
Insulin‑like growth factor in cancer: New perspectives (Review)
- Authors:
- Duoming Wu
- Shi Dong
- Wence Zhou
-
Affiliations: The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Gansu Province Hepatobiliary Pancreatic Disease Precision Diagnosis and Treatment Engineering Research Center, Lanzhou, Gansu 730000. P.R. China - Published online on: May 23, 2025 https://doi.org/10.3892/mmr.2025.13574
- Article Number: 209
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Forbes BE, Blyth AJ and Wit JM: Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol. 518:1110352020. View Article : Google Scholar : PubMed/NCBI | |
Froesch ER, Buergi H, Ramseier EB, Bally P and Labhart A: antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. an insulin assay with adipose tissue of increased precision and specificity. J Clin Invest. 42:1816–1834. 1963. View Article : Google Scholar : PubMed/NCBI | |
Rinderknecht E and Humbel RE: The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 253:2769–2776. 1978. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu Q, Cao D, Peng Q, Zhang X, Li C, Zhang C, Zhou BO and Yue R: Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci USA. 120:e22037791202023. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Yan Q, Wang D, Du G and Zhou J: IGF-1 signaling regulates mitochondrial remodeling during myogenic differentiation. Nutrients. 14:12492022. View Article : Google Scholar : PubMed/NCBI | |
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H and Nonomura N: Connecting the dots between the gut-IGF-1-prostate axis: A role of IGF-1 in prostate carcinogenesis. Front Endocrinol (Lausanne). 13:8523822022. View Article : Google Scholar : PubMed/NCBI | |
LeRoith D, Holly JMP and Forbes BE: Insulin-like growth factors: Ligands, binding proteins and receptors. Mol Metab. 52:1012452021. View Article : Google Scholar : PubMed/NCBI | |
Dixit M, Poudel SB and Yakar S: Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 519:1110522021. View Article : Google Scholar : PubMed/NCBI | |
Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, et al: Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J. 33:181–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alberini CM and Chen DY: Memory enhancement: Consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35:274–283. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alfares MN, Perks CM, Hamilton-Shield JP and Holly JMP: Insulin-like growth factor-II in adipocyte regulation: Depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 315:E1098–E1107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghafari F, Alizadeh AM, Agah S, Irani S and Mokhtare M: Insulin-like growth factor 1 serum levels in different stages of gastric cancer and their association with Helicobacter pylori status. Peptides. 158:1708922022. View Article : Google Scholar : PubMed/NCBI | |
Kasprzak A: Autophagy and the insulin-like growth factor (IGF) system in colonic cells: Implications for colorectal neoplasia. Int J Mol Sci. 24:36652023. View Article : Google Scholar : PubMed/NCBI | |
Adachi Y, Nojima M, Mori M, Himori R, Kubo T, Akutsu N, Lin Y, Kurozawa Y, Wakai K and Tamakoshi A; Japan Collaborative Cohort Study, : Insulin-like growth factor 2 and incidence of liver cancer in a nested case-control study. Cancer Epidemiol Biomarkers Prev. 30:2130–2135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Li B, Xi Y, Cai M and Tian Z: Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol. 322:C164–C176. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL and Lo YC: Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol. 178:2998–3016. 2021. View Article : Google Scholar : PubMed/NCBI | |
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Paredes F, Williams HC and San Martin A: Metabolic adaptation in hypoxia and cancer. Cancer Lett. 502:133–142. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu J, Tian Z, Zhang Z, Liu T, Chen C, Tang X and Zhu J: Highly expressed IFITM10 is associated with early diagnosis and T stage of gastric cancer. Transl Cancer Res. 10:382–392. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seo GS, Lee JK, Yu JI, Yun KJ, Chae SC and Choi SC: Identification of the polymorphisms in IFITM3 gene and their association in a Korean population with ulcerative colitis. Exp Mol Med. 42:99–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Zhou R, Yuan L, Wang S, Li X, Ma H, Zhou M, Pan C, Zhang J, Huang N, et al: IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett. 393:76–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Le Coz V, Zhu C, Devocelle A, Vazquez A, Boucheix C, Azzi S, Gallerne C, Eid P, Lecourt S and Giron-Michel J: IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process. Oncotarget. 7:82511–82527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP and Vadgama JV: IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One. 9:e1035342014. View Article : Google Scholar : PubMed/NCBI | |
Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH and Chou YT: Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep. 10:82612020. View Article : Google Scholar : PubMed/NCBI | |
Tsai YF, Chou HC, Liou MH, Liao EC, Cheng CT, Chang SJ and Chan HL: Role of IGFBP-2 in oral cancer metastasis. Biochim Biophys Acta Mol Basis Dis. 1867:1661432021. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Sun F, Zhu H, Ni Y, Fang J, Liu Y, Shao S, Shen H and Hu J: Insulin-like growth factor binding protein-1 (IGFBP-1) upregulated by Helicobacter pylori and is associated with gastric cancer cells migration. Pathol Res Pract. 213:1029–1036. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mo W, Deng L, Cheng Y, Ge S and Wang J: IGFBP7 regulates cell proliferation and migration through JAK/STAT pathway in gastric cancer and is regulated by DNA and RNA methylation. J Cell Mol Med. 28:e700802024. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
Ren F, Wu K, Yang Y, Yang Y, Wang Y and Li J: Dandelion polysaccharide exerts anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1α expression. Front Pharmacol. 11:4602020. View Article : Google Scholar : PubMed/NCBI | |
Higashi Y, Pandey A, Goodwin B and Delafontaine P: Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta. 1832:391–399. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bid HK, Zhan J, Phelps DA, Kurmasheva RT and Houghton PJ: Potent inhibition of angiogenesis by the IGF-1 receptor-targeting antibody SCH717454 is reversed by IGF-2. Mol Cancer Ther. 11:649–659. 2012. View Article : Google Scholar : PubMed/NCBI | |
Glass K, Fines C, Coulter P, Jena L, McCarthy HO and Buckley N: Development and characterization of a peptide-bisphosphonate nanoparticle for the treatment of breast cancer. Mol Pharm. 21:4970–4982. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa T: Differences between zoledronic acid and denosumab for breast cancer treatment. J Bone Miner Metab. 41:301–306. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Zhang Q, Shi S, Yen Y, Li X, Zhang Y, Zhou K and Le AD: Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer. 126:90–103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seo SH, Hwang SY, Hwang S, Han S, Park H, Lee YS, Rho SB and Kwon Y: Hypoxia-induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep. 23:e529772022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI | |
Slater T, Haywood NJ, Matthews C, Cheema H and Wheatcroft SB: Insulin-like growth factor binding proteins and angiogenesis: From cancer to cardiovascular disease. Cytokine Growth Factor Rev. 46:28–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V and Somasundaram K: Glioblastoma-derived macrophage colony-stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J Biol Chem. 290:23401–23415. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Xi G, Wai C and Clemmons DR: The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ). J Biol Chem. 290:11578–11590. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei LF, Weng XF, Huang XC, Peng YH, Guo HP and Xu YW: IGFBP2 in cancer: Pathological role and clinical significance (Review). Oncol Rep. 45:427–438. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, et al: CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 17:4323–4340. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huangfu L, Wang X, Tian S, Chen J, Wang X, Fan B, Yao Q, Wang G, Chen C, Han J, et al: Piceatannol enhances Beclin-1 activity to suppress tumor progression and its combination therapy strategy with everolimus in gastric cancer. Sci China Life Sci. 66:298–312. 2023. View Article : Google Scholar : PubMed/NCBI | |
Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T and Reggiori F: The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 18:50–72. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J and Chen XP: Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res. 38:2982019. View Article : Google Scholar : PubMed/NCBI | |
Masliah-Planchon J, Garinet S and Pasmant E: RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 7:38892–38907. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen PC, Kuo YC, Chuong CM and Huang YH: Niche modulation of IGF-1R signaling: its role in stem cell pluripotency, cancer reprogramming and therapeutic applications. Front Cell Dev Biol. 8:6259432021. View Article : Google Scholar : PubMed/NCBI | |
Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, Papkovsky DB, Hursting SD and O'Connor R: Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J Biol Chem. 292:16983–16998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Riis S, Murray JB and O'Connor R: IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3β-Nrf2-BNIP3 pathway. Cells. 9:1472020. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Liu X, He B, Pan Y and Wang S: IGF2 loss of imprinting enhances colorectal cancer stem cells pluripotency by promoting tumor autophagy. Aging (Albany NY). 12:21236–21252. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Dozmorov M and Oh Y: IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9:12612020. View Article : Google Scholar : PubMed/NCBI | |
Grkovic S, O'Reilly VC, Han S, Hong M, Baxter RC and Firth SM: IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene. 32:2412–2420. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H and Zhu W: ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ. 12:e176282024. View Article : Google Scholar : PubMed/NCBI | |
Lin JC, Liu TP, Chen YB and Yang PM: PF-429242 exhibits anticancer activity in hepatocellular carcinoma cells via FOXO1-dependent autophagic cell death and IGFBP1-dependent anti-survival signaling. Am J Cancer Res. 13:4125–4144. 2023.PubMed/NCBI | |
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, Gongye X, Chen Z, Liu J, Chen X, et al: METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond). 43:338–364. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jing Z, Liu Q, He X, Jia Z, Xu Z, Yang B and Liu P: NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res. 41:1982022. View Article : Google Scholar : PubMed/NCBI | |
Okuyama T, Kyohara M, Terauchi Y and Shirakawa J: The roles of the IGF axis in the regulation of the metabolism: interaction and difference between insulin receptor signaling and IGF-I receptor signaling. Int J Mol Sci. 22:68172021. View Article : Google Scholar : PubMed/NCBI | |
Ravera S, Puddu A, Bertola N, Verzola D, Russo E, Maggi D and Panfoli I: IGF-1 signaling modulates oxidative metabolism and stress resistance in ARPE-19 cells through PKM2 function. Int J Mol Sci. 25:136402024. View Article : Google Scholar : PubMed/NCBI | |
Stanley TL, Fourman LT, Zheng I, McClure CM, Feldpausch MN, Torriani M, Corey KE, Chung RT, Lee H, Kleiner DE, et al: Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 106:e520–e533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kasprzak A: Insulin-Like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int J Mol Sci. 22:64342021. View Article : Google Scholar : PubMed/NCBI | |
Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE and Huss JM: t-Darpp Activates IGF-1R signaling to regulate glucose metabolism in trastuzumab-resistant breast cancer cells. Clin Cancer Res. 24:1216–1226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lung Cancer Cohort Consortium (LC3), . The blood proteome of imminent lung cancer diagnosis. Nat Commun. 14:30422023. View Article : Google Scholar : PubMed/NCBI | |
Cai G, Qi Y, Wei P, Gao H, Xu C, Zhao Y, Qu X, Yao F and Yang W: IGFBP1 sustains cell survival during spatially-confined migration and promotes tumor metastasis. Adv Sci (Weinh). 10:e22065402023. View Article : Google Scholar : PubMed/NCBI | |
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA and Oesterreich S: The great immune escape: Understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 13:23–40. 2023. View Article : Google Scholar : PubMed/NCBI | |
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, et al: SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell. 187:861–881.e32. 2024. View Article : Google Scholar : PubMed/NCBI | |
De Martino M, Rathmell JC, Galluzzi L and Vanpouille-Box C: Cancer cell metabolism and antitumour immunity. Nat Rev Immunol. 24:654–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Huang L, Zhu J, Wu Y, Shi J and Dai K: Differential expression of insulin-like growth factor type 1 receptor identifies heterogeneous intrahepatic regulatory T subsets in mouse hepatocellular carcinoma. Clin Exp Immunol. 208:47–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhong YB, Shao J, Zhang C and Shi C: Tumor-associated macrophages promote human hepatoma Huh-7 cell migration and invasion through the Gli2/IGF-II/ERK1/2 axis by secreting TGF-β1. Cancer Biol Ther. 21:1041–1050. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, Yang ZX, Hou F and Deng ZY: M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 24:6042021. View Article : Google Scholar : PubMed/NCBI | |
Uehara H, Kobayashi T, Matsumoto M, Watanabe S, Yoneda A and Bando Y: Adipose tissue:Critical contributor to the development of prostate cancer. J Med Invest. 65:9–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, et al: Activation of the IGF axis in thyroid cancer: Implications for tumorigenesis and treatment. Int J Mol Sci. 20:32582019. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W and Wu F: BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol. 176:1137922023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, et al: Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol. 259:205–219. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Dong C and Shen Z: Kallikrein-related peptidase (KLK10) cessation blunts colorectal cancer cell growth and glucose metabolism by regulating the PI3K/Akt/mTOR pathway. Neoplasma. 67:889–897. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Song X, Hao X, Liu X, Zhang X, Yuan N, Ma H and Zhang Z: miR-186-3p attenuates the tumorigenesis of cervical cancer via targeting insulin-like growth factor 1 to suppress PI3K-Akt signaling pathway. Bioengineered. 12:7079–7092. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Sun Y, Cong S and Zhang F: Insulin-like growth factor-1 promotes human uterine leiomyoma cell proliferation via PI3K/AKT/mTOR pathway. Cells Tissues Organs. 212:194–202. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao C, He XF, Xu QR, Xu YJ and Shen J: Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anticancer Drugs. 30:e07442019. View Article : Google Scholar : PubMed/NCBI | |
Rieder S, Michalski CW, Friess H and Kleeff J: Insulin-like growth factor signaling as a therapeutic target in pancreatic cancer. Anticancer Agents Med Chem. 11:427–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, et al: IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep. 8:20542018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang M, He T, Yang W, Wang L, Zhang L and Guo M: Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K-AKT signaling. Clin Epigenetics. 12:222020. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Jin Y, Chen X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar : PubMed/NCBI | |
Harvey AE, Lashinger LM, Hays D, Harrison LM, Lewis K, Fischer SM and Hursting SD: Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS One. 9:e941512014. View Article : Google Scholar : PubMed/NCBI | |
Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M and Yu L: Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes. 52:1015832020. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AY, Tsai HJ and Chen YW: Insulin-like growth factor binding protein 3 promotes radiosensitivity of oral squamous cell carcinoma cells via positive feedback on NF-κB/IL-6/ROS signaling. J Exp Clin Cancer Res. 40:952021. View Article : Google Scholar : PubMed/NCBI | |
Kim MS and Lee DY: Insulin-like growth factor binding protein-3 enhances etoposide-induced cell growth inhibition by suppressing the NF-κB activity in gastric cancer cells. Mol Cell Biochem. 403:107–113. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Chen J, Ren G, Zhang Y, Tan X and Yang L: Punicalagin prevents inflammation in LPS-Induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients. 11:27942019. View Article : Google Scholar : PubMed/NCBI | |
Peluso I, Yarla NS, Ambra R, Pastore G and Perry G: MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol. 56:185–195. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J and van de Water B: Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res. 13:R522011. View Article : Google Scholar : PubMed/NCBI | |
Rao W, Li H, Song F, Zhang R, Yin Q, Wang Y, Xi Y and Ge H: OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. Carcinogenesis. 35:1573–1581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teng JA, Wu SG, Chen JX, Li Q, Peng F, Zhu Z, Qin J and He ZY: The activation of ERK1/2 and JNK MAPK signaling by insulin/IGF-1 Is responsible for the development of colon cancer with type 2 diabetes Mellitus. PLoS One. 11:e01498222016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI | |
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S and Paul MK: Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today. 27:82–101. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CH, Cheng LH, Hsu HH, Ho TJ, Tu CC, Lin YM, Chen MC, Tsai FJ, Hsieh YL and Huang CY: Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the Wnt/β-catenin signaling pathway and MMP-2 expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic effect. Biosci Biotechnol Biochem. 77:2397–2404. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP and Dar MJ: Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. Biochim Biophys Acta Mol Cell Res. 1865:920–931. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang QY, Wang L, Song ZY and Qu XJ: Knockdown of type I insulin-like growth factor receptor inhibits human colorectal cancer cell growth and downstream PI3K/Akt, WNT/β-catenin signal pathways. Biomed Pharmacother. 73:12–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 14:e02259132019. View Article : Google Scholar : PubMed/NCBI | |
Hashemi Goradel N, Najafi M, Salehi E, Farhood B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, Zhao X, Feng L, Zhang B, Jin L, et al: Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathwa. J Exp Clin Cancer Res. 37:2482018. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Yu J, Zhang B, Li X, Liu H and Wang Y: Emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and treatment. Biomaterials. 315:1229542025. View Article : Google Scholar : PubMed/NCBI | |
Song KH, Kang JH, Woo JK, Nam JS, Min HY, Lee HY, Kim SY and Oh SH: The novel IGF-IR/Akt-dependent anticancer activities of glucosamine. BMC Cancer. 14:312014. View Article : Google Scholar : PubMed/NCBI | |
Stoeltzing O, Liu W, Fan F, Wagner C, Stengel K, Somcio RJ, Reinmuth N, Parikh AA, Hicklin DJ and Ellis LM: Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system. Cancer Lett. 258:291–300. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Lambertz I, Berton TR, Rundhaug JE, Kiguchi K, Shirley SH, Digiovanni J, Conti CJ, Fischer SM and Fuchs-Young R: Transgenic insulin-like growth factor-1 stimulates activation of COX-2 signaling in mammary glands. Mol Carcinog. 51:973–983. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T and Zhao J: Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int. 41:384–391. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mengzhe G, Shanshan X, Di Z and Shihua W: Editorial: The role of the IGF axis in tumorigenesis and cancer treatment: From genes to metabolites. Front Endocrinol (Lausanne). 13:11239622023. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Mak VC and Cheung LW: Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 10:199–211. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J and Saceda M: Differential effects of IGF-1R small molecule tyrosine kinase inhibitors BMS-754807 and OSI-906 on human cancer cell lines. Cancers (Basel). 12:37172020. View Article : Google Scholar : PubMed/NCBI | |
Stan MN and Krieger CC: The adverse effects profile of teprotumumab. J Clin Endocrinol Metab. 108:e654–e662. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wen G, Sun L, Yuan W, Wang R, Zeng Q, Zhang G and Yu B: Cryptotanshinone inhibits cellular proliferation of human lung cancer cells through downregulation of IGF-1R/PI3K/Akt signaling pathway. Oncol Rep. 40:2926–2934. 2018.PubMed/NCBI | |
Jung M, Bu SY, Tak KH, Park JE and Kim E: Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract. 7:439–445. 2013. View Article : Google Scholar : PubMed/NCBI | |
Le CT, Leenders WPJ, Molenaar RJ and van Noorden CJF: Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr Cancer. 70:317–333. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Ye S, Zhao L and Niu Q: The role of IGF/IGF-1R signaling in the regulation of cancer stem cells. Clin Transl Oncol. 26:2924–2934. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ding F and Yang S: Epigallocatechin-3-gallate inhibits proliferation and triggers apoptosis in colon cancer via the hedgehog/phosphoinositide 3-kinase pathways. Can J Physiol Pharmacol. 99:910–920. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, et al: Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 71:1029–1040. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Choi DS, Lee OH, Oh SH, Lippman SM and Lee HY: Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood. 118:2622–2631. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, et al: IGFBP2 Activates the NF-κB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res. 76:6543–6554. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Kim M, Harada A, Idowu MO, Sundaresan G, Zweit J and Oh Y: Alpha-1 Antitrypsin inhibits tumorigenesis and progression of colitis-associated colon cancer through suppression of inflammatory neutrophil-activated serine proteases and IGFBP-3 proteolysis. Int J Mol Sci. 23:137372022. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, Wei Q, Song P, Chen Y, Lu D, et al: METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 24:1278–1290. 2022. View Article : Google Scholar : PubMed/NCBI | |
He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang M, Wang H, Yang J, Li X, Zhang R, Ding X, Hou H, Zhou J and Wu M: METTL3 inhibitor suppresses the progression of prostate cancer via IGFBP3/AKT pathway and synergizes with PARP inhibitor. Biomed Pharmacother. 179:1173662024. View Article : Google Scholar : PubMed/NCBI | |
Pomeroy AE, Schmidt EV, Sorger PK and Palmer AC: Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 8:915–929. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dias MP, Moser SC, Ganesan S and Jonkers J: Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 18:773–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ravi P, Wang V, Fichorova RN, McGregor B, Wei XX, Basaria S and Sweeney CJ: IGF-1 axis changes with ADT and docetaxel in metastatic prostate cancer. Endocr Relat Cancer. 30:e2302412023. View Article : Google Scholar : PubMed/NCBI | |
Codony-Servat J, Cuatrecasas M, Asensio E, Montironi C, Martínez-Cardús A, Marín-Aguilera M, Horndler C, Martínez-Balibrea E, Rubini M, Jares P, et al: Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Br J Cancer. 117:1777–1786. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu N, He YF, Zhang SM, Zhan YT, Han GD, Jiang M, He WX, Zhou J, Liang HL, Ao X, et al: Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett. 464:25–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Sowers JY and Houston KD: IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via Erk pathway activation. Front Endocrinol (Lausanne). 11:2332020. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Iwamoto H, Seki T, Nakamura T, Masuda A, Sakaue T, Tanaka T, Imamura Y, Niizeki T, Nakano M, et al: Tumor-derived insulin-like growth factor-binding protein-1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors. Cancer Commun (Lond). 43:415–434. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Ai J, Zheng Y, Zhou W, Zhang L, Zhu J, Zhang H and Wang S: IGFBP2/ITGA5 promotes gefitinib resistance via activating STAT3/CXCL1 axis in non-small cell lung cancer. Cell Death Dis. 15:4472024. View Article : Google Scholar : PubMed/NCBI | |
Coleman KL, Chiaramonti M, Haddad B, Ranzenberger R, Henning H, Al Khashali H, Ray R, Darweesh B, Guthrie J, Heyl D and Evans HG: Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance. Cells. 12:4052023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, et al: A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 186:3903–3920.e21. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Ding Y, Wan T, Deng T, Huang H and Liu J: Significance of CD47 and Its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 12:7681152021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Yin Z, Li S, Wu L, Zhang Y, Zhao Y, Gomes Dos Santos IL, Subudhi S, Lei P, Muzikansky A, et al: Losartan rewires the tumor-immune microenvironment and suppresses IGF-1 to overcome resistance to chemo-immunotherapy in ovarian cancer. Br J Cancer. 131:1683–1693. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, et al: Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest. 134:e1833662024. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM and Brodt P: Targeting the IGF-Axis potentiates immunotherapy for pancreatic ductal adenocarcinoma liver metastases by altering the immunosuppressive microenvironment. Mol Cancer Ther. 20:2469–2482. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pointer KB, Pitroda SP and Weichselbaum RR: Radiotherapy and immunotherapy: Open questions and future strategies. Trends Cancer. 8:9–20. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hessels AC, Langendijk JA, Gawryszuk A, Heersters MAAM, van der Salm NLM, Tissing WJE, van der Weide HL and Maduro JH: Review-Late toxicity of abdominal and pelvic radiotherapy for childhood cancer. Radiother Oncol. 170:27–36. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zong R, Chen X, Feng J and Xu S: IGF-1R depletion sensitizes colon cancer cell lines to radiotherapy. Cancer Biomark. 32:199–206. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhu Z, Gao W, Jiang Q, Yu J and Fu C: Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity. Gene. 627:484–490. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen JH, T H Wu A, T W Tzeng D, Huang CC, Tzeng YM and Chao TY: Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of β-catenin/Notch1/Akt signaling. Phytomedicine. 52:70–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM and Liao JW: Anti-oxidant, anti-mutagenic activity and safety evaluation of antrocin. Toxics. 11:5472023. View Article : Google Scholar : PubMed/NCBI | |
Chen YA, Tzeng DTW, Huang YP, Lin CJ, Lo UG, Wu CL, Lin H, Hsieh JT, Tang CH and Lai CH: Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers (Basel). 11:342018. View Article : Google Scholar : PubMed/NCBI |