You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Forbes BE, Blyth AJ and Wit JM: Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol. 518:1110352020. View Article : Google Scholar : PubMed/NCBI | |
|
Froesch ER, Buergi H, Ramseier EB, Bally P and Labhart A: antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. an insulin assay with adipose tissue of increased precision and specificity. J Clin Invest. 42:1816–1834. 1963. View Article : Google Scholar : PubMed/NCBI | |
|
Rinderknecht E and Humbel RE: The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 253:2769–2776. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhu Q, Cao D, Peng Q, Zhang X, Li C, Zhang C, Zhou BO and Yue R: Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci USA. 120:e22037791202023. View Article : Google Scholar : PubMed/NCBI | |
|
Guan X, Yan Q, Wang D, Du G and Zhou J: IGF-1 signaling regulates mitochondrial remodeling during myogenic differentiation. Nutrients. 14:12492022. View Article : Google Scholar : PubMed/NCBI | |
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H and Nonomura N: Connecting the dots between the gut-IGF-1-prostate axis: A role of IGF-1 in prostate carcinogenesis. Front Endocrinol (Lausanne). 13:8523822022. View Article : Google Scholar : PubMed/NCBI | |
|
LeRoith D, Holly JMP and Forbes BE: Insulin-like growth factors: Ligands, binding proteins and receptors. Mol Metab. 52:1012452021. View Article : Google Scholar : PubMed/NCBI | |
|
Dixit M, Poudel SB and Yakar S: Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 519:1110522021. View Article : Google Scholar : PubMed/NCBI | |
|
Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, et al: Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J. 33:181–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Alberini CM and Chen DY: Memory enhancement: Consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35:274–283. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Alfares MN, Perks CM, Hamilton-Shield JP and Holly JMP: Insulin-like growth factor-II in adipocyte regulation: Depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 315:E1098–E1107. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafari F, Alizadeh AM, Agah S, Irani S and Mokhtare M: Insulin-like growth factor 1 serum levels in different stages of gastric cancer and their association with Helicobacter pylori status. Peptides. 158:1708922022. View Article : Google Scholar : PubMed/NCBI | |
|
Kasprzak A: Autophagy and the insulin-like growth factor (IGF) system in colonic cells: Implications for colorectal neoplasia. Int J Mol Sci. 24:36652023. View Article : Google Scholar : PubMed/NCBI | |
|
Adachi Y, Nojima M, Mori M, Himori R, Kubo T, Akutsu N, Lin Y, Kurozawa Y, Wakai K and Tamakoshi A; Japan Collaborative Cohort Study, : Insulin-like growth factor 2 and incidence of liver cancer in a nested case-control study. Cancer Epidemiol Biomarkers Prev. 30:2130–2135. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI | |
|
Feng L, Li B, Xi Y, Cai M and Tian Z: Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol. 322:C164–C176. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL and Lo YC: Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol. 178:2998–3016. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Paredes F, Williams HC and San Martin A: Metabolic adaptation in hypoxia and cancer. Cancer Lett. 502:133–142. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Liu J, Tian Z, Zhang Z, Liu T, Chen C, Tang X and Zhu J: Highly expressed IFITM10 is associated with early diagnosis and T stage of gastric cancer. Transl Cancer Res. 10:382–392. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Seo GS, Lee JK, Yu JI, Yun KJ, Chae SC and Choi SC: Identification of the polymorphisms in IFITM3 gene and their association in a Korean population with ulcerative colitis. Exp Mol Med. 42:99–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Zhou R, Yuan L, Wang S, Li X, Ma H, Zhou M, Pan C, Zhang J, Huang N, et al: IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett. 393:76–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Le Coz V, Zhu C, Devocelle A, Vazquez A, Boucheix C, Azzi S, Gallerne C, Eid P, Lecourt S and Giron-Michel J: IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process. Oncotarget. 7:82511–82527. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP and Vadgama JV: IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One. 9:e1035342014. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH and Chou YT: Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep. 10:82612020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai YF, Chou HC, Liou MH, Liao EC, Cheng CT, Chang SJ and Chan HL: Role of IGFBP-2 in oral cancer metastasis. Biochim Biophys Acta Mol Basis Dis. 1867:1661432021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo C, Sun F, Zhu H, Ni Y, Fang J, Liu Y, Shao S, Shen H and Hu J: Insulin-like growth factor binding protein-1 (IGFBP-1) upregulated by Helicobacter pylori and is associated with gastric cancer cells migration. Pathol Res Pract. 213:1029–1036. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mo W, Deng L, Cheng Y, Ge S and Wang J: IGFBP7 regulates cell proliferation and migration through JAK/STAT pathway in gastric cancer and is regulated by DNA and RNA methylation. J Cell Mol Med. 28:e700802024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren F, Wu K, Yang Y, Yang Y, Wang Y and Li J: Dandelion polysaccharide exerts anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1α expression. Front Pharmacol. 11:4602020. View Article : Google Scholar : PubMed/NCBI | |
|
Higashi Y, Pandey A, Goodwin B and Delafontaine P: Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta. 1832:391–399. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bid HK, Zhan J, Phelps DA, Kurmasheva RT and Houghton PJ: Potent inhibition of angiogenesis by the IGF-1 receptor-targeting antibody SCH717454 is reversed by IGF-2. Mol Cancer Ther. 11:649–659. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Glass K, Fines C, Coulter P, Jena L, McCarthy HO and Buckley N: Development and characterization of a peptide-bisphosphonate nanoparticle for the treatment of breast cancer. Mol Pharm. 21:4970–4982. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ishikawa T: Differences between zoledronic acid and denosumab for breast cancer treatment. J Bone Miner Metab. 41:301–306. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Zhang Q, Shi S, Yen Y, Li X, Zhang Y, Zhou K and Le AD: Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer. 126:90–103. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Seo SH, Hwang SY, Hwang S, Han S, Park H, Lee YS, Rho SB and Kwon Y: Hypoxia-induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep. 23:e529772022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI | |
|
Slater T, Haywood NJ, Matthews C, Cheema H and Wheatcroft SB: Insulin-like growth factor binding proteins and angiogenesis: From cancer to cardiovascular disease. Cytokine Growth Factor Rev. 46:28–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V and Somasundaram K: Glioblastoma-derived macrophage colony-stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J Biol Chem. 290:23401–23415. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shen X, Xi G, Wai C and Clemmons DR: The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ). J Biol Chem. 290:11578–11590. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wei LF, Weng XF, Huang XC, Peng YH, Guo HP and Xu YW: IGFBP2 in cancer: Pathological role and clinical significance (Review). Oncol Rep. 45:427–438. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, et al: CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 17:4323–4340. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huangfu L, Wang X, Tian S, Chen J, Wang X, Fan B, Yao Q, Wang G, Chen C, Han J, et al: Piceatannol enhances Beclin-1 activity to suppress tumor progression and its combination therapy strategy with everolimus in gastric cancer. Sci China Life Sci. 66:298–312. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T and Reggiori F: The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 18:50–72. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J and Chen XP: Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res. 38:2982019. View Article : Google Scholar : PubMed/NCBI | |
|
Masliah-Planchon J, Garinet S and Pasmant E: RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 7:38892–38907. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen PC, Kuo YC, Chuong CM and Huang YH: Niche modulation of IGF-1R signaling: its role in stem cell pluripotency, cancer reprogramming and therapeutic applications. Front Cell Dev Biol. 8:6259432021. View Article : Google Scholar : PubMed/NCBI | |
|
Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, Papkovsky DB, Hursting SD and O'Connor R: Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J Biol Chem. 292:16983–16998. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Riis S, Murray JB and O'Connor R: IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3β-Nrf2-BNIP3 pathway. Cells. 9:1472020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao T, Liu X, He B, Pan Y and Wang S: IGF2 loss of imprinting enhances colorectal cancer stem cells pluripotency by promoting tumor autophagy. Aging (Albany NY). 12:21236–21252. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Q, Dozmorov M and Oh Y: IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9:12612020. View Article : Google Scholar : PubMed/NCBI | |
|
Grkovic S, O'Reilly VC, Han S, Hong M, Baxter RC and Firth SM: IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene. 32:2412–2420. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H and Zhu W: ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ. 12:e176282024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JC, Liu TP, Chen YB and Yang PM: PF-429242 exhibits anticancer activity in hepatocellular carcinoma cells via FOXO1-dependent autophagic cell death and IGFBP1-dependent anti-survival signaling. Am J Cancer Res. 13:4125–4144. 2023.PubMed/NCBI | |
|
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, Gongye X, Chen Z, Liu J, Chen X, et al: METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond). 43:338–364. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jing Z, Liu Q, He X, Jia Z, Xu Z, Yang B and Liu P: NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res. 41:1982022. View Article : Google Scholar : PubMed/NCBI | |
|
Okuyama T, Kyohara M, Terauchi Y and Shirakawa J: The roles of the IGF axis in the regulation of the metabolism: interaction and difference between insulin receptor signaling and IGF-I receptor signaling. Int J Mol Sci. 22:68172021. View Article : Google Scholar : PubMed/NCBI | |
|
Ravera S, Puddu A, Bertola N, Verzola D, Russo E, Maggi D and Panfoli I: IGF-1 signaling modulates oxidative metabolism and stress resistance in ARPE-19 cells through PKM2 function. Int J Mol Sci. 25:136402024. View Article : Google Scholar : PubMed/NCBI | |
|
Stanley TL, Fourman LT, Zheng I, McClure CM, Feldpausch MN, Torriani M, Corey KE, Chung RT, Lee H, Kleiner DE, et al: Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 106:e520–e533. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kasprzak A: Insulin-Like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int J Mol Sci. 22:64342021. View Article : Google Scholar : PubMed/NCBI | |
|
Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE and Huss JM: t-Darpp Activates IGF-1R signaling to regulate glucose metabolism in trastuzumab-resistant breast cancer cells. Clin Cancer Res. 24:1216–1226. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lung Cancer Cohort Consortium (LC3), . The blood proteome of imminent lung cancer diagnosis. Nat Commun. 14:30422023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai G, Qi Y, Wei P, Gao H, Xu C, Zhao Y, Qu X, Yao F and Yang W: IGFBP1 sustains cell survival during spatially-confined migration and promotes tumor metastasis. Adv Sci (Weinh). 10:e22065402023. View Article : Google Scholar : PubMed/NCBI | |
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA and Oesterreich S: The great immune escape: Understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 13:23–40. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, et al: SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell. 187:861–881.e32. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
De Martino M, Rathmell JC, Galluzzi L and Vanpouille-Box C: Cancer cell metabolism and antitumour immunity. Nat Rev Immunol. 24:654–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Huang L, Zhu J, Wu Y, Shi J and Dai K: Differential expression of insulin-like growth factor type 1 receptor identifies heterogeneous intrahepatic regulatory T subsets in mouse hepatocellular carcinoma. Clin Exp Immunol. 208:47–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Zhong YB, Shao J, Zhang C and Shi C: Tumor-associated macrophages promote human hepatoma Huh-7 cell migration and invasion through the Gli2/IGF-II/ERK1/2 axis by secreting TGF-β1. Cancer Biol Ther. 21:1041–1050. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, Yang ZX, Hou F and Deng ZY: M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 24:6042021. View Article : Google Scholar : PubMed/NCBI | |
|
Uehara H, Kobayashi T, Matsumoto M, Watanabe S, Yoneda A and Bando Y: Adipose tissue:Critical contributor to the development of prostate cancer. J Med Invest. 65:9–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, et al: Activation of the IGF axis in thyroid cancer: Implications for tumorigenesis and treatment. Int J Mol Sci. 20:32582019. View Article : Google Scholar : PubMed/NCBI | |
|
Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W and Wu F: BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol. 176:1137922023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, et al: Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol. 259:205–219. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei H, Dong C and Shen Z: Kallikrein-related peptidase (KLK10) cessation blunts colorectal cancer cell growth and glucose metabolism by regulating the PI3K/Akt/mTOR pathway. Neoplasma. 67:889–897. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Song X, Hao X, Liu X, Zhang X, Yuan N, Ma H and Zhang Z: miR-186-3p attenuates the tumorigenesis of cervical cancer via targeting insulin-like growth factor 1 to suppress PI3K-Akt signaling pathway. Bioengineered. 12:7079–7092. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Sun Y, Cong S and Zhang F: Insulin-like growth factor-1 promotes human uterine leiomyoma cell proliferation via PI3K/AKT/mTOR pathway. Cells Tissues Organs. 212:194–202. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, He XF, Xu QR, Xu YJ and Shen J: Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anticancer Drugs. 30:e07442019. View Article : Google Scholar : PubMed/NCBI | |
|
Rieder S, Michalski CW, Friess H and Kleeff J: Insulin-like growth factor signaling as a therapeutic target in pancreatic cancer. Anticancer Agents Med Chem. 11:427–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, et al: IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep. 8:20542018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhang M, He T, Yang W, Wang L, Zhang L and Guo M: Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K-AKT signaling. Clin Epigenetics. 12:222020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Q, Jin Y, Chen X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar : PubMed/NCBI | |
|
Harvey AE, Lashinger LM, Hays D, Harrison LM, Lewis K, Fischer SM and Hursting SD: Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS One. 9:e941512014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M and Yu L: Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes. 52:1015832020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AY, Tsai HJ and Chen YW: Insulin-like growth factor binding protein 3 promotes radiosensitivity of oral squamous cell carcinoma cells via positive feedback on NF-κB/IL-6/ROS signaling. J Exp Clin Cancer Res. 40:952021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim MS and Lee DY: Insulin-like growth factor binding protein-3 enhances etoposide-induced cell growth inhibition by suppressing the NF-κB activity in gastric cancer cells. Mol Cell Biochem. 403:107–113. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Chen J, Ren G, Zhang Y, Tan X and Yang L: Punicalagin prevents inflammation in LPS-Induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients. 11:27942019. View Article : Google Scholar : PubMed/NCBI | |
|
Peluso I, Yarla NS, Ambra R, Pastore G and Perry G: MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol. 56:185–195. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J and van de Water B: Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res. 13:R522011. View Article : Google Scholar : PubMed/NCBI | |
|
Rao W, Li H, Song F, Zhang R, Yin Q, Wang Y, Xi Y and Ge H: OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. Carcinogenesis. 35:1573–1581. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Teng JA, Wu SG, Chen JX, Li Q, Peng F, Zhu Z, Qin J and He ZY: The activation of ERK1/2 and JNK MAPK signaling by insulin/IGF-1 Is responsible for the development of colon cancer with type 2 diabetes Mellitus. PLoS One. 11:e01498222016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI | |
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI | |
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S and Paul MK: Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today. 27:82–101. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh CH, Cheng LH, Hsu HH, Ho TJ, Tu CC, Lin YM, Chen MC, Tsai FJ, Hsieh YL and Huang CY: Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the Wnt/β-catenin signaling pathway and MMP-2 expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic effect. Biosci Biotechnol Biochem. 77:2397–2404. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP and Dar MJ: Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. Biochim Biophys Acta Mol Cell Res. 1865:920–931. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang QY, Wang L, Song ZY and Qu XJ: Knockdown of type I insulin-like growth factor receptor inhibits human colorectal cancer cell growth and downstream PI3K/Akt, WNT/β-catenin signal pathways. Biomed Pharmacother. 73:12–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 14:e02259132019. View Article : Google Scholar : PubMed/NCBI | |
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, Zhao X, Feng L, Zhang B, Jin L, et al: Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathwa. J Exp Clin Cancer Res. 37:2482018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang R, Yu J, Zhang B, Li X, Liu H and Wang Y: Emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and treatment. Biomaterials. 315:1229542025. View Article : Google Scholar : PubMed/NCBI | |
|
Song KH, Kang JH, Woo JK, Nam JS, Min HY, Lee HY, Kim SY and Oh SH: The novel IGF-IR/Akt-dependent anticancer activities of glucosamine. BMC Cancer. 14:312014. View Article : Google Scholar : PubMed/NCBI | |
|
Stoeltzing O, Liu W, Fan F, Wagner C, Stengel K, Somcio RJ, Reinmuth N, Parikh AA, Hicklin DJ and Ellis LM: Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system. Cancer Lett. 258:291–300. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tian J, Lambertz I, Berton TR, Rundhaug JE, Kiguchi K, Shirley SH, Digiovanni J, Conti CJ, Fischer SM and Fuchs-Young R: Transgenic insulin-like growth factor-1 stimulates activation of COX-2 signaling in mammary glands. Mol Carcinog. 51:973–983. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T and Zhao J: Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int. 41:384–391. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mengzhe G, Shanshan X, Di Z and Shihua W: Editorial: The role of the IGF axis in tumorigenesis and cancer treatment: From genes to metabolites. Front Endocrinol (Lausanne). 13:11239622023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Mak VC and Cheung LW: Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 10:199–211. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J and Saceda M: Differential effects of IGF-1R small molecule tyrosine kinase inhibitors BMS-754807 and OSI-906 on human cancer cell lines. Cancers (Basel). 12:37172020. View Article : Google Scholar : PubMed/NCBI | |
|
Stan MN and Krieger CC: The adverse effects profile of teprotumumab. J Clin Endocrinol Metab. 108:e654–e662. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wen G, Sun L, Yuan W, Wang R, Zeng Q, Zhang G and Yu B: Cryptotanshinone inhibits cellular proliferation of human lung cancer cells through downregulation of IGF-1R/PI3K/Akt signaling pathway. Oncol Rep. 40:2926–2934. 2018.PubMed/NCBI | |
|
Jung M, Bu SY, Tak KH, Park JE and Kim E: Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract. 7:439–445. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Le CT, Leenders WPJ, Molenaar RJ and van Noorden CJF: Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr Cancer. 70:317–333. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Ye S, Zhao L and Niu Q: The role of IGF/IGF-1R signaling in the regulation of cancer stem cells. Clin Transl Oncol. 26:2924–2934. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ding F and Yang S: Epigallocatechin-3-gallate inhibits proliferation and triggers apoptosis in colon cancer via the hedgehog/phosphoinositide 3-kinase pathways. Can J Physiol Pharmacol. 99:910–920. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, et al: Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 71:1029–1040. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Choi DS, Lee OH, Oh SH, Lippman SM and Lee HY: Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood. 118:2622–2631. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, et al: IGFBP2 Activates the NF-κB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res. 76:6543–6554. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Q, Kim M, Harada A, Idowu MO, Sundaresan G, Zweit J and Oh Y: Alpha-1 Antitrypsin inhibits tumorigenesis and progression of colitis-associated colon cancer through suppression of inflammatory neutrophil-activated serine proteases and IGFBP-3 proteolysis. Int J Mol Sci. 23:137372022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, Wei Q, Song P, Chen Y, Lu D, et al: METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 24:1278–1290. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wang M, Wang H, Yang J, Li X, Zhang R, Ding X, Hou H, Zhou J and Wu M: METTL3 inhibitor suppresses the progression of prostate cancer via IGFBP3/AKT pathway and synergizes with PARP inhibitor. Biomed Pharmacother. 179:1173662024. View Article : Google Scholar : PubMed/NCBI | |
|
Pomeroy AE, Schmidt EV, Sorger PK and Palmer AC: Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 8:915–929. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dias MP, Moser SC, Ganesan S and Jonkers J: Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 18:773–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ravi P, Wang V, Fichorova RN, McGregor B, Wei XX, Basaria S and Sweeney CJ: IGF-1 axis changes with ADT and docetaxel in metastatic prostate cancer. Endocr Relat Cancer. 30:e2302412023. View Article : Google Scholar : PubMed/NCBI | |
|
Codony-Servat J, Cuatrecasas M, Asensio E, Montironi C, Martínez-Cardús A, Marín-Aguilera M, Horndler C, Martínez-Balibrea E, Rubini M, Jares P, et al: Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Br J Cancer. 117:1777–1786. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu N, He YF, Zhang SM, Zhan YT, Han GD, Jiang M, He WX, Zhou J, Liang HL, Ao X, et al: Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett. 464:25–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Sowers JY and Houston KD: IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via Erk pathway activation. Front Endocrinol (Lausanne). 11:2332020. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki H, Iwamoto H, Seki T, Nakamura T, Masuda A, Sakaue T, Tanaka T, Imamura Y, Niizeki T, Nakano M, et al: Tumor-derived insulin-like growth factor-binding protein-1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors. Cancer Commun (Lond). 43:415–434. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu H, Ai J, Zheng Y, Zhou W, Zhang L, Zhu J, Zhang H and Wang S: IGFBP2/ITGA5 promotes gefitinib resistance via activating STAT3/CXCL1 axis in non-small cell lung cancer. Cell Death Dis. 15:4472024. View Article : Google Scholar : PubMed/NCBI | |
|
Coleman KL, Chiaramonti M, Haddad B, Ranzenberger R, Henning H, Al Khashali H, Ray R, Darweesh B, Guthrie J, Heyl D and Evans HG: Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance. Cells. 12:4052023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, et al: A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 186:3903–3920.e21. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu L, Ding Y, Wan T, Deng T, Huang H and Liu J: Significance of CD47 and Its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 12:7681152021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Yin Z, Li S, Wu L, Zhang Y, Zhao Y, Gomes Dos Santos IL, Subudhi S, Lei P, Muzikansky A, et al: Losartan rewires the tumor-immune microenvironment and suppresses IGF-1 to overcome resistance to chemo-immunotherapy in ovarian cancer. Br J Cancer. 131:1683–1693. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, et al: Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest. 134:e1833662024. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM and Brodt P: Targeting the IGF-Axis potentiates immunotherapy for pancreatic ductal adenocarcinoma liver metastases by altering the immunosuppressive microenvironment. Mol Cancer Ther. 20:2469–2482. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pointer KB, Pitroda SP and Weichselbaum RR: Radiotherapy and immunotherapy: Open questions and future strategies. Trends Cancer. 8:9–20. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hessels AC, Langendijk JA, Gawryszuk A, Heersters MAAM, van der Salm NLM, Tissing WJE, van der Weide HL and Maduro JH: Review-Late toxicity of abdominal and pelvic radiotherapy for childhood cancer. Radiother Oncol. 170:27–36. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zong R, Chen X, Feng J and Xu S: IGF-1R depletion sensitizes colon cancer cell lines to radiotherapy. Cancer Biomark. 32:199–206. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zhu Z, Gao W, Jiang Q, Yu J and Fu C: Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity. Gene. 627:484–490. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JH, T H Wu A, T W Tzeng D, Huang CC, Tzeng YM and Chao TY: Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of β-catenin/Notch1/Akt signaling. Phytomedicine. 52:70–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM and Liao JW: Anti-oxidant, anti-mutagenic activity and safety evaluation of antrocin. Toxics. 11:5472023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YA, Tzeng DTW, Huang YP, Lin CJ, Lo UG, Wu CL, Lin H, Hsieh JT, Tang CH and Lai CH: Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers (Basel). 11:342018. View Article : Google Scholar : PubMed/NCBI |