Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)

  • Authors:
    • Keyu Wang
    • Ziqiang Sun
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary and Vascular Surgery, Jining Third People's Hospital, Jining, Shandong 272100, P.R. China, Department of Vascular Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 199
    |
    Published online on: May 12, 2025
       https://doi.org/10.3892/mmr.2025.13564
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Abdominal aortic aneurysm (AAA) is a type of cardiovascular disease. Sudden aortic rupture and subsequent bleeding are the main causes of mortality due to AAA. N6‑methyladenosine (m6A) methylation, the most common epitranscriptomic modification in eukaryotic mRNAs, has a key role in the regulation of gene expression. m6A methylation markedly influences the development and progression of AAA. The present review highlights the mechanism of m6A methylation in AAA, including current research progress and future prospects. From a mechanistic perspective, m6A methylation exerts its influence on AAA‑related genes by modulating the post‑transcriptional levels of RNA, thereby impacting the pathological process of AAA. In terms of clinical applications, the mechanisms by which m6A methylation regulators influence their development and progression in AAA involve multiple target genes and signaling pathways. These regulatory factors affect inflammatory immunomodulation, cell proliferation, apoptosis and endogenous processes by modulating the m6A modification status of target genes and the activity of immune‑related signaling pathways. Therefore, for the prevention and treatment of AAA, current therapeutic strategies should comprehensively consider the interactions and synergistic regulation among m6A methylation regulators to reveal the integrated effects of the entire regulatory network in AAA development. Consequently, a more comprehensive understanding of the precise mechanisms of m6A methylation in AAA should be attained, which will support the development of innovative therapeutic strategies aimed at m6A methylation and establish a basis for the early diagnosis and treatment of AAA.
View Figures

Figure 1

View References

1 

Sakalihasan N, Limet R and Defawe OD: Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Baman JR and Eskandari MK: What is an abdominal aortic aneurysm? JAMA. 328:22802022. View Article : Google Scholar : PubMed/NCBI

3 

Haque K and Bhargava P: Abdominal aortic aneurysm. Am Fam Physician. 106:165–172. 2022.PubMed/NCBI

4 

Marcaccio CL and Schermerhorn ML: Epidemiology of abdominal aortic aneurysms. Semin Vasc Surg. 34:29–37. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Schanzer A and Oderich GS: Management of abdominal aortic aneurysms. N Engl J Med. 385:1690–1698. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, Ballard DJ, Messina LM, Gordon IL, Chute EP, et al: Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 346:1437–1444. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Memon AA, Zarrouk M, Ågren-Witteschus S, Sundquist J, Gottsäter A and Sundquist K: Identification of novel diagnostic and prognostic biomarkers for abdominal aortic aneurysm. Eur J Prev Cardiol. 27:132–142. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Cho IY, Han K, Lee KN, Koo HY, Cho YH, Lee JH, Park YJ and Shin DW: Risk factors for abdominal aortic aneurysm in patients with diabetes. J Vasc Surg. 81:128–136.e4. 2025. View Article : Google Scholar : PubMed/NCBI

9 

Silva LF, Vangipurapu J, Oravilahti A, Lusis AJ and Laakso M: Metabolomics, genetics, and environmental factors: Intersecting paths in abdominal aortic aneurysm. Int J Mol Sci. 26:14982025. View Article : Google Scholar

10 

Gao J, Cao H, Hu G, Wu Y, Xu Y, Cui H, Lu HS and Zheng L: The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther. 8:552023. View Article : Google Scholar : PubMed/NCBI

11 

Li T, Wu Y, Yang J, Jing J, Ma C and Sun L: N6-methyladenosine-associated genetic variants in NECTIN2 and HPCAL1 are risk factors for abdominal aortic aneurysm. iScience. 27:1094192024. View Article : Google Scholar : PubMed/NCBI

12 

Mangum KD and Farber MA: Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet. 97:815–826. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Barkhordarian M, Tran HH, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A and Weissman S: Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med. 14:914082024. View Article : Google Scholar : PubMed/NCBI

14 

Mangum K, Gallagher K and Davis FM: The role of epigenetic modifications in abdominal aortic aneurysm pathogenesis. Biomolecules. 12:1722022. View Article : Google Scholar : PubMed/NCBI

15 

Tian Z, Li W, Wang J and Li S: WTAP-mediated m6A modification on BASP1 mRNA contributes to ferroptosis in AAA. Gen Thorac Cardiovasc Surg. Feb 19–2025.(Epub ahead of print). doi: 10.1007/s11748-025-02130-5, 2025. View Article : Google Scholar : PubMed/NCBI

16 

Liu ZH, Ma P, He Y, Zhang YF, Mou Z, Fang T, Wang W and Yu KH: The mechanism and latest progress of m6A methylation in the progression of pancreatic cancer. Int J Biol Sci. 21:1187–1201. 2025. View Article : Google Scholar : PubMed/NCBI

17 

Qiao Y, Mei Y, Xia M, Luo D and Gao L: The role of m6A modification in the risk prediction and notch1 pathway of Alzheimer's disease. iScience. 27:1102352024. View Article : Google Scholar : PubMed/NCBI

18 

Mattei AL, Bailly N and Meissner A: DNA methylation: A historical perspective. Trends Genet. 38:676–707. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Zhou W, Wang X, Chang J, Cheng C and Miao C: The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Crit Rev Clin Lab Sci. 59:203–218. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Chen Y, Jiang Z, Yang Y, Zhang C, Liu H and Wan J: The functions and mechanisms of post-translational modification in protein regulators of RNA methylation. Current status and future perspectives. Int J Biol Macromol. 253:1267732023. View Article : Google Scholar : PubMed/NCBI

22 

Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C and Chen H: Insight into m6 A methylation from occurrence to functions. Open Biol. 10:2000912020. View Article : Google Scholar : PubMed/NCBI

23 

Zhang H, Shi X, Huang T, Zhao X, Chen W, Gu N and Zhang R: Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res. 48:6251–6264. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Maity A and Das B: N6-methyladenosine modification in mRNA: Machinery, function and implications for health and diseases. FEBS J. 283:1607–1630. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Wu B, Li L, Huang Y, Ma J and Min J: Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. 47:67–76. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Xiong X, Hou L, Park YP, Molinie B; GTEx Consortium, ; Gregory RI and Kellis M: Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet. 53:1156–1165. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Chen X, Yuan Y, Zhou F, Li L, Pu J and Jiang X: m6A RNA methylation: A pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med. 23:2452025. View Article : Google Scholar : PubMed/NCBI

29 

Chen T, Ye W, Gao S, Li Y, Luan J, Lv X and Wang S: Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer. 13:1892992025. View Article : Google Scholar : PubMed/NCBI

30 

Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar : PubMed/NCBI

31 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI

32 

Wang H, Han J and Zhang XA: Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes. 17:24672132025. View Article : Google Scholar : PubMed/NCBI

33 

Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R and Verma SK: mRNA modifications in cardiovascular biology and disease: With a focus on m6A modification. Cardiovasc Res. 118:1680–1692. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Zhang X, Li MJ, Xia L and Zhang H: The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ. 10:e143342022. View Article : Google Scholar : PubMed/NCBI

36 

Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6 A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar : PubMed/NCBI

37 

van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M and Lafontaine DLJ: The human 18S rRNA m6A methyltransferase METTL5 is stabilised by TRMT112. Nucleic Acids Res. 47:7719–7733. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumourigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI

39 

Li Y, Su R, Deng X, Chen Y and Chen J: FTO in cancer: Functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 8:598–614. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Meyer KD and Jaffrey SR: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Yu F, Zhu AC, Liu S, Gao B, Wang Y, Khudaverdyan N, Yu C, Wu Q, Jiang Y, Song J, et al: RBM33 is a unique m6A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity. Mol Cell. 83:2003–2019.e6. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI

43 

Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI

44 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S and Rodnina MV: Modulation of translational decoding by m6A modification of mRNA. Nat Commun. 14:47842023. View Article : Google Scholar : PubMed/NCBI

46 

Liao J, Wei Y, Liang J, Wen J, Chen X, Zhang B and Chu L: Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins. Cell Death Discov. 8:1372022. View Article : Google Scholar : PubMed/NCBI

47 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10:53322019. View Article : Google Scholar : PubMed/NCBI

49 

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Yuan Z, Lu Y, Wei J, Wu J, Yang J and Cai Z: Abdominal aortic aneurysm: Roles of inflammatory cells. Front Immunol. 11:6091612021. View Article : Google Scholar : PubMed/NCBI

52 

Wagenhäuser MU, Mulorz J, Krott KJ, Bosbach A, Feige T, Rhee YH, Chatterjee M, Petzold N, Böddeker C, Ibing W, et al: Crosstalk of platelets with macrophages and fibroblasts aggravates inflammation, aortic wall stiffening, and osteopontin release in abdominal aortic aneurysm. Cardiovasc Res. 120:417–432. 2024. View Article : Google Scholar : PubMed/NCBI

53 

Sun W, Zheng J and Gao Y: Targeting platelet activation in abdominal aortic aneurysm: Current knowledge and perspectives. Biomolecules. 12:2062022. View Article : Google Scholar : PubMed/NCBI

54 

Fan YN, Ke X, Yi ZL, Lin YQ, Deng BQ, Shu XR, Yang DH, Liao ZY and Nie RQ: Plasma D-dimer as a predictor of intraluminal thrombus burden and progression of abdominal aortic aneurysm. Life Sci. 240:1170692020. View Article : Google Scholar : PubMed/NCBI

55 

Zheng Y, Li Y, Ran X, Wang D, Zheng X, Zhang M, Yu B, Sun Y and Wu J: Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell Mol Life Sci. 79:3112022. View Article : Google Scholar : PubMed/NCBI

56 

Zhai Z, Zhang X, Ding Y, Huang Z, Li Q, Zheng M, Cho K, Dong Z, Fu W, Chen Z and Jiang B: Eugenol restrains abdominal aortic aneurysm progression with down-regulations on NF-κB and COX-2. Phytother Res. 36:928–937. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, Nguyen T, Zhang L, Bissonnette M, He C and Li Y: N6-Adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev Cell. 55:737–753.e7. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 induces AAA development and progression by modulating N6-Methyladenosine-Dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI

59 

He Y, Xing J, Wang S, Xin S, Han Y and Zhang J: Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med. 7:7972019. View Article : Google Scholar : PubMed/NCBI

60 

Xu T, Wang S, Li X, Li X, Qu K, Tong H, Zhang R, Bai S and Fan J: Lithium chloride represses abdominal aortic aneurysm via regulating GSK3β/SIRT1/NF-κB signaling pathway. Free Radic Biol Med. 166:1–10. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al: RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Li K, Zhang D, Zhai S, Wu H and Liu H: METTL3-METTL14 complex induces necroptosis and inflammation of vascular smooth muscle cells via promoting N6 methyladenosine mRNA methylation of receptor-interacting protein 3 in abdominal aortic aneurysms. J Cell Commun Signal. 17:897–914. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Lu S, White JV, Nwaneshiudu I, Nwaneshiudu A, Monos DS, Solomides CC, Oleszak EL and Platsoucas C: Human abdominal aortic aneurysm (AAA): Evidence for an autoimmune antigen-driven disease. Autoimmun Rev. 21:1031642022. View Article : Google Scholar : PubMed/NCBI

64 

Gong W, Tian Y and Li L: T cells in abdominal aortic aneurysm: Immunomodulation and clinical application. Front Immunol. 14:12401322023. View Article : Google Scholar : PubMed/NCBI

65 

Li J, Xia N, Li D, Wen S, Qian S, Lu Y, Gu M, Tang T, Jiao J, Lv B, et al: Aorta regulatory T cells with a tissue-specific phenotype and function promote tissue repair through Tff1 in abdominal aortic aneurysms. Adv Sci (Weinh). 9:e21043382022. View Article : Google Scholar : PubMed/NCBI

66 

Chan WL, Pejnovic N, Liew TV and Hamilton H: Predominance of Th2 response in human abdominal aortic aneurysm: Mistaken identity for IL-4-producing NK and NKT cells? Cell Immunol. 233:109–114. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W and Gawron K: Role of extracellular matrix and inflammation in abdominal aortic aneurysm. Int J Mol Sci. 23:110782022. View Article : Google Scholar : PubMed/NCBI

68 

Yang X, Tang H, Sun X and Gui Q: M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct. 42:e40892024. View Article : Google Scholar : PubMed/NCBI

69 

Swedenborg J, Mäyränpää MI and Kovanen PT: Mast cells: Important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 31:734–740. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V and Monticelli S: The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun. 14:38622023. View Article : Google Scholar : PubMed/NCBI

71 

Qi C, Li H, Yu Y, Hao J, Zhang H, Wang L, Jin J, Zhou Q, Hu Y, Zhang C and Zhang Q: m6A RNA methylation decreases atherosclerotic vulnerable plaque through inducing T cells. Braz J Cardiovasc Surg. 38:124–131. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Chao Y, Li HB and Zhou J: Multiple functions of RNA methylation in T cells: A review. Front Immunol. 12:6274552021. View Article : Google Scholar : PubMed/NCBI

73 

Fu C, Feng L, Zhang J and Sun D: Bioinformatic analyses of the role of m6A RNA methylation regulators in abdominal aortic aneurysm. Ann Transl Med. 10:5472022. View Article : Google Scholar : PubMed/NCBI

74 

Li T, Wang T, Jing J and Sun L: Expression pattern and clinical value of Key m6A RNA modification regulators in abdominal aortic aneurysm. J Inflamm Res. 14:4245–4258. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Wang K, Kan Q, Ye Y, Qiu J, Huang L, Wu R and Yao C: Novel insight of N6-methyladenosine modified subtypes in abdominal aortic aneurysm. Front Genet. 13:10553962022. View Article : Google Scholar : PubMed/NCBI

76 

Kuivaniemi H, Ryer EJ, Elmore JR and Tromp G: Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 13:975–987. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P and Kempisty B: Cellular, molecular and clinical aspects of aortic aneurysm-vascular physiology and pathophysiology. Cells. 13:2742024. View Article : Google Scholar : PubMed/NCBI

78 

Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J and Yeung KK: The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 52:e136972022. View Article : Google Scholar : PubMed/NCBI

79 

Lattanzi S: Abdominal aortic aneurysms: Pathophysiology and clinical issues. J Intern Med. 288:376–378. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Lei Y, Zhan E, Chen C, Hu Y, Lv Z, He Q, Wang X, Li X and Zhang F: ALKBH5-mediated m6A demethylation of Runx2 mRNA promotes extracellular matrix degradation and intervertebral disc degeneration. Cell Biosci. 14:792024. View Article : Google Scholar : PubMed/NCBI

81 

Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilising the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Zhao Y, Xia A, Li C, Long X, Bai Z, Qiu Z, Xiong W, Gu N, Shen Y, Zhao R and Shi B: Methyltransferase like 3-mediated N6-methylatidin methylation inhibits vascular smooth muscle cells phenotype switching via promoting phosphatidylinositol 3-kinase mRNA decay. Front Cardiovasc Med. 9:9130392022. View Article : Google Scholar : PubMed/NCBI

83 

Fang ZM, Zhang SM, Luo H, Jiang DS, Huo B, Zhong X, Feng X, Cheng W, Chen Y, Feng G, et al: Methyltransferase-like 3 suppresses phenotypic switching of vascular smooth muscle cells by activating autophagosome formation. Cell Prolif. 56:e133862023. View Article : Google Scholar : PubMed/NCBI

84 

Liao M, Zou S, Wu J, Bai J, Liu Y, Zhi K and Qu L: METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol Cell Biochem. 479:3471–3487. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, Liu J, Ye J, Huang W, Ma W, et al: Colchicine blocks abdominal aortic aneurysm development by maintaining vascular smooth muscle cell homeostasis. Int J Biol Sci. 20:2092–2110. 2024. View Article : Google Scholar : PubMed/NCBI

86 

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Xu Y, Weng X, Qiu J and Wang S: Biogenesis of circRBM33 mediated by N6-methyladenosine and its function in abdominal aortic aneurysm. Epigenetics. 19:23924012024. View Article : Google Scholar : PubMed/NCBI

89 

Adam M, Raaz U, Spin JM and Tsao PS: MicroRNAs in abdominal aortic aneurysm. Curr Vasc Pharmacol. 13:280–290. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Carvalho LS: Can microRNAs improve prediction of abdominal aortic aneurysm growth? Atherosclerosis. 256:131–133. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Thanigaimani S, Iyer V, Bingley J, Browne D, Phie J, Doolan D and Golledge J: Association between serum MicroRNAs and abdominal aortic aneurysm diagnosis and growth. Eur J Vasc Endovasc Surg. 65:573–581. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Milewicz DM: MicroRNAs, fibrotic remodeling, and aortic aneurysms. J Clin Invest. 122:490–493. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Kumar S, Boon RA, Maegdefessel L, Dimmeler S and Jo H: Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ Res. 124:619–630. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Zhang H, Zhang K, Gu Y, Tu Y and Ouyang C: Roles and mechanisms of miRNAs in abdominal aortic aneurysm: Signaling pathways and clinical insights. Curr Atheroscler Rep. 26:273–287. 2024. View Article : Google Scholar : PubMed/NCBI

95 

Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Mei X and Chen SY: Circular RNAs in cardiovascular diseases. Pharmacol Ther. 232:1079912022. View Article : Google Scholar : PubMed/NCBI

98 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Jayasree PJ, Dutta S, Karemore P and Khandelia P: Crosstalk between m6A RNA methylation and miRNA biogenesis in cancer: An unholy nexus. Mol Biotechnol. 66:3042–3058. 2024. View Article : Google Scholar : PubMed/NCBI

100 

Qin S, Mao Y, Chen X, Xiao J, Qin Y and Zhao L: The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. Int J Biol Sci. 17:3059–3079. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Xu GE, Zhao X, Li G, Gokulnath P, Wang L and Xiao J: The landscape of epigenetic regulation and therapeutic application of N6-methyladenosine modifications in non-coding RNAs. Genes Dis. 11:1010452023. View Article : Google Scholar : PubMed/NCBI

102 

Zhang BY, Han L, Tang YF, Zhang GX, Fan XL, Zhang JJ, Xue Q and Xu ZY: METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 24:7015–7023. 2020.PubMed/NCBI

103 

Fang X, Ao X, Xiao D, Wang Y, Jia Y, Wang P, Li M and Wang J: Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett. 29:32024. View Article : Google Scholar : PubMed/NCBI

104 

Deeg MA, Meijer CA, Chan LS, Shen L and Lindeman JH: Prognostic and predictive biomarkers of abdominal aortic aneurysm growth rate. Curr Med Res Opin. 32:509–517. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Khan H, Abu-Raisi M, Feasson M, Shaikh F, Saposnik G, Mamdani M and Qadura M: Current prognostic biomarkers for abdominal aortic aneurysm: A comprehensive scoping review of the literature. Biomolecules. 14:6612024. View Article : Google Scholar : PubMed/NCBI

106 

Stather PW, Sidloff DA, Dattani N, Gokani VJ, Choke E, Sayers RD and Bown MJ: Meta-analysis and meta-regression analysis of biomarkers for abdominal aortic aneurysm. Br J Surg. 101:1358–1372. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Li T, Yang C, Jing J, Sun L and Yuan Y: Granzyme K-A novel marker to identify the presence and rupture of abdominal aortic aneurysm. Int J Cardiol. 338:242–247. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Davis FM, Rateri DL and Daugherty A: Abdominal aortic aneurysm: Novel mechanisms and therapies. Curr Opin Cardiol. 30:566–573. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Piechota-Polanczyk A, Demyanets S, Nykonenko O, Huk I, Mittlboeck M, Domenig CM, Neumayer C, Wojta J, Nanobachvili J and Klinger M: Decreased tissue levels of cyclophilin A, a cyclosporine a target and phospho-ERK1/2 in simvastatin patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 45:682–688. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Mata KM, Tefé-Silva C, Floriano EM, Fernandes CR, Rizzi E, Gerlach RF, Mazzuca MQ and Ramos SG: Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol. 24:110–120. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Kristensen KE, Torp-Pedersen C, Gislason GH, Egfjord M, Rasmussen HB and Hansen PR: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with abdominal aortic aneurysms: Nation-wide cohort study. Arterioscler Thromb Vasc Biol. 35:733–740. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Son BK, Kojima T, Ogawa S and Akishita M: Testosterone inhibits aneurysm formation and vascular inflammation in male mice. J Endocrinol. 241:307–317. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Twine CP and Williams IM: Systematic review and meta-analysis of the effects of statin therapy on abdominal aortic aneurysms. Br J Surg. 98:346–353. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Liu Y, Yang D, Liu T, Chen J, Yu J and Yi P: N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 29:454–467. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Peng L, Long T, Li F and Xie Q: Emerging role of m6A modification in cardiovascular diseases. Cell Biol Int. 46:711–722. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Zhang YS, Liu ZY, Liu ZY, Lin LC, Chen Q, Zhao JY and Tao H: m6A epitranscriptomic modification of inflammation in cardiovascular disease. Int Immunopharmacol. 134:1122222024. View Article : Google Scholar : PubMed/NCBI

117 

Zhang B, Jiang H, Dong Z, Sun A and Ge J: The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 8:746–758. 2020. View Article : Google Scholar : PubMed/NCBI

118 

You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y and Huang L: Recent advances of m6a demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci. 23:58152022. View Article : Google Scholar : PubMed/NCBI

119 

Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI

120 

Peng Z, Lv SJ, Chen H, Rao H, Guo Z, Wan Q, Yang J, Zhang Y, Liu DP, Chen HZ and Wang M: Disruption of pcsk9 suppresses inflammation and attenuates abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 45:e1–e14. 2025. View Article : Google Scholar : PubMed/NCBI

121 

Chen S, Liu X, Zhou X, Lin W, Liu M, Ma H, Zhong K, Ma Q and Qin C: Atractylenolide-I prevents abdominal aortic aneurysm formation through inhibiting inflammation. Front Immunol. 16:14860722025. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang K and Sun Z: The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review). Mol Med Rep 32: 199, 2025.
APA
Wang, K., & Sun, Z. (2025). The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review). Molecular Medicine Reports, 32, 199. https://doi.org/10.3892/mmr.2025.13564
MLA
Wang, K., Sun, Z."The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)". Molecular Medicine Reports 32.1 (2025): 199.
Chicago
Wang, K., Sun, Z."The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)". Molecular Medicine Reports 32, no. 1 (2025): 199. https://doi.org/10.3892/mmr.2025.13564
Copy and paste a formatted citation
x
Spandidos Publications style
Wang K and Sun Z: The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review). Mol Med Rep 32: 199, 2025.
APA
Wang, K., & Sun, Z. (2025). The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review). Molecular Medicine Reports, 32, 199. https://doi.org/10.3892/mmr.2025.13564
MLA
Wang, K., Sun, Z."The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)". Molecular Medicine Reports 32.1 (2025): 199.
Chicago
Wang, K., Sun, Z."The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review)". Molecular Medicine Reports 32, no. 1 (2025): 199. https://doi.org/10.3892/mmr.2025.13564
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team