
Zinc in psychosis (Review)
- Authors:
- Christos Theleritis
- Marina Demetriou
- Maria-Ioanna Stefanou
- Evangelos Alevyzakis
- Michael Makris
- Vassilios Zoumpourlis
- Melpomeni Peppa
- Nikolaos Smyrnis
- Demetrios A. Spandidos
- Emmanouil Rizos
-
Affiliations: Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece, Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece, Allergy Unit, Second Department of Dermatology and Venereology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece, Second Department of Internal Medicine‑Propaedeutic, Endocrine Unit, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: May 13, 2025 https://doi.org/10.3892/mmr.2025.13566
- Article Number: 201
-
Copyright: © Theleritis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Adamo AM and Oteiza PI: Zinc deficiency and neurodevelopment: The case of neurons. Biofactors. 36:117–124. 2010. View Article : Google Scholar : PubMed/NCBI | |
Joe P, Getz M, Redman S, Petrilli M, Kranz TM, Ahmad S and Malaspina D: Serum zinc levels in acute psychiatric patients: A case series. Psychiatry Res. 261:344–350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stachowicz K: Regulation of COX-2 expression by selected trace elements and heavy metals: Health implications, and changes in neuronal plasticity. A review. J Trace Elem Med Biol. 79:1272262023. View Article : Google Scholar : PubMed/NCBI | |
Pfeiffer CC and Iliev V: A study of Zn deficiency and copper excess in the schizophrenias. Pfeiffer CC: Neurobiology of Trace Metals Zinc and Copper. Academic Press; New York: pp. 141–165. 1972 | |
Scassellati C, Bonvicini C, Benussi L, Ghidoni R and Squitti R: Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J Trace Elem Med Biol. 60:1264992020. View Article : Google Scholar : PubMed/NCBI | |
Nakashima AS and Dyck RH: Zinc and cortical plasticity. Brain Res Rev. 59:347–373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Młyniec K, Davies CL, de Agüero Sánchez IG, Pytka K, Budziszewska B and Nowak G: Essential elements in depression and anxiety. Part I. Pharmacol Rep. 66:534–544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kawahara M, Tanaka KI and Kato-Negishi M: Zinc, carnosine, and neurodegenerative diseases. Nutrients. 10:1472018. View Article : Google Scholar : PubMed/NCBI | |
Tamano H and Takeda A: Age-dependent modification of intracellular Zn2+ buffering in the hippocampus and its impact. Biol Pharm Bull. 42:1070–1075. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moynahan EJ: Letter: Zinc deficiency and disturbances of mood and visual behaviour. Lancet. 1:911976. View Article : Google Scholar : PubMed/NCBI | |
Prasad AS: Discovery of human zinc deficiency: Its impact on human health and disease. Adv Nutr. 4:176–190. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Um P, Dickerman BA and Liu J: Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications. Nutrients. 10:5842018. View Article : Google Scholar : PubMed/NCBI | |
Teschke R: Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury. Int J Mol Sci. 23:122132022. View Article : Google Scholar : PubMed/NCBI | |
Chauhan AK, Mittra N, Patel DV and Singh C: Cyclooxygenase-2 directs microglial activation-mediated inflammation and oxidative stress leading to intrinsic apoptosis in Zn-induced parkinsonism. Mol Neurobiol. 55:2162–2173. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kimura K and Kumura J: Preliminary reports on the metabolism of trace elements in neuro psychiatric diseases. I. Zinc in schizophrenia. Proc Jap Acad Sci. 41:943–947. 1965. View Article : Google Scholar | |
Grønli O, Kvamme JM, Friborg O and Wynn R: Zinc deficiency is common in several psychiatric disorders. PLoS One. 8:e827932013. View Article : Google Scholar : PubMed/NCBI | |
Petrilli MA, Kranz TM, Kleinhaus K, Joe P, Getz M, Johnson P, Chao MV and Malaspina D: The emerging role for zinc in depression and psychosis. Front Pharmacol. 8:4142017. View Article : Google Scholar : PubMed/NCBI | |
Murray RM and Lewis SW: Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed). 295:681–682. 1987. View Article : Google Scholar : PubMed/NCBI | |
Weinberger DR: Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 44:660–669. 1987. View Article : Google Scholar : PubMed/NCBI | |
Sandstead HH, Frederickson CJ and Penland JG: History of zinc as related to brain function. J Nutr. 130 (2S Suppl):496S–502S. 2000. View Article : Google Scholar : PubMed/NCBI | |
Takeda A and Tamano H: Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev. 62:33–44. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han S, Gilmartin M, Sheng W and Jin VX: Integrating rare variant genetics and brain transcriptome data implicates novel schizophrenia putative risk genes. Schizophr Res. 276:205–213. 2025. View Article : Google Scholar : PubMed/NCBI | |
McLardy T: Hippocampal zinc in chronic alcoholism and schizophrenia. IRCS Med Sci. 2:10101973. | |
Adams CE, Demasters B and Freedman R: Regional zinc staining in postmortem hippocampus from schizophrenic patients. Schizophr Res. 18:71–77. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kornhuber J, Lange KW, Kruzik P, Rausch WD, Gabriel E, Jellinger K and Riederer P: Iron, copper, zinc, magnesium, and calcium in postmortem brain tissue from schizophrenic patients. Biol Psychiatry. 36:31–34. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li D, Achkar JP, Haritunians T, Jacobs JP, Hui KY, D'Amato M, Brand S, Radford-Smith G, Halfvarson J, Niess JH, et al: A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition. Gastroenterology. 151:724–732. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY and Hinds DA: Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 48:709–717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marger L, Schubert CR and Bertrand D: Zinc: An underappreciated modulatory factor of brain function. Biochem Pharmacol. 91:426–435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA and Rizos E: Association of gut dysbiosis with first-episode psychosis (review). Mol Med Rep. 30:1302024. View Article : Google Scholar : PubMed/NCBI | |
Steiner J, Jacobs R, Panteli B, Brauner M, Schiltz K, Bahn S, Herberth M, Westphal S, Gos T, Walter M, et al: Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur Arch Psychiatry Clin Neurosci. 260:509–518. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carrera N, Arrojo M, Sanjuán J, Ramos-Ríos R, Paz E, Suárez-Rama JJ, Páramo M, Agra S, Brenlla J, Martínez S, et al: Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol Psychiatry. 71:169–177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ma C, Li Y, Chen R, Liu Y, Wan LP, Xiong Q, Wang C, Huo Y, Dang X, et al: The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Transl Psychiatry. 12:3612022. View Article : Google Scholar : PubMed/NCBI | |
Tseng WC, Reinhart V, Lanz TA, Weber ML, Pang J, Le KXV, Bell RD, O'Donnell P and Buhl DL: Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatr. 11:1362021. View Article : Google Scholar | |
Scarr E, Udawela M, Greenough MA, Neo J, Suk SM, Money TT, Upadhyay A, Bush AI, Everall IP, Thomas EA and Dean B: Increased cortical expression of the zinc transporter SLC39A12 suggests a breakdown in zinc cellular homeostasis as part of the pathophysiology of schizophrenia. NPJ Schizophr. 2:160022016. View Article : Google Scholar : PubMed/NCBI | |
Perez-Becerril C, Morris AG, Mortimer A, McKenna PJ and de Belleroche J: Allelic variants in the zinc transporter-3 gene, SLC30A3, a candidate gene identified from gene expression studies, show gender-specific association with schizophrenia. Eur Psychiatry. 29:172–178. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Hu D, Liang J, Bao YP, Meng SQ, Lu L and Shi J: Association between variants of zinc finger genes and psychiatric disorders: Systematic review and meta-analysis. Schizophr Res. 162:124–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lima VB, Sampaio Fde A, Bezerra DL, Moita Neto JM and Marreiro Ddo N: Parameters of glycemic control and their relationship with zinc concentrations in blood and with superoxide dismutase enzyme activity in type 2 diabetes patients. Arq Bras Endocrinol Metabol. 55:701–707. 2011. View Article : Google Scholar : PubMed/NCBI | |
Noleto Magalhães RC, Guedes Borges de Araujo C, Batista de Sousa Lima V, Machado Moita Neto J, do Nascimento Nogueira N and do Nascimento Marreiro D: Nutritional status of zinc and activity superoxide dismutase in chronic renal patients undergoing hemodialysis. Nutr Hosp. 26:1456–1461. 2011.PubMed/NCBI | |
Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS and de Oliveira ARS: Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel). 6:242017. View Article : Google Scholar : PubMed/NCBI | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID-19 (review). Int J Mol Med. 46:17–26. 2020.PubMed/NCBI | |
Consolo M, Amoroso A, Spandidos DA and Mazzarino MC: Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (review). Int J Mol Med. 24:143–152. 2009.PubMed/NCBI | |
Tsatsakis A, Renieri E, Tsoukalas D, Buga AM, Sarandi E, Vakonaki E, Fragkiadaki P, Alegakis A, Nikitovic D, Calina D, et al: A novel nutraceutical formulation increases telomere length and activates telomerase activity in middle-aged rats. Mol Med Rep. 28:2322023. View Article : Google Scholar : PubMed/NCBI | |
Tsoukalas D, Buga AM, Docea AO, Sarandi E, Mitrut R, Renieri E, Spandidos DA, Rogoveanu I, Cercelaru L, Niculescu M, et al: Reversal of brain aging by targeting telomerase: A nutraceutical approach. Int J Mol Med. 48:1992021. View Article : Google Scholar : PubMed/NCBI | |
Santa Cruz EC, Madrid KC, Arruda MAZ and Sussulini A: Association between trace elements in serum from bipolar disorder and schizophrenia patients considering treatment effects. J Trace Elem Med Biol. 59:1264672020. View Article : Google Scholar : PubMed/NCBI | |
Nowak G: Does interaction between zinc and glutamate system play a significant role in the mechanism of antidepressant action? Acta Pol Pharm. 58:73–75. 2001.PubMed/NCBI | |
Prakash A, Bharti K and Majeed AB: Zinc: indications in brain disorders. Fundam Clin Pharmacol. 29:131–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Salim S: Oxidative stress and psychological disorders. Curr Neuropharmacol. 12:140–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akarsu S, Bolu A, Aydemir E, Znir SB, Kurt YG, Znir S, Erdem M and Uzun Ö: The relationship between the number of manic episodes and oxidative stress indicators in bipolar disorder. Psychiatry Investig. 15:514–519. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo CH, Chen PC, Yeh MS, Hsiung DY and Wang CL: Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem. 44:275–280. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M and Kapczinski F: Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 32:1677–1681. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hendouei N, Farnia S, Mohseni F, Salehi A, Bagheri M, Shadfar F, Barzegar F, Hoseini SD, Charati JY and Shaki F: Alterations in oxidative stress markers and its correlation with clinical findings in schizophrenic patients consuming perphenazine, clozapine and risperidone. Biomed Pharmacother. 103:965–972. 2018. View Article : Google Scholar : PubMed/NCBI | |
Al-Hakeim HK, Al-Musawi AF, Al-Mulla A, Al-Dujaili AH, Debnath M and Maes M: The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis. PLoS One. 17:e02758392022. View Article : Google Scholar : PubMed/NCBI | |
Al-Hakeim HK, Altufaili MF, Almulla AF, Moustafa SR and Maes M: Increased lipid peroxidation and lowered antioxidant defenses predict methamphetamine induced psychosis. Cells. 11:36942022. View Article : Google Scholar : PubMed/NCBI | |
Pfeiffer CC and Bacchi D: Copper, zinc, manganese, niacin and pyridoxine in the schizophrenias. Appl Nutr. 27:9–39. 1975. | |
Srinivasan DP, Marr S, Wareing RA and Birch NJ: Magnesium Zn and copper in acute psychiatric patients. Mag Bull. 4:45–48. 1982. | |
Gillin JC, Carpenter WT, Hambidge KM, Wyatt RJ and Henkin RI: Zinc and copper in patients with schizophrenia. Encephale. 8:435–444. 1982.PubMed/NCBI | |
Potkin SG, Shore D, Torrey EF, Weinberger DR, Gillin JC, Henkin RI, Agarwal RP and Wyatt RJ: Cerebrospinal fluid zinc concentrations in ex-heroin addicts and patients with schizophrenia: Some preliminary observations. Biol Psychiatry. 17:1315–1322. 1982.PubMed/NCBI | |
Vaddadi KS, Gilleard CJ, Mindham RH and Butler R: A controlled trial of prostaglandin E1 precursor in chronic neuroleptic resistant schizophrenic patients. Psychopharmacology (Berl). 88:362–367. 1986. View Article : Google Scholar : PubMed/NCBI | |
Craven C, Duggan PF, Buckley N and Gaughran F: Serum zinc levels in patients with schizophrenia and their mothers. Schizophr Res. 26:83–84. 1997. View Article : Google Scholar : PubMed/NCBI | |
Herrán A, García-Unzueta MT, Fernández-González MD, Vázquez-Barquero JL, Alvarez C and Amado JA: Higher levels of serum copper in schizophrenic patients treated with depot neuroleptics. Psychiatry Res. 94:51–58. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stanley PC and Wakwe VC: Toxic trace metals in the mentally ill patients. Niger Postgrad Med J. 9:199–204. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tokdemir M, Polat SA, Acik Y, Gursu F, Cikim G and Deniz O: Blood zinc and copper concentrations in criminal and noncriminal schizophrenic men. Arch Androl. 49:365–368. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nechifor M, Vaideanu C, Palamaru I, Borza C and Mindreci I: The influence of some antipsychotics on erythrocyte magnesium and plasma magnesium, calcium, copper and zinc in patients with paranoid schizophrenia. J Am Coll Nutr. 23:549S–551S. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yanik M, Kocyigit A, Tutkun H, Vural H and Herken H: Plasma manganese, selenium, zinc, copper, and iron concentrations in patients with schizophrenia. Biol Trace Elem Res. 98:109–117. 2004. View Article : Google Scholar : PubMed/NCBI | |
Farzin D, Mansouri N and Yazdani T: Elevated plasma copper/zinc ratios in patients with schizophrenia. Eur Neuropsychopharmacol. 16:S364–S365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Devi PU, Chinnaswamy P, Murugan S and Selvi S: Plasma levels of trace elements in patients with different symptoms of schizophrenia. Biosci Biotechnol Res Asia. 5:261–268. 2008. | |
Rahman A, Azad MAK, Hossain I, Qusar MMAS, Bari W, Begum F, Huq SMI and Hasnat A: Zinc, manganese, calcium, copper, and cadmium level in scalp hair samples of schizophrenic patients. Biol Trace Elem Res. 127:102–108. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ghanem AEA, Ali EMM, El-Bakary AA, El Morsi D, Elkanishi SMH, Saleh ES and El-Said H: Copper and Zinc levels in hair of both schizophrenic and depressed. Mansoura J Forensic Med Clin Toxicol. 17:89–102. 2009. View Article : Google Scholar | |
Arinola G, Idonije B, Akinlade K and Ihenyen O: Essential trace metals and heavy metals in newly diagnosed schizophrenic patients and those on anti-psychotic medication. J Res Med Sci. 15:245–249. 2010.PubMed/NCBI | |
Kaya B, Akdağ N, Fadıllıoğlu E, Taycan SE, Emre MH, Unal S, Sayal A, Erdoğan H and Polat R: Elements levels and glucose-6-phosphate dehydrogenase activity in blood of patients with schizophrenia. J Psychiatry Neurol Sci. 25:198–205. 2012. | |
Cai L, Chen T, Yang J, Zhou K, Yan X, Chen W, Sun L, Li L, Qin S, Wang P, et al: Serum trace element differences between schizophrenia patients and controls in the Han Chinese population. Sci Rep. 5:150132015. View Article : Google Scholar : PubMed/NCBI | |
Olabanji O, Ngila JC, Msagati TAM, Oluyemi EA, Fatoye FO and Mamba BB: Effect of metal poisoning and the implications of gender and age on the elemental composition in patients with mental behavioural disorders. Afr J Biotechnol. 10:3585–3593. 2011. | |
Vidović B, Dorđević B, Milovanović S, Škrivanj S, Pavlović Z, Stefanović A and Kotur-Stevuljević J: Selenium, zinc, and copper plasma levels in patients with schizophrenia: relationship with metabolic risk factors. Biol Trace Elem Res. 156:22–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma SK, Sood S, Sharma A and Gupta ID: Estimation of serum zinc and copper levels patients with schizophrenia: A preliminary study. SL J Psychiatry. 5:14–17. 2013. | |
Asare G, Tetteh R, Amedonu E, Asiedu B and Doku D: Toxicity, deficiency and dysmetabolism of trace elements in Ghanaian clinically stable schizophrenics. Open Access Maced J Med Sci. 2:293–298. 2014. View Article : Google Scholar | |
Nawaz R, Zahir E, Siddiqui S, Usmani A and Shad KF: The role of trace metals and environmental factors in the onset and progression of schizophrenia in Pakistani population. World J Neurosci. 4:450–460. 2014. View Article : Google Scholar | |
Liu T, Lu QB, Yan L, Guo J, Feng F, Qiu J and Wang J: Comparative study on serum levels of 10 trace elements in schizophrenia. PLoS One. 10:e01336222015. View Article : Google Scholar : PubMed/NCBI | |
Lin T, Liu T, Lin Y, Yan L, Chen Z and Wang J: Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. J Trace Elem Med Biol. 43:202–208. 2017. View Article : Google Scholar : PubMed/NCBI | |
Velthorst E, Smith L, Bello G, Austin C, Gennings C, Modabbernia A, Franke N, Frangou S, Wright R, de Haan L, et al: New research strategy for measuring pre- and postnatal metal dysregulation in psychotic disorders. Schizophr Bull. 43:1153–1157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Modabbernia A, Velthorst E, Gennings C, De Haan L, Austin C, Sutterland A, Mollon J, Frangou S, Wright R, Arora M and Reichenberg A: Early-life metal exposure and schizophrenia: A proof-of-concept study using novel tooth-matrix biomarkers. Eur Psychiatry. 36:1–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li Y, Zhang T, Yao Y, Shen C and Xue Y: Association of serum trace elements with schizophrenia and effects of antipsychotic treatment. Biol Trace Elem Res. 181:22–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liu Y, Li X, Ju W, Wu G, Yang X, Fu X and Gao X: Association of elements with schizophrenia and intervention of selenium supplements. Biol Trace Elem Res. 183:16–21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao B, Yan L, Ma J, Jin M, Park C, Nozari Y, Kazmierczak OP, Zuckerman H, Lee Y, Pan Z, et al: Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J Trace Elem Med Biol. 51:79–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Yan L, Guo T, Yang S, Liu Y, Xie Q, Ni D and Wang J: Association between serum essential metal elements and the risk of schizophrenia in China. Sci Rep. 10:108752020. View Article : Google Scholar : PubMed/NCBI | |
de Souza Pessôa G, de Jesus JR, Balbuena TS and Arruda MAZ: Metallomics-based platforms for comparing the human blood serum profiles between bipolar disorder and schizophrenia patients. Rapid Commun Mass Spectrom. 34 (Suppl 3):e86982020. View Article : Google Scholar : PubMed/NCBI | |
Uddin SMN, Sultana F, Uddin MG, Dewan SMR, Hossain MK and Islam MS: Effect of antioxidant, malondialdehyde, macro-mineral, and trace element serum concentrations in Bangladeshi patients with schizophrenia: A case-control study. Health Sci Rep. 4:e2912021. View Article : Google Scholar : PubMed/NCBI | |
Awais MH, Aamir M, Bibi A, Ali S, Ahmed W and Safdar SA: Association of trace metals in patients with schizophrenia. J Coll Physicians Surg Pak. 32:193–196. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lotan A, Luza S, Opazo CM, Ayton S, Lane DJR, Mancuso S, Pereira A, Sundram S, Weickert CS, Bousman C, et al: Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol Psychiatry. 28:2058–2070. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos AB, Bezerra MA, Rocha ME, Barreto GE and Kohlmeier KA: Higher zinc concentrations in hair of Parkinson's disease are associated with psychotic complications and depression. J Neural Transm (Vienna). 126:1291–1301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tabata K, Miyashita M, Yamasaki S, Toriumi K, Ando S, Suzuki K, Endo K, Morimoto Y, Tomita Y, Yamaguchi S, et al: Hair zinc levels and psychosis risk among adolescents. Schizophrenia (Heidelb). 8:1072022. View Article : Google Scholar : PubMed/NCBI | |
Joe P, Petrilli M, Malaspina D and Weissman J: Zinc in schizophrenia: A meta-analysis. Gen Hosp Psychiatry. 53:19–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zaks N, Austin C, Arora M and Reichenberg A: Reprint of: Elemental dysregulation in psychotic spectrum disorders: A review and research synthesis. Schizophr Res. 247:33–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
da Paulsen Bda S, Cardoso SC, Stelling MP, Cadilhe DV and Rehen SK: Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr Res. 154:30–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mortazavi M, Farzin D, Zarhghami M, Hosseini SH, Mansoori P and Nateghi G: Efficacy of zinc sulfate as an add-on therapy to risperidone versus risperidone alone in patients with schizophrenia: A double-blind randomized placebo-controlled trial. Iran J Psychiatry Behav Sci. 9:e8532015. View Article : Google Scholar : PubMed/NCBI | |
Pfeiffer CC and Sohler A: Treatment of pyroluric schizophrenia with large doses of pyridoxine and a dietary supplement of zinc. J Orthomol Med. 3:292–300. 1974. | |
Grabrucker AM and Rowan Garner CC: Brain-delivery of zinc-ions as potential treatment for neurological diseases: Mini review. Drug Deliv Lett. 1:13–23. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rohde J, Claussen MC, Kuechenhoff B, Seifritz E and Schuepbach D: Combined symptomatology of psychosis, pica syndrome, and hippocampal sclerosis: A case report. Int J Eat Disord. 46:89–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
Russo AJ and de Vito R: Decreased serum hepatocyte growth factor (HGF) in individuals with schizophrenia normalizes after zinc and B-6 therapy. Proteomics Insights. 3:71–77. 2010. View Article : Google Scholar : PubMed/NCBI | |
Russo A: Decreased serum hepatocyte growth factor (HGF) in individuals with bipolar disorder normalizes after zinc and anti-oxidant therapy. Nutr Metab Insights. 3:49–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
Czerniak P and Haim DB: Phenothiazine derivatives and brain zinc. Turnover radioactive isotope study. Arch Neurol. 24:555–560. 1971. View Article : Google Scholar : PubMed/NCBI | |
Alizadeh F, Davoodian N, Kazemi H, Ghasemi-Kasman M and Shaerzadeh F: Prenatal zinc supplementation attenuates lipopolysaccharide-induced behavioral impairments in maternal immune activation model. Behav Brain Res. 377:1122472020. View Article : Google Scholar : PubMed/NCBI | |
Mousaviyan R, Davoodian N, Alizadeh F, Ghasemi-Kasman M, Mousavi SA, Shaerzadeh F and Kazemi H: Zinc supplementation during pregnancy alleviates lipopolysaccharide-induced glial activation and inflammatory markers expression in a rat model of maternal immune activation. Biol Trace Elem Res. 199:4193–4204. 2021. View Article : Google Scholar : PubMed/NCBI | |
Savareh E, Davoodian N, Mousaviyan R, Ghasemi-Kasman M, Atashabparvar A and Eftekhar E: Prenatal zinc supplementation ameliorates hippocampal astrocytes activation and inflammatory cytokines expression induced by lipopolysaccharide in a rat model of maternal immune activation. Basic Clin Neurosci. 13:335–347. 2022. View Article : Google Scholar : PubMed/NCBI | |
Coyle P, Tran N, Fung JNT, Summers BL and Rofe AM: Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res. 197:210–218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Onaolapo OJ, Ademakinwa OQ, Olalekan TO and Onaolapo AY: Ketamine-induced behavioural and brain oxidative changes in mice: An assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology (Berl). 234:2707–2725. 2017. View Article : Google Scholar : PubMed/NCBI | |
Joshi M, Akhtar M, Najmi AK, Khuroo AH and Goswami D: Effect of zinc in animal models of anxiety, depression and psychosis. Hum Exp Toxicol. 31:1237–1243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bayer TA, Falkai P and Maier W: Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the ‘two hit hypothesis’. J Psychiatr Res. 33:543–548. 1999. View Article : Google Scholar : PubMed/NCBI | |
Giannopoulou I, Georgiades S, Stefanou MI, Spandidos DA and Rizos E: Links between trauma and psychosis (review). Exp Ther Med. 26:3862023. View Article : Google Scholar : PubMed/NCBI | |
Morgan C, Charalambides M, Hutchinson G and Murray RM: Migration, ethnicity, and psychosis: Toward a sociodevelopmental model. Schizophr Bull. 36:655–664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Davis EG, Humphreys KL, McEwen LM, Sacchet MD, Camacho MC, MacIsaac JL, Lin DTS, Kobor MS and Gotlib IH: Accelerated DNA methylation age in adolescent girls: Associations with elevated diurnal cortisol and reduced hippocampal volume. Transl Psychiatry. 7:e12232017. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P, Sun J, Chen S, Li P and Lin P: Research progress on the correlation between epigenetics and schizophrenia. Front Neurosci. 15:6887272021. View Article : Google Scholar : PubMed/NCBI | |
Alameda L, Rodriguez V, Carr E, Aas M, Trotta G, Marino P, Vorontsova N, Herane-Vives A, Gadelrab R, Spinazzola E, et al: A systematic review on mediators between adversity and psychosis: Potential targets for treatment. Psychol Med. 50:1966–1976. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fraker PJ and King LE: Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 24:277–298. 2004. View Article : Google Scholar : PubMed/NCBI | |
Charmandari E, Kino T, Souvatzoglou E and Chrousos GP: Pediatric stress: Hormonal mediators and human development. Horm Res. 59:161–179. 2003.PubMed/NCBI | |
Lardinois M, Lataster T, Mengelers R, Van Os J and Myin-Germeys I: Childhood trauma and increased stress sensitivity in psychosis. Acta Psychiatr Scand. 123:28–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walker EF, Brennan PA, Esterberg M, Brasfield J, Pearce B and Compton MT: Longitudinal changes in cortisol secretion and conversion to psychosis in at-risk youth. J Abnorm Psychol. 119:401–408. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walker EF, Trotman HD, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA, Heinssen R, Mathalon DH, Perkins DO, Seidman LJ, et al: Cortisol levels and risk for psychosis: Initial findings from the North American prodrome longitudinal study. Biol Psychiatry. 74:410–417. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sapolsky RM: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 57:925–935. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vita A, De Peri L, Silenzi C and Dieci M: Brain morphology in first-episode schizophrenia: A meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res. 82:75–88. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thompson Ray M, Weickert CS, Wyatt E and Webster MJ: Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 36:195–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D and Kranz TM: Early life stress effects on glucocorticoid-BDNF interplay in the hippocampus. Front Mol Neurosci. 8:682015. View Article : Google Scholar : PubMed/NCBI | |
Rizos EN, Rontos I, Laskos E, Arsenis G, Michalopoulou PG, Vasilopoulos D, Gournellis R and Lykouras L: Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 32:1308–1311. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rizos EN, Papathanasiou M, Michalopoulou PG, Mazioti A, Douzenis A, Kastania A, Nikolaidou P, Laskos E, Vasilopoulou K and Lykouras L: Association of serum BDNF levels with hippocampal volumes in first psychotic episode drug-naive schizophrenic patients. Schizophr Res. 129:201–204. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rizos EN, Michalopoulou PG, Siafakas N, Stefanis N, Douzenis A, Rontos I, Laskos E, Kastania A, Zoumpourlis V and Lykouras L: Association of serum brain-derived neurotrophic factor and duration of untreated psychosis in first-episode patients with schizophrenia. Neuropsychobiology. 62:87–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
Theleritis C, Fisher HL, Shäfer I, Winters L, Stahl D, Morgan C, Dazzan P, Breedvelt J, Sambath I, Vitoratou S, et al: Brain derived neurotropic factor (BDNF) is associated with childhood abuse but not cognitive domains in first episode psychosis. Schizophr Res. 159:56–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsang BL, Holsted E, McDonald CM, Brown KH, Black R, Mbuya MNN, Grant F, Rowe LA and Manger MS: Effects of foods fortified with zinc, alone or cofortified with multiple micronutrients, on health and functional outcomes: A systematic review and meta-analysis. Adv Nutr. 12:1821–1837. 2021. View Article : Google Scholar : PubMed/NCBI | |
Flores G, Morales-Medina JC and Diaz A: Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res. 301:190–203. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bronson SL and Bale TL: Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 155:2635–2646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Walker CK, Ashwood P and Hertz-Picciotto I: Preeclampsia, placental insufficiency, autism, and antiphospholipid antibodies-reply. JAMA Pediatr. 169:606–607. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurita H, Ohsako S, Hashimoto S, Yoshinaga J and Tohyama C: Prenatal zinc deficiency-dependent epigenetic alterations of mouse metallothionein-2 gene. J Nutr Biochem. 24:256–266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I, Juárez-Díaz I, Aguilar-Alonso P, de la Cruz F, Iannitti T and Flores G: Prenatal immune challenge induces behavioral deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience. 406:594–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Camacho-Abrego I, González-Cano SI, Aguilar-Alonso P, Brambila E, de la Cruz F and Flores G: Changes in nitric oxide, zinc and metallothionein levels in limbic regions at pre-pubertal and post-pubertal ages presented in an animal model of schizophrenia. J Chem Neuroanat. 111:1018892021. View Article : Google Scholar : PubMed/NCBI | |
Lee K, Mills Z, Cheung P, Cheyne JE and Montgomery JM: The role of zinc and NMDA receptors in autism spectrum disorders. Pharmaceuticals (Basel). 16:12022. View Article : Google Scholar : PubMed/NCBI | |
Paz RD, Tardito S, Atzori M and Tseng KY: Glutamatergic dysfunction in schizophrenia: From basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol. 18:773–786. 2008. View Article : Google Scholar : PubMed/NCBI | |
Walsh WJ, Isaacson HR, Rehman F and Hall A: Elevated blood copper/zinc ratios in assaultive young males. Physiol Behav. 62:327–329. 1997. View Article : Google Scholar : PubMed/NCBI |