|
1
|
Mittal P and Roberts CWM: The SWI/SNF
complex in cancer-biology, biomarkers and therapy. Nat Rev Clin
Oncol. 17:435–448. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kadoch C, Hargreaves DC, Hodges C, Elias
L, Ho L, Ranish J and Crabtree GR: Proteomic and bioinformatic
analysis of mammalian SWI/SNF complexes identifies extensive roles
in human malignancy. Nat Genet. 45:592–601. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mathur R: ARID1A loss in cancer: Towards a
mechanistic understanding. Pharmacol Ther. 190:15–23. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wilson BG and Roberts CWM: SWI/SNF
nucleosome remodellers and cancer. Nat Rev Cancer. 11:481–492.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Arnold M, Abnet CC, Neale RE, Vignat J,
Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major
types of gastrointestinal cancer. Gastroenterology.
159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhan T, Betge J, Schulte N, Dreikhausen L,
Hirth M, Li M, Weidner P, Leipertz A, Teufel A and Ebert MP:
Digestive cancers: Mechanisms, therapeutics and management. Signal
Transduct Target Ther. 10:242025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Eeftens JM, Kapoor M, Michieletto D and
Brangwynne CP: Polycomb condensates can promote epigenetic marks
but are not required for sustained chromatin compaction. Nat
Commun. 12:58882021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Braun SMG, Petrova R, Tang J, Krokhotin A,
Miller EL, Tang Y, Panagiotakos G and Crabtree GR: BAF subunit
switching regulates chromatin accessibility to control cell cycle
exit in the developing mammalian cortex. Genes Dev. 35:335–353.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tamkun JW, Deuring R, Scott MP, Kissinger
M, Pattatucci AM, Kaufman TC and Kennison JA: brahma: A regulator
of Drosophila homeotic genes structurally related to the yeast
transcriptional activator SNF2/SWI2. Cell. 68:561–572. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kadoch C, Williams RT, Calarco JP, Miller
EL, Weber CM, Braun SM, Pulice JL, Chory EJ and Crabtree GR:
Dynamics of BAF-polycomb complex opposition on heterochromatin in
normal and oncogenic states. Nat Genet. 49:213–222. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Weber CM, Hafner A, Kirkland JG, Braun
SMG, Stanton BZ, Boettiger AN and Crabtree GR: mSWI/SNF promotes
polycomb repression both directly and through genome-wide
redistribution. Nat Struct Mol Biol. 28:501–511. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Helming KC, Wang X and Roberts CWM:
Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell.
26:309–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ho L, Ronan JL, Wu J, Staahl BT, Chen L,
Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR: An
embryonic stem cell chromatin remodeling complex, esBAF, is
essential for embryonic stem cell self-renewal and pluripotency.
Proc Natl Acad Sci USA. 106:5181–5186. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Singh AP and Archer TK: Analysis of the
SWI/SNF chromatin-remodeling complex during early heart development
and BAF250a repression cardiac gene transcription during P19 cell
differentiation. Nucleic Acids Res. 42:2958–2975. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou J, Zhang M, Fang H, El-Mounayri O,
Rodenberg JM, Imbalzano AN and Herring BP: The SWI/SNF chromatin
remodeling complex regulates myocardin-induced smooth
muscle-specific gene expression. Arterioscler Thromb Vasc Biol.
29:921–928. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Joliot V, Ait-Mohamed O, Battisti V,
Pontis J, Philipot O, Robin P, Ito H and Ait-Si-Ali S: The SWI/SNF
subunit/tumor suppressor BAF47/INI1 is essential in cell cycle
arrest upon skeletal muscle terminal differentiation. PLoS One.
9:e1088582014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu PP, Lu SP, Li X, Tang GB, Liu X, Dai
SK, Jiao LF, Lin XW, Li XG, Hu B, et al: Abnormal chromatin
remodeling caused by ARID1A deletion leads to malformation of the
dentate gyrus. Cell Death Differ. 30:2187–2199. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang X, Werneck MBF, Wilson BG, Kim HJ,
Kluk MJ, Thom CS, Wischhusen JW, Evans JA, Jesneck JL, Nguyen P, et
al: TCR-dependent transformation of mature memory phenotype T cells
in mice. J Clin Invest. 121:3834–3845. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chang B, Sheng W, Wang L, Zhu X, Tan C, Ni
S, Weng W, Huang D and Wang J: SWI/SNF complex-deficient
undifferentiated carcinoma of the gastrointestinal tract:
Clinicopathologic study of 30 cases with an emphasis on variable
morphology, immune features, and the prognostic significance of
different SMARCA4 and SMARCA2 subunit deficiencies. Am J Surg
Pathol. 46:889–906. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Araujo LH, Timmers C, Bell EH, Shilo K,
Lammers PE, Zhao W, Natarajan TG, Miller CJ, Zhang J, Yilmaz AS, et
al: Genomic characterization of non-small-cell lung cancer in
african americans by targeted massively parallel sequencing. J Clin
Oncol. 33:1966–1973. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
St Pierre R, Collings CK, Samé Guerra DD,
Widmer CJ, Bolonduro O, Mashtalir N, Sankar A, Liang Y, Bi WL,
Gerkes EH, et al: SMARCE1 deficiency generates a targetable
mSWI/SNF dependency in clear cell meningioma. Nat Genet.
54:861–873. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nakayama RT, Pulice JL, Valencia AM,
McBride MJ, McKenzie ZM, Gillespie MA, Ku WL, Teng M, Cui K,
Williams RT, et al: SMARCB1 is required for widespread BAF
complex-mediated activation of enhancers and bivalent promoters.
Nat Genet. 49:1613–1623. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dermawan JK, Singer S, Tap WD, Nacev BA,
Chi P, Wexler LH, Ortiz MV, Gounder M and Antonescu CR: The genetic
landscape of SMARCB1 alterations in SMARCB1-deficient spectrum of
mesenchymal neoplasms. Mod Pathol. 35:1900–1909. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jackson EM, Sievert AJ, Gai X, Hakonarson
H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH and Biegel JA:
Genomic analysis using high-density single nucleotide
polymorphism-based oligonucleotide arrays and multiplex
ligation-dependent probe amplification provides a comprehensive
analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer
Res. 15:1923–1930. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schaefer IM, Dong F, Garcia EP, Fletcher
CDM and Jo VY: Recurrent SMARCB1 inactivation in epithelioid
malignant peripheral nerve sheath tumors. Am J Surg Pathol.
43:835–843. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
He S, Wu Z, Tian Y, Yu Z, Yu J, Wang X, Li
J, Liu B and Xu Y: Structure of nucleosome-bound human BAF complex.
Science. 367:875–881. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fu W, Yu Y, Shu J, Yu Z, Zhong Y, Zhu T,
Zhang Z, Liang Z, Cui Y, Chen C and Li C: Organization, genomic
targeting, and assembly of three distinct SWI/SNF chromatin
remodeling complexes in Arabidopsis. Plant Cell. 35:2464–2483.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hansen SL, Larsen HL, Pikkupeura LM,
Maciag G, Guiu J, Müller I, Clement DL, Mueller C, Johansen JV,
Helin K, et al: An organoid-based CRISPR-Cas9 screen for regulators
of intestinal epithelial maturation and cell fate. Sci Adv.
9:eadg40552023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu W, Wang Z, Liu S, Zhang X, Cao X and
Jiang M: RNF138 inhibits late inflammatory gene transcription
through degradation of SMARCC1 of the SWI/SNF complex. Cell Rep.
42:1120972023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Priam P, Krasteva V, Rousseau P, D'Angelo
G, Gaboury L, Sauvageau G and Lessard JA: SMARCD2 subunit of
SWI/SNF chromatin-remodeling complexes mediates granulopoiesis
through a CEBPɛ dependent mechanism. Nat Genet. 49:753–764. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Witzel M, Petersheim D, Fan Y, Bahrami E,
Racek T, Rohlfs M, Puchałka J, Mertes C, Gagneur J, Ziegenhain C,
et al: Chromatin-remodeling factor SMARCD2 regulates
transcriptional networks controlling differentiation of neutrophil
granulocytes. Nat Genet. 49:742–752. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mardinian K, Adashek JJ, Botta GP, Kato S
and Kurzrock R: SMARCA4: Implications of an altered
chromatin-remodeling gene for cancer development and therapy. Mol
Cancer Ther. 20:2341–2351. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Herold N, Schmolling J, Ernst C, Ataseven
B, Blümcke B, Schömig-Markiefka B, Heikaus S, Göhring UJ, Engel C,
Lampe B, et al: Pathogenic germline variants in SMARCA4 and further
cancer predisposition genes in early onset ovarian cancer. Cancer
Med. 12:15256–15260. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ramos P, Karnezis AN, Craig DW, Sekulic A,
Russell ML, Hendricks WP, Corneveaux JJ, Barrett MT, Shumansky K,
Yang Y, et al: Small cell carcinoma of the ovary, hypercalcemic
type, displays frequent inactivating germline and somatic mutations
in SMARCA4. Nat Genet. 46:427–429. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Glaros S, Cirrincione GM, Muchardt C,
Kleer CG, Michael CW and Reisman D: The reversible epigenetic
silencing of BRM: Implications for clinical targeted therapy.
Oncogene. 26:7058–7066. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Reichl KD, Lee ECY and Gopalsamy A:
Synthetic lethality: Targeting SMARCA2 ATPase in SMARCA4-deficient
tumors-a review of patent literature from 2019–30 June 2023. Expert
Opin Ther Pat. 34:159–169. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Patil A, Strom AR, Paulo JA, Collings CK,
Ruff KM, Shinn MK, Sankar A, Cervantes KS, Wauer T, St Laurent JD,
et al: A disordered region controls cBAF activity via condensation
and partner recruitment. Cell. 186:4936–4955.e26. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kelso TWR, Porter DK, Amaral ML, Shokhirev
MN, Benner C and Hargreaves DC: Chromatin accessibility underlies
synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers.
Elife. 6:e305062017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim JY, Park CK, Noh S, Cheong JH, Noh SH
and Kim H: Prognostic significance of ARID1A expression patterns
varies with molecular subtype in advanced gastric cancer. Gut
Liver. 17:753–765. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chandler RL, Brennan J, Schisler JC,
Serber D, Patterson C and Magnuson T: ARID1a-DNA interactions are
required for promoter occupancy by SWI/SNF. Mol Cell Biol.
33:265–280. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Reddy D, Bhattacharya S, Levy M, Zhang Y,
Gogol M, Li H, Florens L and Workman JL: Paraspeckles interact with
SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO
Rep. 24:e553452023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bieluszewski T, Prakash S, Roulé T and
Wagner D: The role and activity of SWI/SNF chromatin remodelers.
Annu Rev Plant Biol. 74:139–163. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Clapier CR, Iwasa J, Cairns BR and
Peterson CL: Mechanisms of action and regulation of ATP-dependent
chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 18:407–422.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mashtalir N, Dao HT, Sankar A, Liu H,
Corin AJ, Bagert JD, Ge EJ, D'Avino AR, Filipovski M, Michel BC, et
al: Chromatin landscape signals differentially dictate the
activities of mSWI/SNF family complexes. Science. 373:306–315.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ye Y, Wu H, Chen K, Clapier CR, Verma N,
Zhang W, Deng H, Cairns BR, Gao N and Chen Z: Structure of the RSC
complex bound to the nucleosome. Science. 366:838–843. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Agaimy A, Daum O, Märkl B, Lichtmannegger
I, Michal M and Hartmann A: SWI/SNF complex-deficient
undifferentiated/rhabdoid carcinomas of the gastrointestinal tract:
A series of 13 cases highlighting mutually exclusive loss of
SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and
SMARCA2. Am J Surg Pathol. 40:544–553. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Agaimy A, Rau TT, Hartmann A and Stoehr R:
SMARCB1 (INI1)-negative rhabdoid carcinomas of the gastrointestinal
tract: Clinicopathologic and molecular study of a highly aggressive
variant with literature review. Am J Surg Pathol. 38:910–920. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xu J and Chi Z: Esophageal carcinoma with
SMARCA4 mutation: A narrative review for this rare entity. Transl
Gastroenterol Hepatol. 9:242024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Neil AJ, Zhao L, Isidro RA, Srivastava A,
Cleary JM and Dong F: SMARCA4 mutations in carcinomas of the
esophagus, esophagogastric junction, and stomach. Mod Pathol.
36:1001832023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schoenfeld AJ, Bandlamudi C, Lavery JA,
Montecalvo J, Namakydoust A, Rizvi H, Egger J, Concepcion CP, Paul
S, Arcila ME, et al: The genomic landscape of SMARCA4 alterations
and associations with outcomes in patients with lung cancer. Clin
Cancer Res. 26:5701–5708. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Schallenberg S, Bork J, Essakly A, Alakus
H, Buettner R, Hillmer AM, Bruns C, Schroeder W, Zander T, Loeser
H, et al: Loss of the SWI/SNF-ATPase subunit members SMARCF1
(ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in
oesophageal adenocarcinoma. BMC Cancer. 20:122020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Huang SC, Ng KF, Chang IY, Chang CJ, Chao
YC, Chang SC, Chen MC, Yeh TS and Chen TC: The clinicopathological
significance of SWI/SNF alterations in gastric cancer is associated
with the molecular subtypes. PLoS One. 16:e02453562021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kohlruss M, Grosser B, Krenauer M,
Slotta-Huspenina J, Jesinghaus M, Blank S, Novotny A, Reiche M,
Schmidt T, Ismani L, et al: Prognostic implication of molecular
subtypes and response to neoadjuvant chemotherapy in 760 gastric
carcinomas: Role of Epstein-Barr virus infection and high- and
low-microsatellite instability. J Pathol Clin Res. 5:227–239. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang SC, Ng KF, Yeh TS, Cheng CT, Lin JS,
Liu YJ, Chuang HC and Chen TC: Subtraction of Epstein-Barr virus
and microsatellite instability genotypes from the Lauren
histotypes: Combined molecular and histologic subtyping with
clinicopathological and prognostic significance validated in a
cohort of 1,248 cases. Int J Cancer. 145:3218–3230. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gullo I, Carvalho J, Martins D, Lemos D,
Monteiro AR, Ferreira M, Das K, Tan P, Oliveira C, Carneiro F and
Oliveira P: The Transcriptomic Landscape of Gastric cancer:
Insights into Epstein-Barr virus infected and microsatellite
unstable tumors. Int J Mol Sci. 19:20792018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun M, Gu Y, Fang H, Shao F, Lin C, Zhang
H, Li H, He H, Li R, Wang J, et al: Clinical outcome and molecular
landscape of patients with ARID1A-loss gastric cancer. Cancer Sci.
115:905–915. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang X, Zhang Y, Zhang Q, Lu M, Chen Y,
Zhang X and Zhang P: Role of AT-rich interaction domain 1A in
gastric cancer immunotherapy: Preclinical and clinical
perspectives. J Cell Mol Med. 28:e180632024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge
Z, Nagel ZD, Zou J, Wang C, Kapoor P, et al: ARID1A deficiency
promotes mutability and potentiates therapeutic antitumor immunity
unleashed by immune checkpoint blockade. Nat Med. 24:556–562. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu S, Cao X and Wu S: High expression of
SMARCC1 predicts poor prognosis in gastric cancer patients. Am J
Cancer Res. 12:4428–4438. 2022.PubMed/NCBI
|
|
60
|
Huang SC, Ng KF, Yeh TS, Cheng CT, Chen
MC, Chao YC, Chuang HC, Liu YJ and Chen TC: The clinicopathological
and molecular analysis of gastric cancer with altered SMARCA4
expression. Histopathology. 77:250–261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang Z, Li Q, Sun S, Li Z, Cui Z, Liu Q,
Zhang Y, Xiong S and Zhang S: Expression of SMARCA2 and SMARCA4 in
gastric adenocarcinoma and construction of a nomogram prognostic
model. Int J Clin Oncol. 28:1487–1500. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Takada Y, Fukuda A, Chiba T and Seno H:
Brg1 plays an essential role in development and homeostasis of the
duodenum through regulation of Notch signaling. Development.
143:3532–3539. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Qi X and Qiu J, Chang J, Ji Y, Yang Q, Cui
G, Sun L, Chai Q, Qin J and Qiu J: Correction: Brg1 restrains the
pro-inflammatory properties of ILC3s and modulates intestinal
immunity. Mucosal Immunol. 14:2772021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kraemer M, Zander T, Alakus H, Buettner R,
Lyu SI, Simon AG, Schroeder W, Bruns CJ and Quaas A: Fetal gut
cell-like differentiation in esophageal adenocarcinoma defines a
rare tumor subtype with therapeutically relevant claudin-6
positivity and SWI/SNF gene alteration. Sci Rep. 14:134742024.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Agaimy A, Daum O, Michal M, Schmidt MW,
Stoehr R, Hartmann A and Lauwers GY: Undifferentiated large
cell/rhabdoid carcinoma presenting in the intestines of patients
with concurrent or recent non-small cell lung cancer (NSCLC):
Clinicopathologic and molecular analysis of 14 cases indicates an
unusual pattern of dedifferentiated metastases. Virchows Arch.
479:157–167. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Guichard C, Amaddeo G, Imbeaud S, Ladeiro
Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M,
Degos F, et al: Integrated analysis of somatic mutations and focal
copy-number changes identifies key genes and pathways in
hepatocellular carcinoma. Nat Genet. 44:694–698. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang FK, Ni QZ, Wang K, Cao HJ, Guan DX,
Zhang EB, Ma N, Wang YK, Zheng QW, Xu S, et al: Targeting
USP9X-AMPK axis in ARID1A-deficient hepatocellular carcinoma. Cell
Mol Gastroenterol Hepatol. 14:101–127. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang L, Deng CH, Luo Q, Su XB, Shang XY,
Song SJ, Cheng S, Qu YL, Zou X, Shi Y, et al: Inhibition of Arid1a
increases stem/progenitor cell-like properties of liver cancer.
Cancer Lett. 546:2158692022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang S, Zhou YF, Cao J, Burley SK, Wang
HY and Zheng XFS: mTORC1 promotes ARID1A degradation and oncogenic
chromatin remodeling in hepatocellular carcinoma. Cancer Res.
81:5652–5665. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shang XY, Shi Y, He DD, Wang L, Luo Q,
Deng CH, Qu YL, Wang N and Han ZG: ARID1A deficiency weakens
BRG1-RAD21 interaction that jeopardizes chromatin compactness and
drives liver cancer cell metastasis. Cell Death Dis. 12:9902021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yoodee S, Peerapen P, Plumworasawat S and
Thongboonkerd V: ARID1A knockdown in human endothelial cells
directly induces angiogenesis by regulating angiopoietin-2
secretion and endothelial cell activity. Int J Biol Macromol.
180:1–13. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li J, Fu Y, Zhang H and Ma H: Molecular
and pathological landscape of the AT-rich interaction domain 1A
(ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract.
266:1557632025. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang H, Cao HJ, Ma N, Bao WD, Wang JJ,
Chen TW, Zhang EB, Yuan YM, Ni QZ, Zhang FK, et al: Chromatin
remodeling factor ARID2 suppresses hepatocellular carcinoma
metastasis via DNMT1-Snail axis. Proc Natl Acad Sci USA.
117:4770–4780. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oba A, Shimada S, Akiyama Y, Nishikawaji
T, Mogushi K, Ito H, Matsumura S, Aihara A, Mitsunori Y, Ban D, et
al: ARID2 modulates DNA damage response in human hepatocellular
carcinoma cells. J Hepatol. 66:942–951. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hong SH, Son KH, Ha SY, Wee TI, Choi SK,
Won JE, Han HD, Ro Y, Park YM, Eun JW, et al: Nucleoporin 210
serves a key scaffold for SMARCB1 in liver cancer. Cancer Res.
81:356–370. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L,
Gopal P, Zhu M, Nassour I, Chuang JC, et al: Arid1a Has
context-dependent oncogenic and tumor suppressor functions in liver
cancer. Cancer Cell. 32:574–589.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li Y, Yang X, Zhu W, Xu Y, Ma J, He C and
Wang F: SWI/SNF complex gene variations are associated with a
higher tumor mutational burden and a better response to immune
checkpoint inhibitor treatment: A pan-cancer analysis of
next-generation sequencing data corresponding to 4591 cases. Cancer
Cell Int. 22:3472022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Papoutsoglou P, Pineau R, Leroux R, Louis
C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M
and Coulouarn C: TGFβ-induced long non-coding RNA LINC00313
activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep.
25:1022–1054. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Luchini C, Robertson SA, Hong SM,
Felsenstein M, Anders RA, Pea A, Nottegar A, Veronese N, He J,
Weiss MJ, et al: PBRM1 loss is a late event during the development
of cholangiocarcinoma. Histopathology. 71:375–382. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hsu M, Sasaki M, Igarashi S, Sato Y and
Nakanuma Y: KRAS and GNAS mutations and p53 overexpression in
biliary intraepithelial neoplasia and intrahepatic
cholangiocarcinomas. Cancer. 119:1669–1674. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sasaki M, Matsubara T, Nitta T, Sato Y and
Nakanuma Y: GNAS and KRAS mutations are common in intraductal
papillary neoplasms of the bile duct. PLoS One. 8:e817062013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ross JS, Wang K, Gay L, Al-Rohil R, Rand
JV, Jones DM, Lee HJ, Sheehan CE, Otto GA, Palmer G, et al: New
routes to targeted therapy of intrahepatic cholangiocarcinomas
revealed by next-generation sequencing. Oncologist. 19:235–242.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Churi CR, Shroff R, Wang Y, Rashid A, Kang
HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, et al:
Mutation profiling in cholangiocarcinoma: Prognostic and
therapeutic implications. PLoS One. 9:e1153832014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sasaki M, Nitta T, Sato Y and Nakanuma Y:
Loss of ARID1A expression presents a novel pathway of
carcinogenesis in biliary carcinomas. Am J Clin Pathol.
145:815–825. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Guo B, Friedland SC, Alexander W, Myers
JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj
D, Huber AR, et al: Arid1a mutation suppresses TGF-β signaling and
induces cholangiocarcinoma. Cell Rep. 40:1112532022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bailey P, Chang DK, Nones K, Johns AL,
Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC,
et al: Genomic analyses identify molecular subtypes of pancreatic
cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang SC, Nassour I, Xiao S, Zhang S, Luo
X, Lee J, Li L, Sun X, Nguyen LH, Chuang JC, et al: SWI/SNF
component ARID1A restrains pancreatic neoplasia formation. Gut.
68:1259–1270. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yamamoto T, Kohashi K, Yamada Y, Kawata J,
Sakihama K, Matsuda R, Koga Y, Aishima S, Nakamura M and Oda Y:
Relationship between cellular morphology and abnormality of SWI/SNF
complex subunits in pancreatic undifferentiated carcinoma. J Cancer
Res Clin Oncol. 148:2945–2957. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yavas A, Ozcan K, Adsay NV, Balci S,
Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini
A, et al: SWI/SNF complex-deficient undifferentiated carcinoma of
the pancreas: Clinicopathologic and genomic analysis. Mod Pathol.
37:1005852024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang W, Friedland SC, Guo B, O'Dell MR,
Alexander WB, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Myers
JR, Ashton JM, et al: ARID1A, a SWI/SNF subunit, is critical to
acinar cell homeostasis and regeneration and is a barrier to
transformation and epithelial-mesenchymal transition in the
pancreas. Gut. 68:1245–1258. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Davidson RK, Wu W, Kanojia S, George RM,
Huter K, Sandoval K, Osmulski M, Casey N and Spaeth JM: The SWI/SNF
chromatin remodelling complex regulates pancreatic endocrine cell
expansion and differentiation in mice in vivo. Diabetologia.
67:2275–2288. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chakrabarty S, Varghese VK, Sahu P,
Jayaram P, Shivakumar BM, Pai CG and Satyamoorthy K: Targeted
sequencing-based analyses of candidate gene variants in ulcerative
colitis-associated colorectal neoplasia. Br J Cancer. 117:136–143.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu M, Sun T, Li N, Peng J, Fu D, Li W, Li
L and Gao WQ: BRG1 attenuates colonic inflammation and
tumorigenesis through autophagy-dependent oxidative stress
sequestration. Nat Commun. 10:46142019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yoshikawa T, Fukuda A, Omatsu M, Namikawa
M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al:
JNK pathway plays a critical role for expansion of human colorectal
cancer in the context of BRG1 suppression. Cancer Sci.
113:3417–3427. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang
Y, Yang D, Li Q, Xu P, Hu R, et al: PRMT1-mediated H4R3me2a
recruits SMARCA4 to promote colorectal cancer progression by
enhancing EGFR signaling. Genome Med. 13:582021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lan J, Li H, Luo X, Hu J and Wang G: BRG1
promotes VEGF-A expression and angiogenesis in human colorectal
cancer cells. Exp Cell Res. 360:236–242. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Naidu SR, Love IM, Imbalzano AN, Grossman
SR and Androphy EJ: The SWI/SNF chromatin remodeling subunit BRG1
is a critical regulator of p53 necessary for proliferation of
malignant cells. Oncogene. 28:2492–2501. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yoshikawa T, Fukuda A, Omatsu M, Namikawa
M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al:
Brg1 is required to maintain colorectal cancer stem cells. J
Pathol. 255:257–269. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Spisak S, Chen D, Likasitwatanakul P, Doan
P, Li Z, Bala P, Vizkeleti L, Tisza V, De Silva P, Giannakis M, et
al: Identifying regulators of aberrant stem cell and
differentiation activity in colorectal cancer using a dual
endogenous reporter system. Nat Commun. 15:22302024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chen Y, Gao Z, Mohd-Ibrahim I, Yang H, Wu
L, Fu Y and Deng Y: Pan-cancer analyses of bromodomain containing 9
as a novel therapeutic target reveals its diagnostic, prognostic
potential and biological mechanism in human tumours. Clin Transl
Med. 14:e15432024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mathur R, Alver BH, San Roman AK, Wilson
BG, Wang X, Agoston AT, Park PJ, Shivdasani RA and Roberts CW:
ARID1A loss impairs enhancer-mediated gene regulation and drives
colon cancer in mice. Nat Genet. 49:296–302. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang K, Liu F, Muchu B, Deng J, Peng J, Xu
Y, Li F and Ouyang M: E3 ubiquitin ligase RNF180 mediates the
ALKBH5/SMARCA5 axis to promote colon inflammation and Th17/Treg
imbalance in ulcerative colitis mice. Arch Pharm Res. 47:645–658.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jin X, You L, Qiao J, Han W and Pan H:
Autophagy in colitis-associated colon cancer: Exploring its
potential role in reducing initiation and preventing IBD-related
CAC development. Autophagy. 20:242–258. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ahadi MS, Fuchs TL, Clarkson A, Sheen A,
Sioson L, Chou A and Gill AJ: Switch/sucrose-non-fermentable
(SWI/SNF) complex (SMARCA4, SMARCA2, INI1/SMARCB1)-deficient
colorectal carcinomas are strongly associated with microsatellite
instability: An incidence study in 4508 colorectal carcinomas.
Histopathology. 80:906–921. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhao S, Wu W, Jiang Z, Tang F, Ding L, Xu
W and Ruan L: Roles of ARID1A variations in colorectal cancer: A
collaborative review. Mol Med. 28:422022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tokunaga R, Xiu J, Goldberg RM, Philip PA,
Seeber A, Battaglin F, Arai H, Lo JH, Naseem M, Puccini A, et al:
The impact of ARID1A mutation on molecular characteristics in
colorectal cancer. Eur J Cancer. 140:119–129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ehrenhöfer-Wölfer K, Puchner T, Schwarz C,
Rippka J, Blaha-Ostermann S, Strobl U, Hörmann A, Bader G, Kornigg
S, Zahn S, et al: SMARCA2-deficiency confers sensitivity to
targeted inhibition of SMARCA4 in esophageal squamous cell
carcinoma cell lines. Sci Rep. 9:116612019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He DD, Shang XY, Wang N, Wang GX, He KY,
Wang L and Han ZG: BRD4 inhibition induces synthetic lethality in
ARID2-deficient hepatocellular carcinoma by increasing DNA damage.
Oncogene. 41:1397–1409. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Feng M, Xu H, Zhou W and Pan Y: The BRD4
inhibitor JQ1 augments the antitumor efficacy of abemaciclib in
preclinical models of gastric carcinoma. J Exp Clin Cancer Res.
42:442023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wu C, Lyu J, Yang EJ, Liu Y, Zhang B and
Shim JS: Targeting AURKA-CDC25C axis to induce synthetic lethality
in ARID1A-deficient colorectal cancer cells. Nat Commun.
9:32122018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mandal J, Mandal P, Wang TL and Shih IM:
Treating ARID1A mutated cancers by harnessing synthetic lethality
and DNA damage response. J Biomed Sci. 29:712022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bitler BG, Aird KM, Garipov A, Li H,
Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM,
Conejo-Garcia JR, et al: Synthetic lethality by targeting EZH2
methyltransferase activity in ARID1A-mutated cancers. Nat Med.
21:231–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhu X, Fu Z, Chen SY, Ong D, Aceto G, Ho
R, Steinberger J, Monast A, Pilon V, Li E, et al: Alanine
supplementation exploits glutamine dependency induced by
SMARCA4/2-loss. Nat Commun. 14:28942023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang H, Huang C, Gordon J, Yu S, Morton
G, Childers W, Abou-Gharbia M, Zhang Y, Jelinek J and Issa JJ:
MC180295 is a highly potent and selective CDK9 inhibitor with
preclinical in vitro and in vivo efficacy in cancer. Clin
Epigenetics. 16:32024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhou W, Liu H, Yuan Z, Zundell J, Towers
M, Lin J, Lombardi S, Nie H, Murphy B, Yang T, et al: Targeting the
mevalonate pathway suppresses ARID1A-inactivated cancers by
promoting pyroptosis. Cancer Cell. 41:740–756.e10. 2023. View Article : Google Scholar : PubMed/NCBI
|