Role of the SWI/SNF complex in the development of digestive tumors (Review)
- Authors:
- Shihang Xue
- Haiting Yu
- Liuhai Zeng
- Minzhi Chen
-
Affiliations: Department of General Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo Fourth Hospital, Ningbo, Zhejiang 315700, P.R. China - Published online on: May 5, 2025 https://doi.org/10.3892/mmr.2025.13558
- Article Number: 193
This article is mentioned in:
Abstract
![]() |
Mittal P and Roberts CWM: The SWI/SNF complex in cancer-biology, biomarkers and therapy. Nat Rev Clin Oncol. 17:435–448. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J and Crabtree GR: Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 45:592–601. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mathur R: ARID1A loss in cancer: Towards a mechanistic understanding. Pharmacol Ther. 190:15–23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilson BG and Roberts CWM: SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 11:481–492. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A and Ebert MP: Digestive cancers: Mechanisms, therapeutics and management. Signal Transduct Target Ther. 10:242025. View Article : Google Scholar : PubMed/NCBI | |
Eeftens JM, Kapoor M, Michieletto D and Brangwynne CP: Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nat Commun. 12:58882021. View Article : Google Scholar : PubMed/NCBI | |
Braun SMG, Petrova R, Tang J, Krokhotin A, Miller EL, Tang Y, Panagiotakos G and Crabtree GR: BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes Dev. 35:335–353. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC and Kennison JA: brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 68:561–572. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SM, Pulice JL, Chory EJ and Crabtree GR: Dynamics of BAF-polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet. 49:213–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weber CM, Hafner A, Kirkland JG, Braun SMG, Stanton BZ, Boettiger AN and Crabtree GR: mSWI/SNF promotes polycomb repression both directly and through genome-wide redistribution. Nat Struct Mol Biol. 28:501–511. 2021. View Article : Google Scholar : PubMed/NCBI | |
Helming KC, Wang X and Roberts CWM: Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 26:309–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA. 106:5181–5186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh AP and Archer TK: Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res. 42:2958–2975. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang M, Fang H, El-Mounayri O, Rodenberg JM, Imbalzano AN and Herring BP: The SWI/SNF chromatin remodeling complex regulates myocardin-induced smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol. 29:921–928. 2009. View Article : Google Scholar : PubMed/NCBI | |
Joliot V, Ait-Mohamed O, Battisti V, Pontis J, Philipot O, Robin P, Ito H and Ait-Si-Ali S: The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation. PLoS One. 9:e1088582014. View Article : Google Scholar : PubMed/NCBI | |
Liu PP, Lu SP, Li X, Tang GB, Liu X, Dai SK, Jiao LF, Lin XW, Li XG, Hu B, et al: Abnormal chromatin remodeling caused by ARID1A deletion leads to malformation of the dentate gyrus. Cell Death Differ. 30:2187–2199. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Werneck MBF, Wilson BG, Kim HJ, Kluk MJ, Thom CS, Wischhusen JW, Evans JA, Jesneck JL, Nguyen P, et al: TCR-dependent transformation of mature memory phenotype T cells in mice. J Clin Invest. 121:3834–3845. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Sheng W, Wang L, Zhu X, Tan C, Ni S, Weng W, Huang D and Wang J: SWI/SNF complex-deficient undifferentiated carcinoma of the gastrointestinal tract: Clinicopathologic study of 30 cases with an emphasis on variable morphology, immune features, and the prognostic significance of different SMARCA4 and SMARCA2 subunit deficiencies. Am J Surg Pathol. 46:889–906. 2022. View Article : Google Scholar : PubMed/NCBI | |
Araujo LH, Timmers C, Bell EH, Shilo K, Lammers PE, Zhao W, Natarajan TG, Miller CJ, Zhang J, Yilmaz AS, et al: Genomic characterization of non-small-cell lung cancer in african americans by targeted massively parallel sequencing. J Clin Oncol. 33:1966–1973. 2015. View Article : Google Scholar : PubMed/NCBI | |
St Pierre R, Collings CK, Samé Guerra DD, Widmer CJ, Bolonduro O, Mashtalir N, Sankar A, Liang Y, Bi WL, Gerkes EH, et al: SMARCE1 deficiency generates a targetable mSWI/SNF dependency in clear cell meningioma. Nat Genet. 54:861–873. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nakayama RT, Pulice JL, Valencia AM, McBride MJ, McKenzie ZM, Gillespie MA, Ku WL, Teng M, Cui K, Williams RT, et al: SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet. 49:1613–1623. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dermawan JK, Singer S, Tap WD, Nacev BA, Chi P, Wexler LH, Ortiz MV, Gounder M and Antonescu CR: The genetic landscape of SMARCB1 alterations in SMARCB1-deficient spectrum of mesenchymal neoplasms. Mod Pathol. 35:1900–1909. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH and Biegel JA: Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res. 15:1923–1930. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schaefer IM, Dong F, Garcia EP, Fletcher CDM and Jo VY: Recurrent SMARCB1 inactivation in epithelioid malignant peripheral nerve sheath tumors. Am J Surg Pathol. 43:835–843. 2019. View Article : Google Scholar : PubMed/NCBI | |
He S, Wu Z, Tian Y, Yu Z, Yu J, Wang X, Li J, Liu B and Xu Y: Structure of nucleosome-bound human BAF complex. Science. 367:875–881. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu W, Yu Y, Shu J, Yu Z, Zhong Y, Zhu T, Zhang Z, Liang Z, Cui Y, Chen C and Li C: Organization, genomic targeting, and assembly of three distinct SWI/SNF chromatin remodeling complexes in Arabidopsis. Plant Cell. 35:2464–2483. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hansen SL, Larsen HL, Pikkupeura LM, Maciag G, Guiu J, Müller I, Clement DL, Mueller C, Johansen JV, Helin K, et al: An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate. Sci Adv. 9:eadg40552023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang Z, Liu S, Zhang X, Cao X and Jiang M: RNF138 inhibits late inflammatory gene transcription through degradation of SMARCC1 of the SWI/SNF complex. Cell Rep. 42:1120972023. View Article : Google Scholar : PubMed/NCBI | |
Priam P, Krasteva V, Rousseau P, D'Angelo G, Gaboury L, Sauvageau G and Lessard JA: SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPɛ dependent mechanism. Nat Genet. 49:753–764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, Puchałka J, Mertes C, Gagneur J, Ziegenhain C, et al: Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet. 49:742–752. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mardinian K, Adashek JJ, Botta GP, Kato S and Kurzrock R: SMARCA4: Implications of an altered chromatin-remodeling gene for cancer development and therapy. Mol Cancer Ther. 20:2341–2351. 2021. View Article : Google Scholar : PubMed/NCBI | |
Herold N, Schmolling J, Ernst C, Ataseven B, Blümcke B, Schömig-Markiefka B, Heikaus S, Göhring UJ, Engel C, Lampe B, et al: Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Med. 12:15256–15260. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP, Corneveaux JJ, Barrett MT, Shumansky K, Yang Y, et al: Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 46:427–429. 2014. View Article : Google Scholar : PubMed/NCBI | |
Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW and Reisman D: The reversible epigenetic silencing of BRM: Implications for clinical targeted therapy. Oncogene. 26:7058–7066. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reichl KD, Lee ECY and Gopalsamy A: Synthetic lethality: Targeting SMARCA2 ATPase in SMARCA4-deficient tumors-a review of patent literature from 2019–30 June 2023. Expert Opin Ther Pat. 34:159–169. 2024. View Article : Google Scholar : PubMed/NCBI | |
Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, Sankar A, Cervantes KS, Wauer T, St Laurent JD, et al: A disordered region controls cBAF activity via condensation and partner recruitment. Cell. 186:4936–4955.e26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kelso TWR, Porter DK, Amaral ML, Shokhirev MN, Benner C and Hargreaves DC: Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. Elife. 6:e305062017. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Park CK, Noh S, Cheong JH, Noh SH and Kim H: Prognostic significance of ARID1A expression patterns varies with molecular subtype in advanced gastric cancer. Gut Liver. 17:753–765. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C and Magnuson T: ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 33:265–280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L and Workman JL: Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep. 24:e553452023. View Article : Google Scholar : PubMed/NCBI | |
Bieluszewski T, Prakash S, Roulé T and Wagner D: The role and activity of SWI/SNF chromatin remodelers. Annu Rev Plant Biol. 74:139–163. 2023. View Article : Google Scholar : PubMed/NCBI | |
Clapier CR, Iwasa J, Cairns BR and Peterson CL: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 18:407–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mashtalir N, Dao HT, Sankar A, Liu H, Corin AJ, Bagert JD, Ge EJ, D'Avino AR, Filipovski M, Michel BC, et al: Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science. 373:306–315. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N and Chen Z: Structure of the RSC complex bound to the nucleosome. Science. 366:838–843. 2019. View Article : Google Scholar : PubMed/NCBI | |
Agaimy A, Daum O, Märkl B, Lichtmannegger I, Michal M and Hartmann A: SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: A series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 40:544–553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Agaimy A, Rau TT, Hartmann A and Stoehr R: SMARCB1 (INI1)-negative rhabdoid carcinomas of the gastrointestinal tract: Clinicopathologic and molecular study of a highly aggressive variant with literature review. Am J Surg Pathol. 38:910–920. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J and Chi Z: Esophageal carcinoma with SMARCA4 mutation: A narrative review for this rare entity. Transl Gastroenterol Hepatol. 9:242024. View Article : Google Scholar : PubMed/NCBI | |
Neil AJ, Zhao L, Isidro RA, Srivastava A, Cleary JM and Dong F: SMARCA4 mutations in carcinomas of the esophagus, esophagogastric junction, and stomach. Mod Pathol. 36:1001832023. View Article : Google Scholar : PubMed/NCBI | |
Schoenfeld AJ, Bandlamudi C, Lavery JA, Montecalvo J, Namakydoust A, Rizvi H, Egger J, Concepcion CP, Paul S, Arcila ME, et al: The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer. Clin Cancer Res. 26:5701–5708. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schallenberg S, Bork J, Essakly A, Alakus H, Buettner R, Hillmer AM, Bruns C, Schroeder W, Zander T, Loeser H, et al: Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma. BMC Cancer. 20:122020. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Ng KF, Chang IY, Chang CJ, Chao YC, Chang SC, Chen MC, Yeh TS and Chen TC: The clinicopathological significance of SWI/SNF alterations in gastric cancer is associated with the molecular subtypes. PLoS One. 16:e02453562021. View Article : Google Scholar : PubMed/NCBI | |
Kohlruss M, Grosser B, Krenauer M, Slotta-Huspenina J, Jesinghaus M, Blank S, Novotny A, Reiche M, Schmidt T, Ismani L, et al: Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein-Barr virus infection and high- and low-microsatellite instability. J Pathol Clin Res. 5:227–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Ng KF, Yeh TS, Cheng CT, Lin JS, Liu YJ, Chuang HC and Chen TC: Subtraction of Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1,248 cases. Int J Cancer. 145:3218–3230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gullo I, Carvalho J, Martins D, Lemos D, Monteiro AR, Ferreira M, Das K, Tan P, Oliveira C, Carneiro F and Oliveira P: The Transcriptomic Landscape of Gastric cancer: Insights into Epstein-Barr virus infected and microsatellite unstable tumors. Int J Mol Sci. 19:20792018. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Gu Y, Fang H, Shao F, Lin C, Zhang H, Li H, He H, Li R, Wang J, et al: Clinical outcome and molecular landscape of patients with ARID1A-loss gastric cancer. Cancer Sci. 115:905–915. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Y, Zhang Q, Lu M, Chen Y, Zhang X and Zhang P: Role of AT-rich interaction domain 1A in gastric cancer immunotherapy: Preclinical and clinical perspectives. J Cell Mol Med. 28:e180632024. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, Nagel ZD, Zou J, Wang C, Kapoor P, et al: ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 24:556–562. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cao X and Wu S: High expression of SMARCC1 predicts poor prognosis in gastric cancer patients. Am J Cancer Res. 12:4428–4438. 2022.PubMed/NCBI | |
Huang SC, Ng KF, Yeh TS, Cheng CT, Chen MC, Chao YC, Chuang HC, Liu YJ and Chen TC: The clinicopathological and molecular analysis of gastric cancer with altered SMARCA4 expression. Histopathology. 77:250–261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li Q, Sun S, Li Z, Cui Z, Liu Q, Zhang Y, Xiong S and Zhang S: Expression of SMARCA2 and SMARCA4 in gastric adenocarcinoma and construction of a nomogram prognostic model. Int J Clin Oncol. 28:1487–1500. 2023. View Article : Google Scholar : PubMed/NCBI | |
Takada Y, Fukuda A, Chiba T and Seno H: Brg1 plays an essential role in development and homeostasis of the duodenum through regulation of Notch signaling. Development. 143:3532–3539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi X and Qiu J, Chang J, Ji Y, Yang Q, Cui G, Sun L, Chai Q, Qin J and Qiu J: Correction: Brg1 restrains the pro-inflammatory properties of ILC3s and modulates intestinal immunity. Mucosal Immunol. 14:2772021. View Article : Google Scholar : PubMed/NCBI | |
Kraemer M, Zander T, Alakus H, Buettner R, Lyu SI, Simon AG, Schroeder W, Bruns CJ and Quaas A: Fetal gut cell-like differentiation in esophageal adenocarcinoma defines a rare tumor subtype with therapeutically relevant claudin-6 positivity and SWI/SNF gene alteration. Sci Rep. 14:134742024. View Article : Google Scholar : PubMed/NCBI | |
Agaimy A, Daum O, Michal M, Schmidt MW, Stoehr R, Hartmann A and Lauwers GY: Undifferentiated large cell/rhabdoid carcinoma presenting in the intestines of patients with concurrent or recent non-small cell lung cancer (NSCLC): Clinicopathologic and molecular analysis of 14 cases indicates an unusual pattern of dedifferentiated metastases. Virchows Arch. 479:157–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 44:694–698. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang FK, Ni QZ, Wang K, Cao HJ, Guan DX, Zhang EB, Ma N, Wang YK, Zheng QW, Xu S, et al: Targeting USP9X-AMPK axis in ARID1A-deficient hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 14:101–127. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Deng CH, Luo Q, Su XB, Shang XY, Song SJ, Cheng S, Qu YL, Zou X, Shi Y, et al: Inhibition of Arid1a increases stem/progenitor cell-like properties of liver cancer. Cancer Lett. 546:2158692022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhou YF, Cao J, Burley SK, Wang HY and Zheng XFS: mTORC1 promotes ARID1A degradation and oncogenic chromatin remodeling in hepatocellular carcinoma. Cancer Res. 81:5652–5665. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shang XY, Shi Y, He DD, Wang L, Luo Q, Deng CH, Qu YL, Wang N and Han ZG: ARID1A deficiency weakens BRG1-RAD21 interaction that jeopardizes chromatin compactness and drives liver cancer cell metastasis. Cell Death Dis. 12:9902021. View Article : Google Scholar : PubMed/NCBI | |
Yoodee S, Peerapen P, Plumworasawat S and Thongboonkerd V: ARID1A knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. Int J Biol Macromol. 180:1–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Fu Y, Zhang H and Ma H: Molecular and pathological landscape of the AT-rich interaction domain 1A (ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract. 266:1557632025. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Cao HJ, Ma N, Bao WD, Wang JJ, Chen TW, Zhang EB, Yuan YM, Ni QZ, Zhang FK, et al: Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci USA. 117:4770–4780. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oba A, Shimada S, Akiyama Y, Nishikawaji T, Mogushi K, Ito H, Matsumura S, Aihara A, Mitsunori Y, Ban D, et al: ARID2 modulates DNA damage response in human hepatocellular carcinoma cells. J Hepatol. 66:942–951. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hong SH, Son KH, Ha SY, Wee TI, Choi SK, Won JE, Han HD, Ro Y, Park YM, Eun JW, et al: Nucleoporin 210 serves a key scaffold for SMARCB1 in liver cancer. Cancer Res. 81:356–370. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, Gopal P, Zhu M, Nassour I, Chuang JC, et al: Arid1a Has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell. 32:574–589.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang X, Zhu W, Xu Y, Ma J, He C and Wang F: SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: A pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases. Cancer Cell Int. 22:3472022. View Article : Google Scholar : PubMed/NCBI | |
Papoutsoglou P, Pineau R, Leroux R, Louis C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M and Coulouarn C: TGFβ-induced long non-coding RNA LINC00313 activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep. 25:1022–1054. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luchini C, Robertson SA, Hong SM, Felsenstein M, Anders RA, Pea A, Nottegar A, Veronese N, He J, Weiss MJ, et al: PBRM1 loss is a late event during the development of cholangiocarcinoma. Histopathology. 71:375–382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hsu M, Sasaki M, Igarashi S, Sato Y and Nakanuma Y: KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer. 119:1669–1674. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sasaki M, Matsubara T, Nitta T, Sato Y and Nakanuma Y: GNAS and KRAS mutations are common in intraductal papillary neoplasms of the bile duct. PLoS One. 8:e817062013. View Article : Google Scholar : PubMed/NCBI | |
Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, Lee HJ, Sheehan CE, Otto GA, Palmer G, et al: New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 19:235–242. 2014. View Article : Google Scholar : PubMed/NCBI | |
Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, et al: Mutation profiling in cholangiocarcinoma: Prognostic and therapeutic implications. PLoS One. 9:e1153832014. View Article : Google Scholar : PubMed/NCBI | |
Sasaki M, Nitta T, Sato Y and Nakanuma Y: Loss of ARID1A expression presents a novel pathway of carcinogenesis in biliary carcinomas. Am J Clin Pathol. 145:815–825. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, et al: Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep. 40:1112532022. View Article : Google Scholar : PubMed/NCBI | |
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al: Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang SC, Nassour I, Xiao S, Zhang S, Luo X, Lee J, Li L, Sun X, Nguyen LH, Chuang JC, et al: SWI/SNF component ARID1A restrains pancreatic neoplasia formation. Gut. 68:1259–1270. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Kohashi K, Yamada Y, Kawata J, Sakihama K, Matsuda R, Koga Y, Aishima S, Nakamura M and Oda Y: Relationship between cellular morphology and abnormality of SWI/SNF complex subunits in pancreatic undifferentiated carcinoma. J Cancer Res Clin Oncol. 148:2945–2957. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yavas A, Ozcan K, Adsay NV, Balci S, Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini A, et al: SWI/SNF complex-deficient undifferentiated carcinoma of the pancreas: Clinicopathologic and genomic analysis. Mod Pathol. 37:1005852024. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Friedland SC, Guo B, O'Dell MR, Alexander WB, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Myers JR, Ashton JM, et al: ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 68:1245–1258. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davidson RK, Wu W, Kanojia S, George RM, Huter K, Sandoval K, Osmulski M, Casey N and Spaeth JM: The SWI/SNF chromatin remodelling complex regulates pancreatic endocrine cell expansion and differentiation in mice in vivo. Diabetologia. 67:2275–2288. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarty S, Varghese VK, Sahu P, Jayaram P, Shivakumar BM, Pai CG and Satyamoorthy K: Targeted sequencing-based analyses of candidate gene variants in ulcerative colitis-associated colorectal neoplasia. Br J Cancer. 117:136–143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Sun T, Li N, Peng J, Fu D, Li W, Li L and Gao WQ: BRG1 attenuates colonic inflammation and tumorigenesis through autophagy-dependent oxidative stress sequestration. Nat Commun. 10:46142019. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa T, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al: JNK pathway plays a critical role for expansion of human colorectal cancer in the context of BRG1 suppression. Cancer Sci. 113:3417–3427. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang Y, Yang D, Li Q, Xu P, Hu R, et al: PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med. 13:582021. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Li H, Luo X, Hu J and Wang G: BRG1 promotes VEGF-A expression and angiogenesis in human colorectal cancer cells. Exp Cell Res. 360:236–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Naidu SR, Love IM, Imbalzano AN, Grossman SR and Androphy EJ: The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene. 28:2492–2501. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa T, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, et al: Brg1 is required to maintain colorectal cancer stem cells. J Pathol. 255:257–269. 2021. View Article : Google Scholar : PubMed/NCBI | |
Spisak S, Chen D, Likasitwatanakul P, Doan P, Li Z, Bala P, Vizkeleti L, Tisza V, De Silva P, Giannakis M, et al: Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system. Nat Commun. 15:22302024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Gao Z, Mohd-Ibrahim I, Yang H, Wu L, Fu Y and Deng Y: Pan-cancer analyses of bromodomain containing 9 as a novel therapeutic target reveals its diagnostic, prognostic potential and biological mechanism in human tumours. Clin Transl Med. 14:e15432024. View Article : Google Scholar : PubMed/NCBI | |
Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, Park PJ, Shivdasani RA and Roberts CW: ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet. 49:296–302. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu F, Muchu B, Deng J, Peng J, Xu Y, Li F and Ouyang M: E3 ubiquitin ligase RNF180 mediates the ALKBH5/SMARCA5 axis to promote colon inflammation and Th17/Treg imbalance in ulcerative colitis mice. Arch Pharm Res. 47:645–658. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jin X, You L, Qiao J, Han W and Pan H: Autophagy in colitis-associated colon cancer: Exploring its potential role in reducing initiation and preventing IBD-related CAC development. Autophagy. 20:242–258. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ahadi MS, Fuchs TL, Clarkson A, Sheen A, Sioson L, Chou A and Gill AJ: Switch/sucrose-non-fermentable (SWI/SNF) complex (SMARCA4, SMARCA2, INI1/SMARCB1)-deficient colorectal carcinomas are strongly associated with microsatellite instability: An incidence study in 4508 colorectal carcinomas. Histopathology. 80:906–921. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Wu W, Jiang Z, Tang F, Ding L, Xu W and Ruan L: Roles of ARID1A variations in colorectal cancer: A collaborative review. Mol Med. 28:422022. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga R, Xiu J, Goldberg RM, Philip PA, Seeber A, Battaglin F, Arai H, Lo JH, Naseem M, Puccini A, et al: The impact of ARID1A mutation on molecular characteristics in colorectal cancer. Eur J Cancer. 140:119–129. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ehrenhöfer-Wölfer K, Puchner T, Schwarz C, Rippka J, Blaha-Ostermann S, Strobl U, Hörmann A, Bader G, Kornigg S, Zahn S, et al: SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci Rep. 9:116612019. View Article : Google Scholar : PubMed/NCBI | |
He DD, Shang XY, Wang N, Wang GX, He KY, Wang L and Han ZG: BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene. 41:1397–1409. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng M, Xu H, Zhou W and Pan Y: The BRD4 inhibitor JQ1 augments the antitumor efficacy of abemaciclib in preclinical models of gastric carcinoma. J Exp Clin Cancer Res. 42:442023. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Lyu J, Yang EJ, Liu Y, Zhang B and Shim JS: Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun. 9:32122018. View Article : Google Scholar : PubMed/NCBI | |
Mandal J, Mandal P, Wang TL and Shih IM: Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci. 29:712022. View Article : Google Scholar : PubMed/NCBI | |
Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM, Conejo-Garcia JR, et al: Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 21:231–238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Fu Z, Chen SY, Ong D, Aceto G, Ho R, Steinberger J, Monast A, Pilon V, Li E, et al: Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss. Nat Commun. 14:28942023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Huang C, Gordon J, Yu S, Morton G, Childers W, Abou-Gharbia M, Zhang Y, Jelinek J and Issa JJ: MC180295 is a highly potent and selective CDK9 inhibitor with preclinical in vitro and in vivo efficacy in cancer. Clin Epigenetics. 16:32024. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Liu H, Yuan Z, Zundell J, Towers M, Lin J, Lombardi S, Nie H, Murphy B, Yang T, et al: Targeting the mevalonate pathway suppresses ARID1A-inactivated cancers by promoting pyroptosis. Cancer Cell. 41:740–756.e10. 2023. View Article : Google Scholar : PubMed/NCBI |