
Roles of Piezo1 in chronic inflammatory diseases and prospects for drug treatment (Review)
- Authors:
- Jun Yang
- Chunmei Xu
- Xudong Xie
- Jun Wang
- Peilei Shi
-
Affiliations: State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: May 12, 2025 https://doi.org/10.3892/mmr.2025.13565
- Article Number: 200
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE and Patapoutian A: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330:55–60. 2010. View Article : Google Scholar : PubMed/NCBI | |
Murthy SE, Dubin AE and Patapoutian A: Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 18:771–783. 2017. View Article : Google Scholar : PubMed/NCBI | |
Orsini EM, Perelas A, Southern BD, Grove LM, Olman MA and Scheraga RG: Stretching the function of innate immune cells. Front Immunol. 12:7673192021. View Article : Google Scholar : PubMed/NCBI | |
Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, Kassab J, Ross AK, O'Conor CJ, Liedtke WB, et al: A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv. 7:eabd98582021. View Article : Google Scholar : PubMed/NCBI | |
Bagriantsev SN, Gracheva EO and Gallagher PG: Piezo proteins: Regulators of mechanosensation and other cellular processes. J Biol Chem. 289:31673–31681. 2014. View Article : Google Scholar : PubMed/NCBI | |
Richardson J, Kotevski A and Poole K: From stretch to deflection: The importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J. 289:4447–4469. 2022. View Article : Google Scholar : PubMed/NCBI | |
Servin-Vences MR, Moroni M, Lewin GR and Poole K: Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife. 6:e210742017. View Article : Google Scholar : PubMed/NCBI | |
Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A and Ward AB: Structure of the mechanically activated ion channel Piezo1. Nature. 554:481–486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, et al: Structure and mechanogating mechanism of the Piezo1 channel. Nature. 554:487–492. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kefauver JM, Ward AB and Patapoutian A: Discoveries in structure and physiology of mechanically activated ion channels. Nature. 587:567–576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lewis AH and Grandl J: Inactivation kinetics and mechanical gating of piezo1 ion channels depend on subdomains within the cap. Cell Rep. 30:870–880.e872. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Yang X, Jiang J and Xiao B: Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. Trends Biochem Sci. 46:472–488. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zhou H, Li X and Xiao B: The mechanosensitive piezo1 channel: A three-bladed propeller-like structure and a lever-like mechanogating mechanism. FEBS J. 286:2461–2470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, et al: Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress-induced, piezo-1-mediated monocyte activation. Circulation. 142:1092–1105. 2020. View Article : Google Scholar : PubMed/NCBI | |
Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, Brumm KT, Lim HE, Othy S, Cahalan MD, et al: Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 12:32562021. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Xu B, Li Q, Peng C and Yang K: The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol. 12:13421492024. View Article : Google Scholar : PubMed/NCBI | |
Li XF, Zhang Z, Li XD, Wang TB and Zhang HN: Mechanism of the piezo1 protein-induced apoptosis of the chondrocytes through the MAPK/ERK1/2 signal pathway. Zhonghua Yi Xue Za Zhi. 96:2472–2477. 2016.(In Chinese). PubMed/NCBI | |
Amin AK, Huntley JS, Bush PG, Simpson AH and Hall AC: Chondrocyte death in mechanically injured articular cartilage-the influence of extracellular calcium. J Orthop Res. 27:778–784. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto A, Miyazaki A, Kawarabayashi K, Shono M, Akazawa Y, Hasegawa T, Ueda-Yamaguchi K, Kitamura T, Yoshizaki K, Fukumoto S and Iwamoto T: Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 7:176962017. View Article : Google Scholar : PubMed/NCBI | |
Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, et al: Synergy between piezo1 and piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci USA. 111:E5114–E5122. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Feng Y, Yin Z, Wang C, Yin R, Li Y, Chen K, Tao T, Zhang K, Jiang Y and Gui J: The PIEZO1/miR-155-5p/GDF6/SMAD2/3 signaling axis is involved in inducing the occurrence and progression of osteoarthritis under excessive mechanical stress. Cell Signal. 118:1111422024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang Z and Bai L: Cell interplay in osteoarthritis. Front Cell Dev Biol. 9:7204772021. View Article : Google Scholar : PubMed/NCBI | |
Song J, Liu L, Lv L, Hu S, Tariq A, Wang W and Dang X: Fluid shear stress induces Runx-2 expression via upregulation of PIEZO1 in MC3T3-E1 cells. Cell Biol Int. 44:1491–1502. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, You X, Lotinun S, Zhang L, Wu N and Zou W: Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun. 11:2822020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Han L, Nookaew I, Mannen E, Silva MJ, Almeida M and Xiong J: Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife. 8:e496312019. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, et al: Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife. 9:e527792020. View Article : Google Scholar : PubMed/NCBI | |
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A and Martín C: Pathophysiology of atherosclerosis. Int J Mol Sci. 23:33462022. View Article : Google Scholar : PubMed/NCBI | |
Lanzer P, Hannan FM, Lanzer JD, Janzen J, Raggi P, Furniss D, Schuchardt M, Thakker R, Fok PW, Saez-Rodriguez J, et al: Medial arterial calcification: JACC state-of-the-art review. J Am Coll Cardiol. 78:1145–1165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Y, Ma X, Liu J, Wang X, Zhang L, Li C, Li Y and Yang W: Ginsenoside Rg1-Notoginsenoside R1-protocatechuic aldehyde reduces atherosclerosis and attenuates low-shear stress-induced vascular endothelial cell dysfunction. Front Pharmacol. 11:5882592020. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Wan R, Wang Y, Liu S, He Y, Deng B, Luo S, Chen Y, Wen L, Hong T, et al: Inhibition of chemically and mechanically activated piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B. Br J Pharmacol. 179:3778–3814. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Lu J, Zhang S, Jie C, Chen C, Xiao C, Qin C and Cheng D: Piezo1-mediated mechanotransduction contributes to disturbed flow-induced atherosclerotic endothelial inflammation. J Am Heart Assoc. 13:e0355582024. View Article : Google Scholar : PubMed/NCBI | |
Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, Wettschureck N, Althoff TF and Offermanns S: Piezo1 and G(q)/G(11) promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med. 215:2655–2672. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feaver RE, Gelfand BD, Wang C, Schwartz MA and Blackman BR: Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res. 106:1703–1711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N and Offermanns S: Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 126:4527–4536. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang D, Zhang C, Yang W, Li C, Gao Z, Pei K and Li Y: Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation. Hum Cell. 35:51–62. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Pan X, Cheng W, Deng B, He Y, Zhang L, Ning Y and Li J: Tubeimoside I antagonizes yoda1-evoked piezo1 channel activation. Front Pharmacol. 11:7682020. View Article : Google Scholar : PubMed/NCBI | |
Pourteymour S, Fan J, Majhi RK, Guo S, Sun X, Huang Z, Liu Y, Winter H, Bäcklund A, Skenteris NT, et al: PIEZO1 targeting in macrophages boosts phagocytic activity and foam cell apoptosis in atherosclerosis. Cell Mol Life Sci. 81:3312024. View Article : Google Scholar : PubMed/NCBI | |
Atcha H, Kulkarni D, Meli VS, Veerasubramanian PK, Wang Y, Cahalan MD, Pathak MM and Liu WF: Piezo1-mediated mechanotransduction enhances macrophage oxidized low-density lipoprotein uptake and atherogenesis. PNAS Nexus. 3:pgae4362024. View Article : Google Scholar : PubMed/NCBI | |
Chu T, Wang Y, Wang S, Li J, Li Z, Wei Z, Li J and Bian Y: Kaempferol regulating macrophage foaming and atherosclerosis through piezo1-mediated MAPK/NF-κB and Nrf2/HO-1 signaling pathway. J Adv Res. 17:S2090–S1232. 2024. | |
Lin C, Zheng X, Lin S, Zhang Y, Wu J and Li Y: Mechanotransduction regulates the interplays between alveolar epithelial and vascular endothelial cells in lung. Front Physiol. 13:8183942022. View Article : Google Scholar : PubMed/NCBI | |
Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, Kranz C and Frick M: Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J. 34:12785–12804. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liang GP, Xu J, Cao LL, Zeng YH, Chen BX, Yang J, Zhang ZW and Kang Y: Piezo1 induced apoptosis of type II pneumocytes during ARDS. Respir Res. 20:1182019. View Article : Google Scholar : PubMed/NCBI | |
Huang JQ, Zhang H, Guo XW, Lu Y, Wang SN, Cheng B, Dong SH, Lyu XL, Li FS and Li YW: Mechanically activated calcium channel PIEZO1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-β1. Front Mol Biosci. 8:7252752021. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Zhang Y, Lu D, Huang T, Yan K, Yang W and Gao J: Mechanosensitive Piezo1 channel activation promotes ventilator-induced lung injury via disruption of endothelial junctions in ARDS rats. Biochem Biophys Res Commun. 556:79–86. 2021. View Article : Google Scholar : PubMed/NCBI | |
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, et al: Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 573:69–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline M, Papautsky I, et al: Trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity. 57:52–67.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H and Akbari O: Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med. 221:e202318352024. View Article : Google Scholar : PubMed/NCBI | |
Ríos CC, Campiño JI, Posada-López A, Rodríguez-Medina C and Botero JE: Occlusal trauma is associated with periodontitis: A retrospective case-control study. J Periodontol. 92:1788–1794. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grieve WG III, Johnson GK, Moore RN, Reinhardt RA and DuBois LM: Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 105:369–374. 1994. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Lin H, Chen Y, Lan Y, Wang H, Li T, Hu Z and Zou S: Piezo1 contributes to alveolar bone remodeling by activating β-catenin under compressive stress. Am J Orthod Dentofacial Orthop. 165:458–470. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Li J, Wang Y, Ye R, Feng X, Jing Z and Zhao Z: Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod. 85:87–94. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng F, Wu T, Wang F, Li H, Tang H, Cui X, Li C, Wang Y and Jiang J: Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1. Front Bioeng Biotechnol. 12:13474062024. View Article : Google Scholar : PubMed/NCBI | |
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang X, Ji N, Li HM and Cai SX: Mechanisms of the mechanically activated ion channel Piezo1 protein in mediating osteogenic differentiation of periodontal ligament stem cells via the Notch signaling pathway. Hua Xi Kou Qiang Yi Xue Za Zhi. 38:628–636. 2020.(In Chinese). PubMed/NCBI | |
Sokos D, Everts V and de Vries TJ: Role of periodontal ligament fibroblasts in osteoclastogenesis: A review. J Periodontal Res. 50:152–159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Horie S, Nakatomi C, Ito-Sago M, Morii A, Orimoto A, Ikeda H, Hsu CC, Naniwa M, Mizuhara M, Gunjigake K, et al: PIEZO1 promotes ATP release from periodontal ligament cells following compression force. Eur J Orthod. 45:565–574. 2023. View Article : Google Scholar : PubMed/NCBI | |
Agrawal A and Gartland A: P2X7 receptors: Role in bone cell formation and function. J Mol Endocrinol. 54:R75–R88. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai G, Lu Y, Zhong W, Wang T, Li Y, Ruan X, Chen H, Sun L, Guan Z, Li G, et al: Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif. 56:e134402023. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Guan J, Jin Z, Yin C, Wu S, Sun W, Zhang H and Yan B: Mechanical force modulates macrophage proliferation via Piezo1-AKT-Cyclin D1 axis. FASEB J. 36:e224232022. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Chu Z, Chu CH, Dong S, Li G, Wu J and Tang C: Macrophages induce gingival destruction via piezo1-mediated MMPs-degrading collagens in periodontitis. Front Immunol. 14:11946622023. View Article : Google Scholar : PubMed/NCBI | |
Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P, Sharp A, Burgess E, Moeendarbary E, Dev KK and Sheridan GK: Infection augments expression of mechanosensing piezo1 channels in amyloid plaque-reactive astrocytes. Front Aging Neurosci. 10:3322018. View Article : Google Scholar : PubMed/NCBI | |
Segel M, Neumann B, Hill MFE, Weber IP, Viscomi C, Zhao C, Young A, Agley CC, Thompson AJ, Gonzalez GA, et al: Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 573:130–134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH and Pekny M: Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA. 103:17513–17518. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G and Hua F: Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front Immunol. 13:8161492022. View Article : Google Scholar : PubMed/NCBI | |
Velasco-Estevez M, Rolle SO, Mampay M, Dev KK and Sheridan GK: Piezo1 regulates calcium oscillations and cytokine release from astrocytes. Glia. 68:145–160. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Colonna M: Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice? J Exp Med. 218:e202027172021.PubMed/NCBI | |
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL and Burguillos MA: Microglia: Agents of the CNS pro-inflammatory response. Cells. 9:17172020. View Article : Google Scholar : PubMed/NCBI | |
Geng J, Shi Y, Zhang J, Yang B, Wang P, Yuan W, Zhao H, Li J, Qin F, Hong L, et al: TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat Commun. 12:35192021. View Article : Google Scholar : PubMed/NCBI | |
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, et al: Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation. 19:1472022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Bian W, Yang D, Yang M and Luo H: Inhibiting the Piezo1 channel protects microglia from acute hyperglycaemia damage through the JNK1 and mTOR signalling pathways. Life Sci. 264:1186672021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhou L, Yi P, Zhan F, Zhou L, Dong Y, Xiong Y, Hua F and Xu G: ω3-PUFA alleviates neuroinflammation by upregulating miR-107 targeting PIEZO1/NFκB p65. Int Immunopharmacol. 132:1119962024. View Article : Google Scholar : PubMed/NCBI | |
Kavalali ET: Neuronal Ca2+ signalling at rest and during spontaneous neurotransmission. J Physiol. 598:1649–1654. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Lian W and Zhao L: Calcium signaling in cancer progression and therapy. FEBS J. 288:6187–6205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S and Oliveira JF: Calcium-dependent signaling in astrocytes: Downstream mechanisms and implications for cognition. J Neurochem. 169:e700192025. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Wang D, Yang X, Ma F, Han W, Hu J and Mei Q: The mechanosensitive ion channel PIEZO1 in intestinal epithelial cells mediates inflammation through the NOD-Like receptor 3 pathway in Crohn's disease. Inflamm Bowel Dis. 29:103–115. 2023. View Article : Google Scholar : PubMed/NCBI | |
Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH, et al: Chemical activation of the mechanotransduction channel piezo1. Elife. 4:e073692015. View Article : Google Scholar : PubMed/NCBI | |
Evans EL, Cuthbertson K, Endesh N, Rode B, Blythe NM, Hyman AJ, Hall SJ, Gaunt HJ, Ludlow MJ, Foster R and Beech DJ: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of piezo1 and aortic relaxation. Br J Pharmacol. 175:1744–1759. 2018. View Article : Google Scholar : PubMed/NCBI | |
Botello-Smith WM, Jiang W, Zhang H, Ozkan AD, Lin YC, Pham CN, Lacroix JJ and Luo Y: A mechanism for the activation of the mechanosensitive piezo1 channel by the small molecule Yoda1. Nat Commun. 10:45032019. View Article : Google Scholar : PubMed/NCBI | |
Nie X, Abbasi Y and Chung MK: Piezo1 and piezo2 collectively regulate jawbone development. Development. 151:dev2023862024. View Article : Google Scholar : PubMed/NCBI | |
Steinecker-Frohnwieser B, Lohberger B, Toegel S, Windhager R, Glanz V, Kratschmann C, Leithner A and Weigl L: Activation of the mechanosensitive ion channels piezo1 and TRPV4 in primary human healthy and osteoarthritic chondrocytes exhibits ion channel crosstalk and modulates gene expression. Int J Mol Sci. 24:78682023. View Article : Google Scholar : PubMed/NCBI | |
Lin CY, Sassi A, Wu Y, Seaman K, Tang W, Song X, Bienenstock R, Yokota H, Sun Y, Geng F, et al: Mechanotransduction pathways regulating YAP nuclear translocation under Yoda1 and vibration in osteocytes. Bone. 190:1172832025. View Article : Google Scholar : PubMed/NCBI | |
Olsen BR, Reginato AM and Wang W: Bone development. Ann Rev Cell Dev Biol. 16:191–220. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chi S, Guo H, Li G, Wang L, Zhao Q, Rao Y, Zu L, He W and Xiao B: A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat Commun. 9:13002018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M and Xiao B: Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron. 89:1248–1263. 2016. View Article : Google Scholar : PubMed/NCBI | |
Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, et al: Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 483:176–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dhein S, Salameh A, Berkels R and Klaus W: Dual mode of action of dihydropyridine calcium antagonists: A role for nitric oxide. Drugs. 58:397–404. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cox CD and Gottlieb PA: Amphipathic molecules modulate PIEZO1 activity. Biochem Soc Trans. 47:1833–1842. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maneshi MM, Ziegler L, Sachs F, Hua SZ and Gottlieb PA: Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1. Sci Rep. 8:142672018. View Article : Google Scholar : PubMed/NCBI | |
Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF and Vásquez V: Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun. 10:12002019. View Article : Google Scholar : PubMed/NCBI | |
Marushack GK, Savadipour A, Tang R, Garcia-Castorena JM, Rashidi N, Nims RJ, Harasymowicz NS, Kim YS and Guilak F: Polyunsaturated fatty acids suppress PIEZO ion channel mechanotransduction in articular chondrocytes. FASEB J. 39:e702902025. View Article : Google Scholar : PubMed/NCBI | |
Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N and Gottlieb PA: cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon. 42:263–274. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bae C, Sachs F and Gottlieb PA: The mechanosensitive ion channel piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 50:6295–6300. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gnanasambandam R, Ghatak C, Yasmann A, Nishizawa K, Sachs F, Ladokhin AS, Sukharev SI and Suchyna TM: GsMTx4: Mechanism of inhibiting mechanosensitive ion channels. Biophys J. 112:31–45. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suchyna TM: Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog Biophys Mol Biol. 130:244–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chen J, Babicheva A, Jain PP, Rodriguez M, Ayon RJ, Ravellette KS, Wu L, Balistrieri F, Tang H, et al: Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am J Physiol Cell Physiol. 321:C1010–C1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Zhuang H, Li B, Jiang F, Zhang Y and Zhou P: Gsmtx4 alleviated osteoarthritis through Piezo1/Calcineurin/NFAT1 signaling axis under excessive mechanical strain. Int J Mol Sci. 24:40222023. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta D, Karginov AV, Hu G and Malik AB: Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol. 316:C92–C103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wadud R, Hannemann A, Rees DC, Brewin JN and Gibson JS: Yoda1 and phosphatidylserine exposure in red cells from patients with sickle cell anaemia. Sci Rep. 10:201102020. View Article : Google Scholar : PubMed/NCBI | |
Zhong G, Su S, Li J, Zhao H, Hu D, Chen J, Li S, Lin Y, Wen L, Lin X, et al: Activation of Piezo1 promotes osteogenic differentiation of aortic valve interstitial cell through YAP-dependent glutaminolysis. Sci Adv. 9:eadg04782023. View Article : Google Scholar : PubMed/NCBI | |
Kenmochi M, Kawarasaki S, Takizawa S, Okamura K, Goto T and Uchida K: Involvement of mechano-sensitive piezo1 channel in the differentiation of brown adipocytes. J Physiol Sci. 72:132022. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Zong HF, Shan Y, Zhang SC, Guan WP, Yang Y and Zhao HL: Piezo1 suppression reduces demyelination after intracerebral hemorrhage. Neural Regen Res. 18:1750–1756. 2023.PubMed/NCBI | |
Wang CL, Gao MZ, Gao DM, Guo YH, Gao Z, Gao XJ, Wang JQ and Qiao MQ: Tubeimoside-1: A review of its antitumor effects, pharmacokinetics, toxicity, and targeting preparations. Front Pharmacol. 13:9412702022. View Article : Google Scholar : PubMed/NCBI | |
Hong T, Pan X, Xu H, Zheng Z, Wen L, Li J and Xia M: Jatrorrhizine inhibits Piezo1 activation and reduces vascular inflammation in endothelial cells. Biomed Pharmacother. 163:1147552023. View Article : Google Scholar : PubMed/NCBI | |
Gallelli L: Escin: A review of its anti-edematous, anti-inflammatory, and venotonic properties. Drug Des Devel Ther. 13:3425–3437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chu T, Pan X, Bian Y and Li J: Escin ameliorates inflammation via inhibiting mechanical stretch and chemically induced Piezo1 activation in vascular endothelial cells. Eur J Pharmacol. 956:1759512023. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Long Z, Dong X, Zhang T, Zhao J, Sun B, Zhu J, Li J, Wang Q, Yang Z, et al: Cyclophosphamide-induced HCN1 channel upregulation in interstitial Cajal-like cells leads to bladder hyperactivity in mice. Exp Mol Med. 49:e3192017. View Article : Google Scholar : PubMed/NCBI | |
Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, et al: Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 129:2775–2791. 2019. View Article : Google Scholar : PubMed/NCBI | |
Micek HM, Yang N, Dutta M, Rosenstock L, Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S and Kreeger PK: The role of piezo1 mechanotransduction in high-grade serous ovarian cancer: Insights from an in vitro model of collective detachment. Sci Adv. 10:eadl44632024. View Article : Google Scholar : PubMed/NCBI |