|
1
|
Coste B, Mathur J, Schmidt M, Earley TJ,
Ranade S, Petrus MJ, Dubin AE and Patapoutian A: Piezo1 and Piezo2
are essential components of distinct mechanically activated cation
channels. Science. 330:55–60. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Murthy SE, Dubin AE and Patapoutian A:
Piezos thrive under pressure: Mechanically activated ion channels
in health and disease. Nat Rev Mol Cell Biol. 18:771–783. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Orsini EM, Perelas A, Southern BD, Grove
LM, Olman MA and Scheraga RG: Stretching the function of innate
immune cells. Front Immunol. 12:7673192021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nims RJ, Pferdehirt L, Ho NB, Savadipour
A, Lorentz J, Sohi S, Kassab J, Ross AK, O'Conor CJ, Liedtke WB, et
al: A synthetic mechanogenetic gene circuit for autonomous drug
delivery in engineered tissues. Sci Adv. 7:eabd98582021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bagriantsev SN, Gracheva EO and Gallagher
PG: Piezo proteins: Regulators of mechanosensation and other
cellular processes. J Biol Chem. 289:31673–31681. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Richardson J, Kotevski A and Poole K: From
stretch to deflection: The importance of context in the activation
of mammalian, mechanically activated ion channels. FEBS J.
289:4447–4469. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Servin-Vences MR, Moroni M, Lewin GR and
Poole K: Direct measurement of TRPV4 and PIEZO1 activity reveals
multiple mechanotransduction pathways in chondrocytes. Elife.
6:e210742017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Saotome K, Murthy SE, Kefauver JM, Whitwam
T, Patapoutian A and Ward AB: Structure of the mechanically
activated ion channel Piezo1. Nature. 554:481–486. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhao Q, Zhou H, Chi S, Wang Y, Wang J,
Geng J, Wu K, Liu W, Zhang T, Dong MQ, et al: Structure and
mechanogating mechanism of the Piezo1 channel. Nature. 554:487–492.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kefauver JM, Ward AB and Patapoutian A:
Discoveries in structure and physiology of mechanically activated
ion channels. Nature. 587:567–576. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lewis AH and Grandl J: Inactivation
kinetics and mechanical gating of piezo1 ion channels depend on
subdomains within the cap. Cell Rep. 30:870–880.e872. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang Y, Yang X, Jiang J and Xiao B:
Structural designs and mechanogating mechanisms of the
mechanosensitive piezo channels. Trends Biochem Sci. 46:472–488.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao Q, Zhou H, Li X and Xiao B: The
mechanosensitive piezo1 channel: A three-bladed propeller-like
structure and a lever-like mechanogating mechanism. FEBS J.
286:2461–2470. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Baratchi S, Zaldivia MTK, Wallert M,
Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun
NM, Stub D, et al: Transcatheter aortic valve implantation
represents an anti-inflammatory therapy via reduction of shear
stress-induced, piezo-1-mediated monocyte activation. Circulation.
142:1092–1105. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Atcha H, Jairaman A, Holt JR, Meli VS,
Nagalla RR, Veerasubramanian PK, Brumm KT, Lim HE, Othy S, Cahalan
MD, et al: Mechanically activated ion channel Piezo1 modulates
macrophage polarization and stiffness sensing. Nat Commun.
12:32562021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Du Y, Xu B, Li Q, Peng C and Yang K: The
role of mechanically sensitive ion channel Piezo1 in bone
remodeling. Front Bioeng Biotechnol. 12:13421492024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li XF, Zhang Z, Li XD, Wang TB and Zhang
HN: Mechanism of the piezo1 protein-induced apoptosis of the
chondrocytes through the MAPK/ERK1/2 signal pathway. Zhonghua Yi
Xue Za Zhi. 96:2472–2477. 2016.(In Chinese). PubMed/NCBI
|
|
18
|
Amin AK, Huntley JS, Bush PG, Simpson AH
and Hall AC: Chondrocyte death in mechanically injured articular
cartilage-the influence of extracellular calcium. J Orthop Res.
27:778–784. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sugimoto A, Miyazaki A, Kawarabayashi K,
Shono M, Akazawa Y, Hasegawa T, Ueda-Yamaguchi K, Kitamura T,
Yoshizaki K, Fukumoto S and Iwamoto T: Piezo type mechanosensitive
ion channel component 1 functions as a regulator of the cell fate
determination of mesenchymal stem cells. Sci Rep. 7:176962017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lee W, Leddy HA, Chen Y, Lee SH, Zelenski
NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, et al:
Synergy between piezo1 and piezo2 channels confers high-strain
mechanosensitivity to articular cartilage. Proc Natl Acad Sci USA.
111:E5114–E5122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Qin C, Feng Y, Yin Z, Wang C, Yin R, Li Y,
Chen K, Tao T, Zhang K, Jiang Y and Gui J: The
PIEZO1/miR-155-5p/GDF6/SMAD2/3 signaling axis is involved in
inducing the occurrence and progression of osteoarthritis under
excessive mechanical stress. Cell Signal. 118:1111422024.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li Z, Huang Z and Bai L: Cell interplay in
osteoarthritis. Front Cell Dev Biol. 9:7204772021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Song J, Liu L, Lv L, Hu S, Tariq A, Wang W
and Dang X: Fluid shear stress induces Runx-2 expression via
upregulation of PIEZO1 in MC3T3-E1 cells. Cell Biol Int.
44:1491–1502. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang L, You X, Lotinun S, Zhang L, Wu N
and Zou W: Mechanical sensing protein PIEZO1 regulates bone
homeostasis via osteoblast-osteoclast crosstalk. Nat Commun.
11:2822020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li X, Han L, Nookaew I, Mannen E, Silva
MJ, Almeida M and Xiong J: Stimulation of Piezo1 by mechanical
signals promotes bone anabolism. Elife. 8:e496312019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong
Q, Zhang X, Zhou Y, Yadav PS, Lin J, et al: Piezo1/2 mediate
mechanotransduction essential for bone formation through concerted
activation of NFAT-YAP1-ß-catenin. Elife. 9:e527792020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jebari-Benslaiman S, Galicia-García U,
Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K,
Benito-Vicente A and Martín C: Pathophysiology of atherosclerosis.
Int J Mol Sci. 23:33462022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lanzer P, Hannan FM, Lanzer JD, Janzen J,
Raggi P, Furniss D, Schuchardt M, Thakker R, Fok PW, Saez-Rodriguez
J, et al: Medial arterial calcification: JACC state-of-the-art
review. J Am Coll Cardiol. 78:1145–1165. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang L, Li Y, Ma X, Liu J, Wang X, Zhang
L, Li C, Li Y and Yang W: Ginsenoside Rg1-Notoginsenoside
R1-protocatechuic aldehyde reduces atherosclerosis and attenuates
low-shear stress-induced vascular endothelial cell dysfunction.
Front Pharmacol. 11:5882592020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pan X, Wan R, Wang Y, Liu S, He Y, Deng B,
Luo S, Chen Y, Wen L, Hong T, et al: Inhibition of chemically and
mechanically activated piezo1 channels as a mechanism for
ameliorating atherosclerosis with salvianolic acid B. Br J
Pharmacol. 179:3778–3814. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lan Y, Lu J, Zhang S, Jie C, Chen C, Xiao
C, Qin C and Cheng D: Piezo1-mediated mechanotransduction
contributes to disturbed flow-induced atherosclerotic endothelial
inflammation. J Am Heart Assoc. 13:e0355582024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Albarrán-Juárez J, Iring A, Wang S, Joseph
S, Grimm M, Strilic B, Wettschureck N, Althoff TF and Offermanns S:
Piezo1 and G(q)/G(11) promote endothelial inflammation depending on
flow pattern and integrin activation. J Exp Med. 215:2655–2672.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Feaver RE, Gelfand BD, Wang C, Schwartz MA
and Blackman BR: Atheroprone hemodynamics regulate fibronectin
deposition to create positive feedback that sustains endothelial
inflammation. Circ Res. 106:1703–1711. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang S, Chennupati R, Kaur H, Iring A,
Wettschureck N and Offermanns S: Endothelial cation channel PIEZO1
controls blood pressure by mediating flow-induced ATP release. J
Clin Invest. 126:4527–4536. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang Y, Wang D, Zhang C, Yang W, Li C, Gao
Z, Pei K and Li Y: Piezo1 mediates endothelial atherogenic
inflammatory responses via regulation of YAP/TAZ activation. Hum
Cell. 35:51–62. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu S, Pan X, Cheng W, Deng B, He Y, Zhang
L, Ning Y and Li J: Tubeimoside I antagonizes yoda1-evoked piezo1
channel activation. Front Pharmacol. 11:7682020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pourteymour S, Fan J, Majhi RK, Guo S, Sun
X, Huang Z, Liu Y, Winter H, Bäcklund A, Skenteris NT, et al:
PIEZO1 targeting in macrophages boosts phagocytic activity and foam
cell apoptosis in atherosclerosis. Cell Mol Life Sci. 81:3312024.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Atcha H, Kulkarni D, Meli VS,
Veerasubramanian PK, Wang Y, Cahalan MD, Pathak MM and Liu WF:
Piezo1-mediated mechanotransduction enhances macrophage oxidized
low-density lipoprotein uptake and atherogenesis. PNAS Nexus.
3:pgae4362024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chu T, Wang Y, Wang S, Li J, Li Z, Wei Z,
Li J and Bian Y: Kaempferol regulating macrophage foaming and
atherosclerosis through piezo1-mediated MAPK/NF-κB and Nrf2/HO-1
signaling pathway. J Adv Res. 17:S2090–S1232. 2024.
|
|
40
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J and
Li Y: Mechanotransduction regulates the interplays between alveolar
epithelial and vascular endothelial cells in lung. Front Physiol.
13:8183942022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Diem K, Fauler M, Fois G, Hellmann A,
Winokurow N, Schumacher S, Kranz C and Frick M: Mechanical stretch
activates piezo1 in caveolae of alveolar type I cells to trigger
ATP release and paracrine stimulation of surfactant secretion from
alveolar type II cells. FASEB J. 34:12785–12804. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liang GP, Xu J, Cao LL, Zeng YH, Chen BX,
Yang J, Zhang ZW and Kang Y: Piezo1 induced apoptosis of type II
pneumocytes during ARDS. Respir Res. 20:1182019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang JQ, Zhang H, Guo XW, Lu Y, Wang SN,
Cheng B, Dong SH, Lyu XL, Li FS and Li YW: Mechanically activated
calcium channel PIEZO1 modulates radiation-induced
epithelial-mesenchymal transition by forming a positive feedback
with TGF-β1. Front Mol Biosci. 8:7252752021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang L, Zhang Y, Lu D, Huang T, Yan K,
Yang W and Gao J: Mechanosensitive Piezo1 channel activation
promotes ventilator-induced lung injury via disruption of
endothelial junctions in ARDS rats. Biochem Biophys Res Commun.
556:79–86. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Solis AG, Bielecki P, Steach HR, Sharma L,
Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, et al:
Mechanosensation of cyclical force by PIEZO1 is essential for
innate immunity. Nature. 573:69–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le
JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline
M, Papautsky I, et al: Trans-Endothelial neutrophil migration
activates bactericidal function via Piezo1 mechanosensing.
Immunity. 57:52–67.e10. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi
MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H and Akbari O:
Piezo1 channels restrain ILC2s and regulate the development of
airway hyperreactivity. J Exp Med. 221:e202318352024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ríos CC, Campiño JI, Posada-López A,
Rodríguez-Medina C and Botero JE: Occlusal trauma is associated
with periodontitis: A retrospective case-control study. J
Periodontol. 92:1788–1794. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Grieve WG III, Johnson GK, Moore RN,
Reinhardt RA and DuBois LM: Prostaglandin E (PGE) and interleukin-1
beta (IL-1 beta) levels in gingival crevicular fluid during human
orthodontic tooth movement. Am J Orthod Dentofacial Orthop.
105:369–374. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang Y, Lin H, Chen Y, Lan Y, Wang H, Li
T, Hu Z and Zou S: Piezo1 contributes to alveolar bone remodeling
by activating β-catenin under compressive stress. Am J Orthod
Dentofacial Orthop. 165:458–470. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jin Y, Li J, Wang Y, Ye R, Feng X, Jing Z
and Zhao Z: Functional role of mechanosensitive ion channel Piezo1
in human periodontal ligament cells. Angle Orthod. 85:87–94. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zheng F, Wu T, Wang F, Li H, Tang H, Cui
X, Li C, Wang Y and Jiang J: Low-intensity pulsed ultrasound
promotes the osteogenesis of mechanical force-treated periodontal
ligament cells via Piezo1. Front Bioeng Biotechnol. 12:13474062024.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Seo BM, Miura M, Gronthos S, Bartold PM,
Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S:
Investigation of multipotent postnatal stem cells from human
periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang L, Wang X, Ji N, Li HM and Cai SX:
Mechanisms of the mechanically activated ion channel Piezo1 protein
in mediating osteogenic differentiation of periodontal ligament
stem cells via the Notch signaling pathway. Hua Xi Kou Qiang Yi Xue
Za Zhi. 38:628–636. 2020.(In Chinese). PubMed/NCBI
|
|
55
|
Sokos D, Everts V and de Vries TJ: Role of
periodontal ligament fibroblasts in osteoclastogenesis: A review. J
Periodontal Res. 50:152–159. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Horie S, Nakatomi C, Ito-Sago M, Morii A,
Orimoto A, Ikeda H, Hsu CC, Naniwa M, Mizuhara M, Gunjigake K, et
al: PIEZO1 promotes ATP release from periodontal ligament cells
following compression force. Eur J Orthod. 45:565–574. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Agrawal A and Gartland A: P2X7 receptors:
Role in bone cell formation and function. J Mol Endocrinol.
54:R75–R88. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cai G, Lu Y, Zhong W, Wang T, Li Y, Ruan
X, Chen H, Sun L, Guan Z, Li G, et al: Piezo1-mediated M2
macrophage mechanotransduction enhances bone formation through
secretion and activation of transforming growth factor-β1. Cell
Prolif. 56:e134402023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xu H, Guan J, Jin Z, Yin C, Wu S, Sun W,
Zhang H and Yan B: Mechanical force modulates macrophage
proliferation via Piezo1-AKT-Cyclin D1 axis. FASEB J.
36:e224232022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhao T, Chu Z, Chu CH, Dong S, Li G, Wu J
and Tang C: Macrophages induce gingival destruction via
piezo1-mediated MMPs-degrading collagens in periodontitis. Front
Immunol. 14:11946622023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Velasco-Estevez M, Mampay M, Boutin H,
Chaney A, Warn P, Sharp A, Burgess E, Moeendarbary E, Dev KK and
Sheridan GK: Infection augments expression of mechanosensing piezo1
channels in amyloid plaque-reactive astrocytes. Front Aging
Neurosci. 10:3322018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Segel M, Neumann B, Hill MFE, Weber IP,
Viscomi C, Zhao C, Young A, Agley CC, Thompson AJ, Gonzalez GA, et
al: Niche stiffness underlies the ageing of central nervous system
progenitor cells. Nature. 573:130–134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wilhelmsson U, Bushong EA, Price DL, Smarr
BL, Phung V, Terada M, Ellisman MH and Pekny M: Redefining the
concept of reactive astrocytes as cells that remain within their
unique domains upon reaction to injury. Proc Natl Acad Sci USA.
103:17513–17518. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang
X, Xu G and Hua F: Piezo1 channels as force sensors in mechanical
force-related chronic inflammation. Front Immunol. 13:8161492022.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Velasco-Estevez M, Rolle SO, Mampay M, Dev
KK and Sheridan GK: Piezo1 regulates calcium oscillations and
cytokine release from astrocytes. Glia. 68:145–160. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen Y and Colonna M: Microglia in
Alzheimer's disease at single-cell level. Are there common patterns
in humans and mice? J Exp Med. 218:e202027172021.PubMed/NCBI
|
|
67
|
Rodríguez-Gómez JA, Kavanagh E,
Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM,
Joseph B, Hajji N, Venero JL and Burguillos MA: Microglia: Agents
of the CNS pro-inflammatory response. Cells. 9:17172020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Geng J, Shi Y, Zhang J, Yang B, Wang P,
Yuan W, Zhao H, Li J, Qin F, Hong L, et al: TLR4 signalling via
Piezo1 engages and enhances the macrophage mediated host response
during bacterial infection. Nat Commun. 12:35192021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jäntti H, Sitnikova V, Ishchenko Y,
Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita
N, Ohtonen S, Belaya I, et al: Microglial amyloid beta clearance is
driven by PIEZO1 channels. J Neuroinflammation. 19:1472022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu H, Bian W, Yang D, Yang M and Luo H:
Inhibiting the Piezo1 channel protects microglia from acute
hyperglycaemia damage through the JNK1 and mTOR signalling
pathways. Life Sci. 264:1186672021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu H, Zhou L, Yi P, Zhan F, Zhou L, Dong
Y, Xiong Y, Hua F and Xu G: ω3-PUFA alleviates neuroinflammation by
upregulating miR-107 targeting PIEZO1/NFκB p65. Int
Immunopharmacol. 132:1119962024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kavalali ET: Neuronal Ca2+
signalling at rest and during spontaneous neurotransmission. J
Physiol. 598:1649–1654. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu L, Lian W and Zhao L: Calcium signaling
in cancer progression and therapy. FEBS J. 288:6187–6205. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Veiga A, Abreu DS, Dias JD, Azenha P,
Barsanti S and Oliveira JF: Calcium-dependent signaling in
astrocytes: Downstream mechanisms and implications for cognition. J
Neurochem. 169:e700192025. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liu Q, Wang D, Yang X, Ma F, Han W, Hu J
and Mei Q: The mechanosensitive ion channel PIEZO1 in intestinal
epithelial cells mediates inflammation through the NOD-Like
receptor 3 pathway in Crohn's disease. Inflamm Bowel Dis.
29:103–115. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Syeda R, Xu J, Dubin AE, Coste B, Mathur
J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH, et al: Chemical
activation of the mechanotransduction channel piezo1. Elife.
4:e073692015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Evans EL, Cuthbertson K, Endesh N, Rode B,
Blythe NM, Hyman AJ, Hall SJ, Gaunt HJ, Ludlow MJ, Foster R and
Beech DJ: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked
activation of piezo1 and aortic relaxation. Br J Pharmacol.
175:1744–1759. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Botello-Smith WM, Jiang W, Zhang H, Ozkan
AD, Lin YC, Pham CN, Lacroix JJ and Luo Y: A mechanism for the
activation of the mechanosensitive piezo1 channel by the small
molecule Yoda1. Nat Commun. 10:45032019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nie X, Abbasi Y and Chung MK: Piezo1 and
piezo2 collectively regulate jawbone development. Development.
151:dev2023862024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Steinecker-Frohnwieser B, Lohberger B,
Toegel S, Windhager R, Glanz V, Kratschmann C, Leithner A and Weigl
L: Activation of the mechanosensitive ion channels piezo1 and TRPV4
in primary human healthy and osteoarthritic chondrocytes exhibits
ion channel crosstalk and modulates gene expression. Int J Mol Sci.
24:78682023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lin CY, Sassi A, Wu Y, Seaman K, Tang W,
Song X, Bienenstock R, Yokota H, Sun Y, Geng F, et al:
Mechanotransduction pathways regulating YAP nuclear translocation
under Yoda1 and vibration in osteocytes. Bone. 190:1172832025.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Olsen BR, Reginato AM and Wang W: Bone
development. Ann Rev Cell Dev Biol. 16:191–220. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang Y, Chi S, Guo H, Li G, Wang L, Zhao
Q, Rao Y, Zu L, He W and Xiao B: A lever-like transduction pathway
for long-distance chemical- and mechano-gating of the
mechanosensitive Piezo1 channel. Nat Commun. 9:13002018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi
P, Zhang M and Xiao B: Ion permeation and mechanotransduction
mechanisms of mechanosensitive piezo channels. Neuron.
89:1248–1263. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Coste B, Xiao B, Santos JS, Syeda R,
Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, et al:
Piezo proteins are pore-forming subunits of mechanically activated
channels. Nature. 483:176–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dhein S, Salameh A, Berkels R and Klaus W:
Dual mode of action of dihydropyridine calcium antagonists: A role
for nitric oxide. Drugs. 58:397–404. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cox CD and Gottlieb PA: Amphipathic
molecules modulate PIEZO1 activity. Biochem Soc Trans.
47:1833–1842. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Maneshi MM, Ziegler L, Sachs F, Hua SZ and
Gottlieb PA: Enantiomeric Aβ peptides inhibit the fluid shear
stress response of PIEZO1. Sci Rep. 8:142672018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Romero LO, Massey AE, Mata-Daboin AD,
Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF and Vásquez V:
Dietary fatty acids fine-tune Piezo1 mechanical response. Nat
Commun. 10:12002019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Marushack GK, Savadipour A, Tang R,
Garcia-Castorena JM, Rashidi N, Nims RJ, Harasymowicz NS, Kim YS
and Guilak F: Polyunsaturated fatty acids suppress PIEZO ion
channel mechanotransduction in articular chondrocytes. FASEB J.
39:e702902025. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ostrow KL, Mammoser A, Suchyna T, Sachs F,
Oswald R, Kubo S, Chino N and Gottlieb PA: cDNA sequence and in
vitro folding of GsMTx4, a specific peptide inhibitor of
mechanosensitive channels. Toxicon. 42:263–274. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bae C, Sachs F and Gottlieb PA: The
mechanosensitive ion channel piezo1 is inhibited by the peptide
GsMTx4. Biochemistry. 50:6295–6300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gnanasambandam R, Ghatak C, Yasmann A,
Nishizawa K, Sachs F, Ladokhin AS, Sukharev SI and Suchyna TM:
GsMTx4: Mechanism of inhibiting mechanosensitive ion channels.
Biophys J. 112:31–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Suchyna TM: Piezo channels and GsMTx4: Two
milestones in our understanding of excitatory mechanosensitive
channels and their role in pathology. Prog Biophys Mol Biol.
130:244–253. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang Z, Chen J, Babicheva A, Jain PP,
Rodriguez M, Ayon RJ, Ravellette KS, Wu L, Balistrieri F, Tang H,
et al: Endothelial upregulation of mechanosensitive channel Piezo1
in pulmonary hypertension. Am J Physiol Cell Physiol.
321:C1010–C1027. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ren X, Zhuang H, Li B, Jiang F, Zhang Y
and Zhou P: Gsmtx4 alleviated osteoarthritis through
Piezo1/Calcineurin/NFAT1 signaling axis under excessive mechanical
strain. Int J Mol Sci. 24:40222023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kang H, Hong Z, Zhong M, Klomp J, Bayless
KJ, Mehta D, Karginov AV, Hu G and Malik AB: Piezo1 mediates
angiogenesis through activation of MT1-MMP signaling. Am J Physiol
Cell Physiol. 316:C92–C103. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wadud R, Hannemann A, Rees DC, Brewin JN
and Gibson JS: Yoda1 and phosphatidylserine exposure in red cells
from patients with sickle cell anaemia. Sci Rep. 10:201102020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhong G, Su S, Li J, Zhao H, Hu D, Chen J,
Li S, Lin Y, Wen L, Lin X, et al: Activation of Piezo1 promotes
osteogenic differentiation of aortic valve interstitial cell
through YAP-dependent glutaminolysis. Sci Adv. 9:eadg04782023.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kenmochi M, Kawarasaki S, Takizawa S,
Okamura K, Goto T and Uchida K: Involvement of mechano-sensitive
piezo1 channel in the differentiation of brown adipocytes. J
Physiol Sci. 72:132022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Qu J, Zong HF, Shan Y, Zhang SC, Guan WP,
Yang Y and Zhao HL: Piezo1 suppression reduces demyelination after
intracerebral hemorrhage. Neural Regen Res. 18:1750–1756.
2023.PubMed/NCBI
|
|
102
|
Wang CL, Gao MZ, Gao DM, Guo YH, Gao Z,
Gao XJ, Wang JQ and Qiao MQ: Tubeimoside-1: A review of its
antitumor effects, pharmacokinetics, toxicity, and targeting
preparations. Front Pharmacol. 13:9412702022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hong T, Pan X, Xu H, Zheng Z, Wen L, Li J
and Xia M: Jatrorrhizine inhibits Piezo1 activation and reduces
vascular inflammation in endothelial cells. Biomed Pharmacother.
163:1147552023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Gallelli L: Escin: A review of its
anti-edematous, anti-inflammatory, and venotonic properties. Drug
Des Devel Ther. 13:3425–3437. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang Y, Chu T, Pan X, Bian Y and Li J:
Escin ameliorates inflammation via inhibiting mechanical stretch
and chemically induced Piezo1 activation in vascular endothelial
cells. Eur J Pharmacol. 956:1759512023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu Q, Long Z, Dong X, Zhang T, Zhao J,
Sun B, Zhu J, Li J, Wang Q, Yang Z, et al: Cyclophosphamide-induced
HCN1 channel upregulation in interstitial Cajal-like cells leads to
bladder hyperactivity in mice. Exp Mol Med. 49:e3192017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Iring A, Jin YJ, Albarrán-Juárez J,
Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne
C, et al: Shear stress-induced endothelial adrenomedullin signaling
regulates vascular tone and blood pressure. J Clin Invest.
129:2775–2791. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Micek HM, Yang N, Dutta M, Rosenstock L,
Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S and Kreeger PK:
The role of piezo1 mechanotransduction in high-grade serous ovarian
cancer: Insights from an in vitro model of collective detachment.
Sci Adv. 10:eadl44632024. View Article : Google Scholar : PubMed/NCBI
|