
The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)
- Authors:
- Keyu Wang
- Ziqiang Sun
-
Affiliations: Department of Hepatobiliary and Vascular Surgery, Jining Third People's Hospital, Jining, Shandong 272100, P.R. China, Department of Vascular Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China - Published online on: May 12, 2025 https://doi.org/10.3892/mmr.2025.13564
- Article Number: 199
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Sakalihasan N, Limet R and Defawe OD: Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baman JR and Eskandari MK: What is an abdominal aortic aneurysm? JAMA. 328:22802022. View Article : Google Scholar : PubMed/NCBI | |
Haque K and Bhargava P: Abdominal aortic aneurysm. Am Fam Physician. 106:165–172. 2022.PubMed/NCBI | |
Marcaccio CL and Schermerhorn ML: Epidemiology of abdominal aortic aneurysms. Semin Vasc Surg. 34:29–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schanzer A and Oderich GS: Management of abdominal aortic aneurysms. N Engl J Med. 385:1690–1698. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, Ballard DJ, Messina LM, Gordon IL, Chute EP, et al: Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 346:1437–1444. 2002. View Article : Google Scholar : PubMed/NCBI | |
Memon AA, Zarrouk M, Ågren-Witteschus S, Sundquist J, Gottsäter A and Sundquist K: Identification of novel diagnostic and prognostic biomarkers for abdominal aortic aneurysm. Eur J Prev Cardiol. 27:132–142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cho IY, Han K, Lee KN, Koo HY, Cho YH, Lee JH, Park YJ and Shin DW: Risk factors for abdominal aortic aneurysm in patients with diabetes. J Vasc Surg. 81:128–136.e4. 2025. View Article : Google Scholar : PubMed/NCBI | |
Silva LF, Vangipurapu J, Oravilahti A, Lusis AJ and Laakso M: Metabolomics, genetics, and environmental factors: Intersecting paths in abdominal aortic aneurysm. Int J Mol Sci. 26:14982025. View Article : Google Scholar | |
Gao J, Cao H, Hu G, Wu Y, Xu Y, Cui H, Lu HS and Zheng L: The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther. 8:552023. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wu Y, Yang J, Jing J, Ma C and Sun L: N6-methyladenosine-associated genetic variants in NECTIN2 and HPCAL1 are risk factors for abdominal aortic aneurysm. iScience. 27:1094192024. View Article : Google Scholar : PubMed/NCBI | |
Mangum KD and Farber MA: Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet. 97:815–826. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barkhordarian M, Tran HH, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A and Weissman S: Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med. 14:914082024. View Article : Google Scholar : PubMed/NCBI | |
Mangum K, Gallagher K and Davis FM: The role of epigenetic modifications in abdominal aortic aneurysm pathogenesis. Biomolecules. 12:1722022. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Li W, Wang J and Li S: WTAP-mediated m6A modification on BASP1 mRNA contributes to ferroptosis in AAA. Gen Thorac Cardiovasc Surg. Feb 19–2025.(Epub ahead of print). doi: 10.1007/s11748-025-02130-5, 2025. View Article : Google Scholar : PubMed/NCBI | |
Liu ZH, Ma P, He Y, Zhang YF, Mou Z, Fang T, Wang W and Yu KH: The mechanism and latest progress of m6A methylation in the progression of pancreatic cancer. Int J Biol Sci. 21:1187–1201. 2025. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Mei Y, Xia M, Luo D and Gao L: The role of m6A modification in the risk prediction and notch1 pathway of Alzheimer's disease. iScience. 27:1102352024. View Article : Google Scholar : PubMed/NCBI | |
Mattei AL, Bailly N and Meissner A: DNA methylation: A historical perspective. Trends Genet. 38:676–707. 2022. View Article : Google Scholar : PubMed/NCBI | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Wang X, Chang J, Cheng C and Miao C: The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Crit Rev Clin Lab Sci. 59:203–218. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H and Wan J: The functions and mechanisms of post-translational modification in protein regulators of RNA methylation. Current status and future perspectives. Int J Biol Macromol. 253:1267732023. View Article : Google Scholar : PubMed/NCBI | |
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C and Chen H: Insight into m6 A methylation from occurrence to functions. Open Biol. 10:2000912020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Shi X, Huang T, Zhao X, Chen W, Gu N and Zhang R: Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res. 48:6251–6264. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maity A and Das B: N6-methyladenosine modification in mRNA: Machinery, function and implications for health and diseases. FEBS J. 283:1607–1630. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Li L, Huang Y, Ma J and Min J: Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. 47:67–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiong X, Hou L, Park YP, Molinie B; GTEx Consortium, ; Gregory RI and Kellis M: Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet. 53:1156–1165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yuan Y, Zhou F, Li L, Pu J and Jiang X: m6A RNA methylation: A pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med. 23:2452025. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X and Wang S: Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer. 13:1892992025. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Han J and Zhang XA: Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes. 17:24672132025. View Article : Google Scholar : PubMed/NCBI | |
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R and Verma SK: mRNA modifications in cardiovascular biology and disease: With a focus on m6A modification. Cardiovasc Res. 118:1680–1692. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li MJ, Xia L and Zhang H: The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ. 10:e143342022. View Article : Google Scholar : PubMed/NCBI | |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6 A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar : PubMed/NCBI | |
van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M and Lafontaine DLJ: The human 18S rRNA m6A methyltransferase METTL5 is stabilised by TRMT112. Nucleic Acids Res. 47:7719–7733. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumourigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Su R, Deng X, Chen Y and Chen J: FTO in cancer: Functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 8:598–614. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD and Jaffrey SR: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Zhu AC, Liu S, Gao B, Wang Y, Khudaverdyan N, Yu C, Wu Q, Jiang Y, Song J, et al: RBM33 is a unique m6A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity. Mol Cell. 83:2003–2019.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S and Rodnina MV: Modulation of translational decoding by m6A modification of mRNA. Nat Commun. 14:47842023. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Wei Y, Liang J, Wen J, Chen X, Zhang B and Chu L: Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins. Cell Death Discov. 8:1372022. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10:53322019. View Article : Google Scholar : PubMed/NCBI | |
Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Lu Y, Wei J, Wu J, Yang J and Cai Z: Abdominal aortic aneurysm: Roles of inflammatory cells. Front Immunol. 11:6091612021. View Article : Google Scholar : PubMed/NCBI | |
Wagenhäuser MU, Mulorz J, Krott KJ, Bosbach A, Feige T, Rhee YH, Chatterjee M, Petzold N, Böddeker C, Ibing W, et al: Crosstalk of platelets with macrophages and fibroblasts aggravates inflammation, aortic wall stiffening, and osteopontin release in abdominal aortic aneurysm. Cardiovasc Res. 120:417–432. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Zheng J and Gao Y: Targeting platelet activation in abdominal aortic aneurysm: Current knowledge and perspectives. Biomolecules. 12:2062022. View Article : Google Scholar : PubMed/NCBI | |
Fan YN, Ke X, Yi ZL, Lin YQ, Deng BQ, Shu XR, Yang DH, Liao ZY and Nie RQ: Plasma D-dimer as a predictor of intraluminal thrombus burden and progression of abdominal aortic aneurysm. Life Sci. 240:1170692020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Li Y, Ran X, Wang D, Zheng X, Zhang M, Yu B, Sun Y and Wu J: Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell Mol Life Sci. 79:3112022. View Article : Google Scholar : PubMed/NCBI | |
Zhai Z, Zhang X, Ding Y, Huang Z, Li Q, Zheng M, Cho K, Dong Z, Fu W, Chen Z and Jiang B: Eugenol restrains abdominal aortic aneurysm progression with down-regulations on NF-κB and COX-2. Phytother Res. 36:928–937. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, Nguyen T, Zhang L, Bissonnette M, He C and Li Y: N6-Adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev Cell. 55:737–753.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 induces AAA development and progression by modulating N6-Methyladenosine-Dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Xing J, Wang S, Xin S, Han Y and Zhang J: Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med. 7:7972019. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Wang S, Li X, Li X, Qu K, Tong H, Zhang R, Bai S and Fan J: Lithium chloride represses abdominal aortic aneurysm via regulating GSK3β/SIRT1/NF-κB signaling pathway. Free Radic Biol Med. 166:1–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al: RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li K, Zhang D, Zhai S, Wu H and Liu H: METTL3-METTL14 complex induces necroptosis and inflammation of vascular smooth muscle cells via promoting N6 methyladenosine mRNA methylation of receptor-interacting protein 3 in abdominal aortic aneurysms. J Cell Commun Signal. 17:897–914. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu S, White JV, Nwaneshiudu I, Nwaneshiudu A, Monos DS, Solomides CC, Oleszak EL and Platsoucas C: Human abdominal aortic aneurysm (AAA): Evidence for an autoimmune antigen-driven disease. Autoimmun Rev. 21:1031642022. View Article : Google Scholar : PubMed/NCBI | |
Gong W, Tian Y and Li L: T cells in abdominal aortic aneurysm: Immunomodulation and clinical application. Front Immunol. 14:12401322023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xia N, Li D, Wen S, Qian S, Lu Y, Gu M, Tang T, Jiao J, Lv B, et al: Aorta regulatory T cells with a tissue-specific phenotype and function promote tissue repair through Tff1 in abdominal aortic aneurysms. Adv Sci (Weinh). 9:e21043382022. View Article : Google Scholar : PubMed/NCBI | |
Chan WL, Pejnovic N, Liew TV and Hamilton H: Predominance of Th2 response in human abdominal aortic aneurysm: Mistaken identity for IL-4-producing NK and NKT cells? Cell Immunol. 233:109–114. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W and Gawron K: Role of extracellular matrix and inflammation in abdominal aortic aneurysm. Int J Mol Sci. 23:110782022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Tang H, Sun X and Gui Q: M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct. 42:e40892024. View Article : Google Scholar : PubMed/NCBI | |
Swedenborg J, Mäyränpää MI and Kovanen PT: Mast cells: Important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 31:734–740. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V and Monticelli S: The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun. 14:38622023. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Li H, Yu Y, Hao J, Zhang H, Wang L, Jin J, Zhou Q, Hu Y, Zhang C and Zhang Q: m6A RNA methylation decreases atherosclerotic vulnerable plaque through inducing T cells. Braz J Cardiovasc Surg. 38:124–131. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chao Y, Li HB and Zhou J: Multiple functions of RNA methylation in T cells: A review. Front Immunol. 12:6274552021. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Feng L, Zhang J and Sun D: Bioinformatic analyses of the role of m6A RNA methylation regulators in abdominal aortic aneurysm. Ann Transl Med. 10:5472022. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wang T, Jing J and Sun L: Expression pattern and clinical value of Key m6A RNA modification regulators in abdominal aortic aneurysm. J Inflamm Res. 14:4245–4258. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Kan Q, Ye Y, Qiu J, Huang L, Wu R and Yao C: Novel insight of N6-methyladenosine modified subtypes in abdominal aortic aneurysm. Front Genet. 13:10553962022. View Article : Google Scholar : PubMed/NCBI | |
Kuivaniemi H, Ryer EJ, Elmore JR and Tromp G: Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 13:975–987. 2015. View Article : Google Scholar : PubMed/NCBI | |
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P and Kempisty B: Cellular, molecular and clinical aspects of aortic aneurysm-vascular physiology and pathophysiology. Cells. 13:2742024. View Article : Google Scholar : PubMed/NCBI | |
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J and Yeung KK: The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 52:e136972022. View Article : Google Scholar : PubMed/NCBI | |
Lattanzi S: Abdominal aortic aneurysms: Pathophysiology and clinical issues. J Intern Med. 288:376–378. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Zhan E, Chen C, Hu Y, Lv Z, He Q, Wang X, Li X and Zhang F: ALKBH5-mediated m6A demethylation of Runx2 mRNA promotes extracellular matrix degradation and intervertebral disc degeneration. Cell Biosci. 14:792024. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilising the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Xia A, Li C, Long X, Bai Z, Qiu Z, Xiong W, Gu N, Shen Y, Zhao R and Shi B: Methyltransferase like 3-mediated N6-methylatidin methylation inhibits vascular smooth muscle cells phenotype switching via promoting phosphatidylinositol 3-kinase mRNA decay. Front Cardiovasc Med. 9:9130392022. View Article : Google Scholar : PubMed/NCBI | |
Fang ZM, Zhang SM, Luo H, Jiang DS, Huo B, Zhong X, Feng X, Cheng W, Chen Y, Feng G, et al: Methyltransferase-like 3 suppresses phenotypic switching of vascular smooth muscle cells by activating autophagosome formation. Cell Prolif. 56:e133862023. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Zou S, Wu J, Bai J, Liu Y, Zhi K and Qu L: METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol Cell Biochem. 479:3471–3487. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, Liu J, Ye J, Huang W, Ma W, et al: Colchicine blocks abdominal aortic aneurysm development by maintaining vascular smooth muscle cell homeostasis. Int J Biol Sci. 20:2092–2110. 2024. View Article : Google Scholar : PubMed/NCBI | |
Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Weng X, Qiu J and Wang S: Biogenesis of circRBM33 mediated by N6-methyladenosine and its function in abdominal aortic aneurysm. Epigenetics. 19:23924012024. View Article : Google Scholar : PubMed/NCBI | |
Adam M, Raaz U, Spin JM and Tsao PS: MicroRNAs in abdominal aortic aneurysm. Curr Vasc Pharmacol. 13:280–290. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carvalho LS: Can microRNAs improve prediction of abdominal aortic aneurysm growth? Atherosclerosis. 256:131–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thanigaimani S, Iyer V, Bingley J, Browne D, Phie J, Doolan D and Golledge J: Association between serum MicroRNAs and abdominal aortic aneurysm diagnosis and growth. Eur J Vasc Endovasc Surg. 65:573–581. 2023. View Article : Google Scholar : PubMed/NCBI | |
Milewicz DM: MicroRNAs, fibrotic remodeling, and aortic aneurysms. J Clin Invest. 122:490–493. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Boon RA, Maegdefessel L, Dimmeler S and Jo H: Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ Res. 124:619–630. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhang K, Gu Y, Tu Y and Ouyang C: Roles and mechanisms of miRNAs in abdominal aortic aneurysm: Signaling pathways and clinical insights. Curr Atheroscler Rep. 26:273–287. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mei X and Chen SY: Circular RNAs in cardiovascular diseases. Pharmacol Ther. 232:1079912022. View Article : Google Scholar : PubMed/NCBI | |
Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jayasree PJ, Dutta S, Karemore P and Khandelia P: Crosstalk between m6A RNA methylation and miRNA biogenesis in cancer: An unholy nexus. Mol Biotechnol. 66:3042–3058. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Mao Y, Chen X, Xiao J, Qin Y and Zhao L: The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. Int J Biol Sci. 17:3059–3079. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu GE, Zhao X, Li G, Gokulnath P, Wang L and Xiao J: The landscape of epigenetic regulation and therapeutic application of N6-methyladenosine modifications in non-coding RNAs. Genes Dis. 11:1010452023. View Article : Google Scholar : PubMed/NCBI | |
Zhang BY, Han L, Tang YF, Zhang GX, Fan XL, Zhang JJ, Xue Q and Xu ZY: METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 24:7015–7023. 2020.PubMed/NCBI | |
Fang X, Ao X, Xiao D, Wang Y, Jia Y, Wang P, Li M and Wang J: Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett. 29:32024. View Article : Google Scholar : PubMed/NCBI | |
Deeg MA, Meijer CA, Chan LS, Shen L and Lindeman JH: Prognostic and predictive biomarkers of abdominal aortic aneurysm growth rate. Curr Med Res Opin. 32:509–517. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khan H, Abu-Raisi M, Feasson M, Shaikh F, Saposnik G, Mamdani M and Qadura M: Current prognostic biomarkers for abdominal aortic aneurysm: A comprehensive scoping review of the literature. Biomolecules. 14:6612024. View Article : Google Scholar : PubMed/NCBI | |
Stather PW, Sidloff DA, Dattani N, Gokani VJ, Choke E, Sayers RD and Bown MJ: Meta-analysis and meta-regression analysis of biomarkers for abdominal aortic aneurysm. Br J Surg. 101:1358–1372. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yang C, Jing J, Sun L and Yuan Y: Granzyme K-A novel marker to identify the presence and rupture of abdominal aortic aneurysm. Int J Cardiol. 338:242–247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Rateri DL and Daugherty A: Abdominal aortic aneurysm: Novel mechanisms and therapies. Curr Opin Cardiol. 30:566–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Piechota-Polanczyk A, Demyanets S, Nykonenko O, Huk I, Mittlboeck M, Domenig CM, Neumayer C, Wojta J, Nanobachvili J and Klinger M: Decreased tissue levels of cyclophilin A, a cyclosporine a target and phospho-ERK1/2 in simvastatin patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 45:682–688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mata KM, Tefé-Silva C, Floriano EM, Fernandes CR, Rizzi E, Gerlach RF, Mazzuca MQ and Ramos SG: Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol. 24:110–120. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kristensen KE, Torp-Pedersen C, Gislason GH, Egfjord M, Rasmussen HB and Hansen PR: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with abdominal aortic aneurysms: Nation-wide cohort study. Arterioscler Thromb Vasc Biol. 35:733–740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Son BK, Kojima T, Ogawa S and Akishita M: Testosterone inhibits aneurysm formation and vascular inflammation in male mice. J Endocrinol. 241:307–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Twine CP and Williams IM: Systematic review and meta-analysis of the effects of statin therapy on abdominal aortic aneurysms. Br J Surg. 98:346–353. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang D, Liu T, Chen J, Yu J and Yi P: N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 29:454–467. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Long T, Li F and Xie Q: Emerging role of m6A modification in cardiovascular diseases. Cell Biol Int. 46:711–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang YS, Liu ZY, Liu ZY, Lin LC, Chen Q, Zhao JY and Tao H: m6A epitranscriptomic modification of inflammation in cardiovascular disease. Int Immunopharmacol. 134:1122222024. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Jiang H, Dong Z, Sun A and Ge J: The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 8:746–758. 2020. View Article : Google Scholar : PubMed/NCBI | |
You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y and Huang L: Recent advances of m6a demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci. 23:58152022. View Article : Google Scholar : PubMed/NCBI | |
Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Lv SJ, Chen H, Rao H, Guo Z, Wan Q, Yang J, Zhang Y, Liu DP, Chen HZ and Wang M: Disruption of pcsk9 suppresses inflammation and attenuates abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 45:e1–e14. 2025. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Liu X, Zhou X, Lin W, Liu M, Ma H, Zhong K, Ma Q and Qin C: Atractylenolide-I prevents abdominal aortic aneurysm formation through inhibiting inflammation. Front Immunol. 16:14860722025. View Article : Google Scholar : PubMed/NCBI |