haan L,
Dzyubachyk O, IJsselsteijn ME, de Miranda NFCC, Lelieveldt BPF,
Dijkstra J, van Roon-Mom WMC, Höllt T and van der Weerd L: Iron
loading is a prominent feature of activated microglia in
Alzheimer's disease patients. Acta Neuropathol Commun. 9:272021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q
and Li G: Revisiting the intersection of microglial activation and
neuroinflammation in Alzheimer's disease from the perspective of
ferroptosis. Chem Biol Interact. 375:1103872023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li S, Wen P, Zhang D, Li D, Gao Q, Liu H
and Di Y: PGAM5 expression levels in heart failure and protection
ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2. Clin
Exp Hypertens. 45:21625372023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC,
Head B, Traber MG and Stockwell BR: Regulation of lipid
peroxidation and ferroptosis in diverse species. Genes Dev.
32:602–619. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: Production, metabolism, and signaling mechanisms of
malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Endale HT, Tesfaye W and Mengstie TA: ROS
induced lipid peroxidation and their role in ferroptosis. Front
Cell Dev Biol. 11:12260442023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hanseeuw BJ, Betensky RA, Jacobs HI,
Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT,
Mormino EC, et al: Association of amyloid and tau with cognition in
preclinical Alzheimer disease: A longitudinal study. JAMA Neurol.
76:915–924. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Maher P: Potentiation of glutathione loss
and nerve cell death by the transition metals iron and copper:
Implications for age-related neurodegenerative diseases. Free Radic
Biol Med. 115:92–104. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bao WD, Pang P, Zhou XT, Hu F, Xiong W,
Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin
induces memory impairment by promoting ferroptosis in Alzheimer's
disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tu W, Wang H, Li S, Liu Q and Sha H: The
anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE
signaling pathway in chronic diseases. Aging Dis. 10:637–651. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ma Q: Role of nrf2 in oxidative stress and
toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Baird L, Swift S, Llères D and
Dinkova-Kostova AT: Monitoring Keap1-Nrf2 interactions in single
live cells. Biotechnol Adv. 32:1133–1144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kumar A and Mittal R: Nrf2: A potential
therapeutic target for diabetic neuropathy. Inflammopharmacology.
25:393–402. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J
and Liu J: Mechanisms of ferroptosis and emerging links to the
pathology of neurodegenerative diseases. Front Aging Neurosci.
14:9041522022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shin CS, Mishra P, Watrous JD, Carelli V,
D'Aurelio M, Jain M and Chan DC: The glutamate/cystine xCT
antiporter antagonizes glutamine metabolism and reduces nutrient
flexibility. Nat Commun. 8:150742017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liang D, Minikes AM and Jiang X:
Ferroptosis at the intersection of lipid metabolism and cellular
signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pope LE and Dixon SJ: Regulation of
ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Finlay CA, Hinds PW and Levine AJ: The 53
proto-oncogene can act as a suppressor of transformation. Cell.
57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kenzelmann Broz D and Attardi LD: In vivo
analysis of p53 tumor suppressor function using genetically
engineered mouse models. Carcinogenesis. 31:1311–1318. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kamada R, Toguchi Y, Nomura T, Imagawa T
and Sakaguchi K: Tetramer formation of tumor suppressor protein
p53: Structure, function, and applications. Biopolymers.
106:598–612. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Joerger AC and Fersht AR: Structural
biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li H, Zhang Z, Li H, Pan X and Wang Y: New
insights into the roles of p53 in central nervous system diseases.
Int J Neuropsychopharmacol. 26:465–473. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ohyagi Y, Asahara H, Chui DH, Tsuruta Y,
Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, et
al: Intracellular Abeta42 activates p53 promoter: A pathway to
neurodegeneration in Alzheimer's disease. FASEB J. 19:255–257.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Masaldan S, Belaidi AA, Ayton S and Bush
AI: Cellular senescence and iron dyshomeostasis in Alzheimer's
disease. Pharmaceuticals (Basel). 12:932019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T
and Liu W: Ferroptosis and neurodegenerative diseases: Insights
into the regulatory roles of SLC7A11. Cell Mol Neurobiol.
43:2627–2642. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lee J and Roh JL: SLC7A11 as a gateway of
metabolic perturbation and ferroptosis vulnerability in cancer.
Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Iida Y, Okamoto-Katsuyama M, Maruoka S,
Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K,
Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell
death from SLC7A11 inhibition by sulforaphane. Oncol Lett.
21:712021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shin D, Lee J and Roh JL: Pioneering the
future of cancer therapy: Deciphering the p53-ferroptosis nexus for
precision medicine. Cancer Lett. 585:2166452024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hou CY, Suo YH, Lv P, Yuan HF, Zhao LN,
Wang YF, Zhang HH, Sun J, Sun LL, Lu W, et al: Aristolochic
acids-hijacked p53 promotes liver cancer cell growth by inhibiting
ferroptosis. Acta Pharmacol Sin. 46:208–221. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kang R, Kroemer G and Tang D: The tumor
suppressor protein p53 and the ferroptosis network. Free Radic Biol
Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao
Y and Gu W: Acetylation is crucial for p53-mediated ferroptosis and
tumor suppression. Cell Rep. 17:366–373. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang Y, Wang M and Chang W: Iron
dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular
mechanisms of cell death and novel therapeutic drugs and targets
for AD. Front Pharmacol. 13:9836232022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Dwivedi D, Megha K, Mishra R and Mandal
PK: Glutathione in brain: Overview of its conformations, functions,
biochemical characteristics, quantitation and potential therapeutic
role in brain disorders. Neurochem Res. 45:1461–1480. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Rohr-Udilova N, Sieghart W, Eferl R,
Stoiber D, Björkhem-Bergman L, Eriksson LC, Stolze K, Hayden H,
Keppler B, Sagmeister S, et al: Antagonistic effects of selenium
and lipid peroxides on growth control in early hepatocellular
carcinoma. Hepatology. 55:1112–1121. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Imai H, Matsuoka M, Kumagai T, Sakamoto T
and Koumura T: Lipid peroxidation-dependent cell death regulated by
GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170.
2017.PubMed/NCBI
|
|
92
|
Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao
J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Magtanong L, Ko PJ and Dixon SJ: Emerging
roles for lipids in non-apoptotic cell death. Cell Death Differ.
23:1099–1109. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY,
Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, et al: Iron brain
menace: The involvement of ferroptosis in Parkinson disease. Cells.
11:38292022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shen W, Li C, Liu Q, Cai J, Wang Z, Pang
Y, Ning G, Yao X, Kong X and Feng S: Celastrol inhibits
oligodendrocyte and neuron ferroptosis to promote spinal cord
injury recovery. Phytomedicine. 128:1553802024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR
and Zecca L: The role of iron in brain ageing and neurodegenerative
disorders. Lancet Neurol. 13:1045–1060. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi
AA and Lei P: Ferroptosis: Mechanisms and links with diseases.
Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chaudhary S, Ashok A, McDonald D, Wise AS,
Kritikos AE, Rana NA, Harding CV and Singh N: Upregulation of local
hepcidin contributes to iron accumulation in Alzheimer's disease
brains. J Alzheimers Dis. 82:1487–1497. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li B, Xia M, Zorec R, Parpura V and
Verkhratsky A: Astrocytes in heavy metal neurotoxicity and
neurodegeneration. Brain research. 1752:1472342021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Villalón-García I, Povea-Cabello S,
Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM,
Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D,
Cilleros-Holgado P, Piñero-Pérez R and Sánchez-Alcázar JA: Vicious
cycle of lipid peroxidation and iron accumulation in
neurodegeneration. Neural Regen Res. 18:1196–1202. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gugliandolo A, Bramanti P and Mazzon E:
Role of vitamin E in the treatment of Alzheimer's disease: Evidence
from animal models. Int J Mol Sci. 18:25042017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Alim I, Caulfield JT, Chen Y, Swarup V,
Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie
EJ, et al: Selenium drives a transcriptional adaptive program to
block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li Q, Han X, Lan X, Gao Y, Wan J, Durham
F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal
ferroptosis protects hemorrhagic brain. JCI insight. 2:e907772017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ikawa T, Sato M, Oh-Hashi K, Furuta K and
Hirata Y: Oxindole-curcumin hybrid compound enhances the
transcription of γ-glutamylcysteine ligase. Eur J Pharmacol.
896:1738982021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Deepmala, Slattery J, Kumar N, Delhey L,
Berk M, Dean O, Spielholz C and Frye R: Clinical trials of
N-acetylcysteine in psychiatry and neurology: A systematic review.
Neurosci Biobehav Rev. 55:294–321. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hinman A, Holst CR, Latham JC, Bruegger
JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby
AH, et al: Vitamin E hydroquinone is an endogenous regulator of
ferroptosis via redox control of 15-lipoxygenase. PLoS One.
13:e02013692018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ashraf A and So PW: Spotlight on
ferroptosis: Iron-dependent cell death in Alzheimer's disease.
Front Aging Neurosci. 12:1962020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kryscio RJ, Abner EL, Caban-Holt A, Lovell
M, Goodman P, Darke AK, Yee M, Crowley J and Schmitt FA:
Association of antioxidant supplement use and dementia in the
prevention of Alzheimer's disease by vitamin E and selenium trial
(PREADViSE). JAMA Neurol. 74:567–573. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Conrad M and Proneth B: Selenium: Tracing
another essential element of ferroptotic cell death. Cell Chem
Biol. 27:409–419. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ingold I, Berndt C, Schmitt S, Doll S,
Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T,
et al: Selenium utilization by GPX4 is required to prevent
hydroperoxide-induced ferroptosis. Cell. 172:409–422. e212018.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
R Cardoso B, Hare DJ, Lind M, McLean CA,
Volitakis I, Laws SM, Masters CL, Bush AI and Roberts BR: The APOE
ε4 allele is associated with lower selenium levels in the brain:
Implications for Alzheimer's disease. ACS Chem Neurosci.
8:1459–1464. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman
M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and
Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell
death in diverse disease models. J Am Chem Soc. 136:4551–4556.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei
J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for
protection against cardiomyopathy. Proc Natl Acad Sci USA.
116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Miotto G, Rossetto M, Di Paolo ML, Orian
L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin
M, Zennaro L, et al: Insight into the mechanism of ferroptosis
inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Asano M, Yamasaki K, Yamauchi T, Terui T
and Aiba S: Epidermal iron metabolism for iron salvage. J Dermatol
Sci. 87:101–109. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kalyanaraman B: NAC, NAC, Knockin' on
Heaven's door: Interpreting the mechanism of action of
N-acetylcysteine in tumor and immune cells. Redox Biol.
57:1024972022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M,
Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell
proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kerins MJ and Ooi A: The roles of NRF2 in
modulating cellular iron homeostasis. Antioxid Redox Signal.
29:1756–1773. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Rojo de la Vega M, Chapman E and Zhang DD:
NRF2 and the Hallmarks of cancer. Cancer Cell. 34:21–43. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hara Y, McKeehan N, Dacks PA and Fillit
HM: Evaluation of the neuroprotective potential of N-acetylcysteine
for prevention and treatment of cognitive aging and dementia. J
Prev Alzheimers Dis. 4:201–206. 2017.PubMed/NCBI
|
|
121
|
Pocernich CB, La Fontaine M and
Butterfield DA: In-vivo glutathione elevation protects against
hydroxyl free radical-induced protein oxidation in rat brain.
Neurochem Int. 36:185–191. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Koppal T, Drake J and Butterfield DA: In
vivo modulation of rodent glutathione and its role in
peroxynitrite-induced neocortical synaptosomal membrane protein
damage. Biochim Biophys Acta. 1453:407–411. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Pocernich CB, Cardin AL, Racine CL,
Lauderback CM and Butterfield DA: Glutathione elevation and its
protective role in acrolein-induced protein damage in synaptosomal
membranes: Relevance to brain lipid peroxidation in
neurodegenerative disease. Neurochem Int. 39:141–149. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Prasad S, Tyagi AK and Aggarwal BB: Recent
developments in delivery, bioavailability, absorption and
metabolism of curcumin: the golden pigment from golden spice.
Cancer Res Treat. 46:2–18. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Wei Z, Shaohuan Q, Pinfang K and Chao S:
Curcumin attenuates ferroptosis-induced myocardial injury in
diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther.
2022:31597172022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hirata Y, Ito Y, Takashima M, Yagyu K,
Oh-Hashi K, Suzuki H, Ono K, Furuta K and Sawada M: novel
oxindole-curcumin hybrid compound for antioxidative stress and
neuroprotection. ACS Chem Neurosci. 11:76–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hirata Y, Tsunekawa Y, Takahashi M,
Oh-Hashi K, Kawaguchi K, Hayazaki M, Watanabe M, Koga KI, Hattori
Y, Takemori H and Furuta K: Identification of novel neuroprotective
N, N-dimethylaniline derivatives that prevent oxytosis/ferroptosis
and localize to late endosomes and lysosomes. Free Radic Biol Med.
174:225–235. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hirata Y, Okazaki R, Sato M, Oh-Hashi K,
Takemori H and Furuta K: Effect of ferroptosis inhibitors
oxindole-curcumin hybrid compound and N, N-dimethylaniline
derivatives on rotenone-induced oxidative stress. Eur J Pharmacol.
928:1751192022. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Friedmann Angeli JP, Schneider M, Proneth
B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch
A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator
Gpx4 triggers acute renal failure in mice. Nat Cell Biol.
16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Li Y, Sun M, Cao F, Chen Y, Zhang L, Li H,
Cao J, Song J, Ma Y, Mi W and Zhang X: The ferroptosis inhibitor
liproxstatin-1 ameliorates LPS-induced cognitive impairment in
mice. Nutrients. 14:45992022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y,
Wang X, Ning GZ, Kong XH, Liu C, Yao X and Feng SQ: Liproxstatin-1
is an effective inhibitor of oligodendrocyte ferroptosis induced by
inhibition of glutathione peroxidase 4. Neural Regen Res.
16:561–566. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Singh VK, Beattie LA and Seed TM: Vitamin
E: Tocopherols and tocotrienols as potential radiation
countermeasures. J Radiat Res. 54:973–988. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Angeli JPF, Shah R, Pratt DA and Conrad M:
Ferroptosis inhibition: mechanisms and opportunities. Trends
Pharmacol Sci. 38:489–498. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M,
Tian J, Hoffmann PR, Xu HX, Ni JZ and Song GL: Selenium restores
synaptic deficits by modulating NMDA receptors and selenoprotein K
in an Alzheimer's disease model. Antioxid Redox Signal. 35:863–884.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bao C, Liu C, Liu Q, Hua L, Hu J, Li Z and
Xu S: Liproxstatin-1 alleviates LPS/IL-13-induced bronchial
epithelial cell injury and neutrophilic asthma in mice by
inhibiting ferroptosis. Int Immunopharmacol. 109:1087702022.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang
X, Wang S, Cui H, Lin P, Zhou G, et al: Inhibition of ferroptosis
and iron accumulation alleviates pulmonary fibrosis in a bleomycin
model. Redox Biol. 57:1025092022. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Li Z, Lu Y, Zhen Y, Jin W, Ma X, Yuan Z,
Liu B, Zhou XL and Zhang L: Avicularin inhibits ferroptosis and
improves cognitive impairments in Alzheimer's disease by modulating
the NOX4/Nrf2 axis. Phytomedicine. 135:1562092024. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wu Y, Wei M, Wang M, Guo M, Yu H, Chen Y,
Xu T and Zhou Y: Schisandra total lignans ameliorate neuronal
ferroptosis in 3×Tg-AD mice via regulating NADK/NADPH/GSH pathway.
Phytomedicine. 140:1566122025. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Li X, Chen J, Feng W, Wang C, Chen M, Li
Y, Chen J, Liu X, Liu Q and Tian J: Berberine ameliorates iron
levels and ferroptosis in the brain of 3 × Tg-AD mice.
Phytomedicine. 118:1549622023. View Article : Google Scholar : PubMed/NCBI
|