Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Insulin‑like growth factor in cancer: New perspectives (Review)

  • Authors:
    • Duoming Wu
    • Shi Dong
    • Wence Zhou
  • View Affiliations / Copyright

    Affiliations: The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Gansu Province Hepatobiliary Pancreatic Disease Precision Diagnosis and Treatment Engineering Research Center, Lanzhou, Gansu 730000. P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 209
    |
    Published online on: May 23, 2025
       https://doi.org/10.3892/mmr.2025.13574
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The complex nature and heterogeneity of cancer present challenges for cancer treatment. As a class of single‑chain peptides, insulin‑like growth factors (IGFs) play key roles in cell growth, proliferation, differentiation and metabolic regulation. IGFs promote the proliferation, migration and invasive ability of tumor cells and are closely associated with poor prognosis. Furthermore, IGFs can influence the interactions between immune cells in the tumor microenvironment leading to immune escape. Moreover, the activation of signals associated with IGFs mediates the resistance of tumor cells to chemotherapeutic drugs. With the increasing incidence of tumor events, the desire for new therapies is becoming more urgent. This article comprehensively summarizes the molecular biological mechanisms of IGFs in tumorigenesis and the development of therapies related to targeting IGFs, with the hope of providing new insights into cancer treatment.
View Figures

Figure 1

Figure 2

View References

1 

Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Forbes BE, Blyth AJ and Wit JM: Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol. 518:1110352020. View Article : Google Scholar : PubMed/NCBI

5 

Froesch ER, Buergi H, Ramseier EB, Bally P and Labhart A: antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. an insulin assay with adipose tissue of increased precision and specificity. J Clin Invest. 42:1816–1834. 1963. View Article : Google Scholar : PubMed/NCBI

6 

Rinderknecht E and Humbel RE: The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 253:2769–2776. 1978. View Article : Google Scholar : PubMed/NCBI

7 

Wang J, Zhu Q, Cao D, Peng Q, Zhang X, Li C, Zhang C, Zhou BO and Yue R: Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci USA. 120:e22037791202023. View Article : Google Scholar : PubMed/NCBI

8 

Guan X, Yan Q, Wang D, Du G and Zhou J: IGF-1 signaling regulates mitochondrial remodeling during myogenic differentiation. Nutrients. 14:12492022. View Article : Google Scholar : PubMed/NCBI

9 

Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H and Nonomura N: Connecting the dots between the gut-IGF-1-prostate axis: A role of IGF-1 in prostate carcinogenesis. Front Endocrinol (Lausanne). 13:8523822022. View Article : Google Scholar : PubMed/NCBI

10 

LeRoith D, Holly JMP and Forbes BE: Insulin-like growth factors: Ligands, binding proteins and receptors. Mol Metab. 52:1012452021. View Article : Google Scholar : PubMed/NCBI

11 

Dixit M, Poudel SB and Yakar S: Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 519:1110522021. View Article : Google Scholar : PubMed/NCBI

12 

Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, et al: Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J. 33:181–194. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Alberini CM and Chen DY: Memory enhancement: Consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35:274–283. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Alfares MN, Perks CM, Hamilton-Shield JP and Holly JMP: Insulin-like growth factor-II in adipocyte regulation: Depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 315:E1098–E1107. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Ghafari F, Alizadeh AM, Agah S, Irani S and Mokhtare M: Insulin-like growth factor 1 serum levels in different stages of gastric cancer and their association with Helicobacter pylori status. Peptides. 158:1708922022. View Article : Google Scholar : PubMed/NCBI

16 

Kasprzak A: Autophagy and the insulin-like growth factor (IGF) system in colonic cells: Implications for colorectal neoplasia. Int J Mol Sci. 24:36652023. View Article : Google Scholar : PubMed/NCBI

17 

Adachi Y, Nojima M, Mori M, Himori R, Kubo T, Akutsu N, Lin Y, Kurozawa Y, Wakai K and Tamakoshi A; Japan Collaborative Cohort Study, : Insulin-like growth factor 2 and incidence of liver cancer in a nested case-control study. Cancer Epidemiol Biomarkers Prev. 30:2130–2135. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI

19 

Feng L, Li B, Xi Y, Cai M and Tian Z: Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol. 322:C164–C176. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL and Lo YC: Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol. 178:2998–3016. 2021. View Article : Google Scholar : PubMed/NCBI

21 

de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Paredes F, Williams HC and San Martin A: Metabolic adaptation in hypoxia and cancer. Cancer Lett. 502:133–142. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Liu Y, Liu J, Tian Z, Zhang Z, Liu T, Chen C, Tang X and Zhu J: Highly expressed IFITM10 is associated with early diagnosis and T stage of gastric cancer. Transl Cancer Res. 10:382–392. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Seo GS, Lee JK, Yu JI, Yun KJ, Chae SC and Choi SC: Identification of the polymorphisms in IFITM3 gene and their association in a Korean population with ulcerative colitis. Exp Mol Med. 42:99–104. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Xu L, Zhou R, Yuan L, Wang S, Li X, Ma H, Zhou M, Pan C, Zhang J, Huang N, et al: IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett. 393:76–85. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Le Coz V, Zhu C, Devocelle A, Vazquez A, Boucheix C, Azzi S, Gallerne C, Eid P, Lecourt S and Giron-Michel J: IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process. Oncotarget. 7:82511–82527. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP and Vadgama JV: IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One. 9:e1035342014. View Article : Google Scholar : PubMed/NCBI

28 

Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH and Chou YT: Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep. 10:82612020. View Article : Google Scholar : PubMed/NCBI

29 

Tsai YF, Chou HC, Liou MH, Liao EC, Cheng CT, Chang SJ and Chan HL: Role of IGFBP-2 in oral cancer metastasis. Biochim Biophys Acta Mol Basis Dis. 1867:1661432021. View Article : Google Scholar : PubMed/NCBI

30 

Luo C, Sun F, Zhu H, Ni Y, Fang J, Liu Y, Shao S, Shen H and Hu J: Insulin-like growth factor binding protein-1 (IGFBP-1) upregulated by Helicobacter pylori and is associated with gastric cancer cells migration. Pathol Res Pract. 213:1029–1036. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Mo W, Deng L, Cheng Y, Ge S and Wang J: IGFBP7 regulates cell proliferation and migration through JAK/STAT pathway in gastric cancer and is regulated by DNA and RNA methylation. J Cell Mol Med. 28:e700802024. View Article : Google Scholar : PubMed/NCBI

32 

Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI

33 

Ren F, Wu K, Yang Y, Yang Y, Wang Y and Li J: Dandelion polysaccharide exerts anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1α expression. Front Pharmacol. 11:4602020. View Article : Google Scholar : PubMed/NCBI

34 

Higashi Y, Pandey A, Goodwin B and Delafontaine P: Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta. 1832:391–399. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Bid HK, Zhan J, Phelps DA, Kurmasheva RT and Houghton PJ: Potent inhibition of angiogenesis by the IGF-1 receptor-targeting antibody SCH717454 is reversed by IGF-2. Mol Cancer Ther. 11:649–659. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Glass K, Fines C, Coulter P, Jena L, McCarthy HO and Buckley N: Development and characterization of a peptide-bisphosphonate nanoparticle for the treatment of breast cancer. Mol Pharm. 21:4970–4982. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Ishikawa T: Differences between zoledronic acid and denosumab for breast cancer treatment. J Bone Miner Metab. 41:301–306. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Tang X, Zhang Q, Shi S, Yen Y, Li X, Zhang Y, Zhou K and Le AD: Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer. 126:90–103. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Seo SH, Hwang SY, Hwang S, Han S, Park H, Lee YS, Rho SB and Kwon Y: Hypoxia-induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep. 23:e529772022. View Article : Google Scholar : PubMed/NCBI

40 

Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. View Article : Google Scholar : PubMed/NCBI

41 

Slater T, Haywood NJ, Matthews C, Cheema H and Wheatcroft SB: Insulin-like growth factor binding proteins and angiogenesis: From cancer to cardiovascular disease. Cytokine Growth Factor Rev. 46:28–35. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V and Somasundaram K: Glioblastoma-derived macrophage colony-stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J Biol Chem. 290:23401–23415. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Shen X, Xi G, Wai C and Clemmons DR: The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ). J Biol Chem. 290:11578–11590. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, et al: microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis. 42:762–771. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Wei LF, Weng XF, Huang XC, Peng YH, Guo HP and Xu YW: IGFBP2 in cancer: Pathological role and clinical significance (Review). Oncol Rep. 45:427–438. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI

47 

Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, et al: CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 17:4323–4340. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Huangfu L, Wang X, Tian S, Chen J, Wang X, Fan B, Yao Q, Wang G, Chen C, Han J, et al: Piceatannol enhances Beclin-1 activity to suppress tumor progression and its combination therapy strategy with everolimus in gastric cancer. Sci China Life Sci. 66:298–312. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T and Reggiori F: The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 18:50–72. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J and Chen XP: Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res. 38:2982019. View Article : Google Scholar : PubMed/NCBI

51 

Masliah-Planchon J, Garinet S and Pasmant E: RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 7:38892–38907. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Chen PC, Kuo YC, Chuong CM and Huang YH: Niche modulation of IGF-1R signaling: its role in stem cell pluripotency, cancer reprogramming and therapeutic applications. Front Cell Dev Biol. 8:6259432021. View Article : Google Scholar : PubMed/NCBI

53 

Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, Papkovsky DB, Hursting SD and O'Connor R: Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J Biol Chem. 292:16983–16998. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Riis S, Murray JB and O'Connor R: IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3β-Nrf2-BNIP3 pathway. Cells. 9:1472020. View Article : Google Scholar : PubMed/NCBI

55 

Gao T, Liu X, He B, Pan Y and Wang S: IGF2 loss of imprinting enhances colorectal cancer stem cells pluripotency by promoting tumor autophagy. Aging (Albany NY). 12:21236–21252. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Cai Q, Dozmorov M and Oh Y: IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9:12612020. View Article : Google Scholar : PubMed/NCBI

57 

Grkovic S, O'Reilly VC, Han S, Hong M, Baxter RC and Firth SM: IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene. 32:2412–2420. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H and Zhu W: ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ. 12:e176282024. View Article : Google Scholar : PubMed/NCBI

59 

Lin JC, Liu TP, Chen YB and Yang PM: PF-429242 exhibits anticancer activity in hepatocellular carcinoma cells via FOXO1-dependent autophagic cell death and IGFBP1-dependent anti-survival signaling. Am J Cancer Res. 13:4125–4144. 2023.PubMed/NCBI

60 

Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, Gongye X, Chen Z, Liu J, Chen X, et al: METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond). 43:338–364. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Jing Z, Liu Q, He X, Jia Z, Xu Z, Yang B and Liu P: NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res. 41:1982022. View Article : Google Scholar : PubMed/NCBI

62 

Okuyama T, Kyohara M, Terauchi Y and Shirakawa J: The roles of the IGF axis in the regulation of the metabolism: interaction and difference between insulin receptor signaling and IGF-I receptor signaling. Int J Mol Sci. 22:68172021. View Article : Google Scholar : PubMed/NCBI

63 

Ravera S, Puddu A, Bertola N, Verzola D, Russo E, Maggi D and Panfoli I: IGF-1 signaling modulates oxidative metabolism and stress resistance in ARPE-19 cells through PKM2 function. Int J Mol Sci. 25:136402024. View Article : Google Scholar : PubMed/NCBI

64 

Stanley TL, Fourman LT, Zheng I, McClure CM, Feldpausch MN, Torriani M, Corey KE, Chung RT, Lee H, Kleiner DE, et al: Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 106:e520–e533. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Kasprzak A: Insulin-Like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int J Mol Sci. 22:64342021. View Article : Google Scholar : PubMed/NCBI

66 

Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE and Huss JM: t-Darpp Activates IGF-1R signaling to regulate glucose metabolism in trastuzumab-resistant breast cancer cells. Clin Cancer Res. 24:1216–1226. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Lung Cancer Cohort Consortium (LC3), . The blood proteome of imminent lung cancer diagnosis. Nat Commun. 14:30422023. View Article : Google Scholar : PubMed/NCBI

68 

Cai G, Qi Y, Wei P, Gao H, Xu C, Zhao Y, Qu X, Yao F and Yang W: IGFBP1 sustains cell survival during spatially-confined migration and promotes tumor metastasis. Adv Sci (Weinh). 10:e22065402023. View Article : Google Scholar : PubMed/NCBI

69 

Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA and Oesterreich S: The great immune escape: Understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 13:23–40. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, et al: SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell. 187:861–881.e32. 2024. View Article : Google Scholar : PubMed/NCBI

71 

De Martino M, Rathmell JC, Galluzzi L and Vanpouille-Box C: Cancer cell metabolism and antitumour immunity. Nat Rev Immunol. 24:654–669. 2024. View Article : Google Scholar : PubMed/NCBI

72 

Huang Y, Huang L, Zhu J, Wu Y, Shi J and Dai K: Differential expression of insulin-like growth factor type 1 receptor identifies heterogeneous intrahepatic regulatory T subsets in mouse hepatocellular carcinoma. Clin Exp Immunol. 208:47–59. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Liu M, Zhong YB, Shao J, Zhang C and Shi C: Tumor-associated macrophages promote human hepatoma Huh-7 cell migration and invasion through the Gli2/IGF-II/ERK1/2 axis by secreting TGF-β1. Cancer Biol Ther. 21:1041–1050. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, Yang ZX, Hou F and Deng ZY: M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 24:6042021. View Article : Google Scholar : PubMed/NCBI

75 

Uehara H, Kobayashi T, Matsumoto M, Watanabe S, Yoneda A and Bando Y: Adipose tissue:Critical contributor to the development of prostate cancer. J Med Invest. 65:9–17. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, et al: Activation of the IGF axis in thyroid cancer: Implications for tumorigenesis and treatment. Int J Mol Sci. 20:32582019. View Article : Google Scholar : PubMed/NCBI

77 

Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W and Wu F: BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol. 176:1137922023. View Article : Google Scholar : PubMed/NCBI

78 

Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, et al: Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol. 259:205–219. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Wei H, Dong C and Shen Z: Kallikrein-related peptidase (KLK10) cessation blunts colorectal cancer cell growth and glucose metabolism by regulating the PI3K/Akt/mTOR pathway. Neoplasma. 67:889–897. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Lu X, Song X, Hao X, Liu X, Zhang X, Yuan N, Ma H and Zhang Z: miR-186-3p attenuates the tumorigenesis of cervical cancer via targeting insulin-like growth factor 1 to suppress PI3K-Akt signaling pathway. Bioengineered. 12:7079–7092. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Wang C, Sun Y, Cong S and Zhang F: Insulin-like growth factor-1 promotes human uterine leiomyoma cell proliferation via PI3K/AKT/mTOR pathway. Cells Tissues Organs. 212:194–202. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Gao C, He XF, Xu QR, Xu YJ and Shen J: Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anticancer Drugs. 30:e07442019. View Article : Google Scholar : PubMed/NCBI

83 

Rieder S, Michalski CW, Friess H and Kleeff J: Insulin-like growth factor signaling as a therapeutic target in pancreatic cancer. Anticancer Agents Med Chem. 11:427–433. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, et al: IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep. 8:20542018. View Article : Google Scholar : PubMed/NCBI

85 

Liu Y, Zhang M, He T, Yang W, Wang L, Zhang L and Guo M: Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K-AKT signaling. Clin Epigenetics. 12:222020. View Article : Google Scholar : PubMed/NCBI

86 

Guo Q, Jin Y, Chen X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI

87 

Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar : PubMed/NCBI

88 

Harvey AE, Lashinger LM, Hays D, Harrison LM, Lewis K, Fischer SM and Hursting SD: Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS One. 9:e941512014. View Article : Google Scholar : PubMed/NCBI

89 

Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M and Yu L: Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes. 52:1015832020. View Article : Google Scholar : PubMed/NCBI

90 

Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AY, Tsai HJ and Chen YW: Insulin-like growth factor binding protein 3 promotes radiosensitivity of oral squamous cell carcinoma cells via positive feedback on NF-κB/IL-6/ROS signaling. J Exp Clin Cancer Res. 40:952021. View Article : Google Scholar : PubMed/NCBI

91 

Kim MS and Lee DY: Insulin-like growth factor binding protein-3 enhances etoposide-induced cell growth inhibition by suppressing the NF-κB activity in gastric cancer cells. Mol Cell Biochem. 403:107–113. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Cao Y, Chen J, Ren G, Zhang Y, Tan X and Yang L: Punicalagin prevents inflammation in LPS-Induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients. 11:27942019. View Article : Google Scholar : PubMed/NCBI

93 

Peluso I, Yarla NS, Ambra R, Pastore G and Perry G: MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol. 56:185–195. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J and van de Water B: Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res. 13:R522011. View Article : Google Scholar : PubMed/NCBI

95 

Rao W, Li H, Song F, Zhang R, Yin Q, Wang Y, Xi Y and Ge H: OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. Carcinogenesis. 35:1573–1581. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Teng JA, Wu SG, Chen JX, Li Q, Peng F, Zhu Z, Qin J and He ZY: The activation of ERK1/2 and JNK MAPK signaling by insulin/IGF-1 Is responsible for the development of colon cancer with type 2 diabetes Mellitus. PLoS One. 11:e01498222016. View Article : Google Scholar : PubMed/NCBI

97 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI

98 

Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI

99 

Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI

100 

Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S and Paul MK: Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today. 27:82–101. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Hsieh CH, Cheng LH, Hsu HH, Ho TJ, Tu CC, Lin YM, Chen MC, Tsai FJ, Hsieh YL and Huang CY: Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the Wnt/β-catenin signaling pathway and MMP-2 expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic effect. Biosci Biotechnol Biochem. 77:2397–2404. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP and Dar MJ: Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. Biochim Biophys Acta Mol Cell Res. 1865:920–931. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Zhang QY, Wang L, Song ZY and Qu XJ: Knockdown of type I insulin-like growth factor receptor inhibits human colorectal cancer cell growth and downstream PI3K/Akt, WNT/β-catenin signal pathways. Biomed Pharmacother. 73:12–18. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 14:e02259132019. View Article : Google Scholar : PubMed/NCBI

105 

Hashemi Goradel N, Najafi M, Salehi E, Farhood B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, Zhao X, Feng L, Zhang B, Jin L, et al: Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathwa. J Exp Clin Cancer Res. 37:2482018. View Article : Google Scholar : PubMed/NCBI

107 

Huang R, Yu J, Zhang B, Li X, Liu H and Wang Y: Emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and treatment. Biomaterials. 315:1229542025. View Article : Google Scholar : PubMed/NCBI

108 

Song KH, Kang JH, Woo JK, Nam JS, Min HY, Lee HY, Kim SY and Oh SH: The novel IGF-IR/Akt-dependent anticancer activities of glucosamine. BMC Cancer. 14:312014. View Article : Google Scholar : PubMed/NCBI

109 

Stoeltzing O, Liu W, Fan F, Wagner C, Stengel K, Somcio RJ, Reinmuth N, Parikh AA, Hicklin DJ and Ellis LM: Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system. Cancer Lett. 258:291–300. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Tian J, Lambertz I, Berton TR, Rundhaug JE, Kiguchi K, Shirley SH, Digiovanni J, Conti CJ, Fischer SM and Fuchs-Young R: Transgenic insulin-like growth factor-1 stimulates activation of COX-2 signaling in mammary glands. Mol Carcinog. 51:973–983. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T and Zhao J: Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int. 41:384–391. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Mengzhe G, Shanshan X, Di Z and Shihua W: Editorial: The role of the IGF axis in tumorigenesis and cancer treatment: From genes to metabolites. Front Endocrinol (Lausanne). 13:11239622023. View Article : Google Scholar : PubMed/NCBI

113 

Wang P, Mak VC and Cheung LW: Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 10:199–211. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J and Saceda M: Differential effects of IGF-1R small molecule tyrosine kinase inhibitors BMS-754807 and OSI-906 on human cancer cell lines. Cancers (Basel). 12:37172020. View Article : Google Scholar : PubMed/NCBI

115 

Stan MN and Krieger CC: The adverse effects profile of teprotumumab. J Clin Endocrinol Metab. 108:e654–e662. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Zhang J, Wen G, Sun L, Yuan W, Wang R, Zeng Q, Zhang G and Yu B: Cryptotanshinone inhibits cellular proliferation of human lung cancer cells through downregulation of IGF-1R/PI3K/Akt signaling pathway. Oncol Rep. 40:2926–2934. 2018.PubMed/NCBI

117 

Jung M, Bu SY, Tak KH, Park JE and Kim E: Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract. 7:439–445. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Le CT, Leenders WPJ, Molenaar RJ and van Noorden CJF: Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr Cancer. 70:317–333. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Liu F, Ye S, Zhao L and Niu Q: The role of IGF/IGF-1R signaling in the regulation of cancer stem cells. Clin Transl Oncol. 26:2924–2934. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Ding F and Yang S: Epigallocatechin-3-gallate inhibits proliferation and triggers apoptosis in colon cancer via the hedgehog/phosphoinositide 3-kinase pathways. Can J Physiol Pharmacol. 99:910–920. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, et al: Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 71:1029–1040. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Kim JH, Choi DS, Lee OH, Oh SH, Lippman SM and Lee HY: Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood. 118:2622–2631. 2011. View Article : Google Scholar : PubMed/NCBI

123 

Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, et al: IGFBP2 Activates the NF-κB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res. 76:6543–6554. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Cai Q, Kim M, Harada A, Idowu MO, Sundaresan G, Zweit J and Oh Y: Alpha-1 Antitrypsin inhibits tumorigenesis and progression of colitis-associated colon cancer through suppression of inflammatory neutrophil-activated serine proteases and IGFBP-3 proteolysis. Int J Mol Sci. 23:137372022. View Article : Google Scholar : PubMed/NCBI

125 

Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, Wei Q, Song P, Chen Y, Lu D, et al: METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 24:1278–1290. 2022. View Article : Google Scholar : PubMed/NCBI

126 

He P, Liu X, Yu G, Wang Y, Wang S, Liu J and An Y: METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 479:1707–1720. 2024. View Article : Google Scholar : PubMed/NCBI

127 

Chen X, Wang M, Wang H, Yang J, Li X, Zhang R, Ding X, Hou H, Zhou J and Wu M: METTL3 inhibitor suppresses the progression of prostate cancer via IGFBP3/AKT pathway and synergizes with PARP inhibitor. Biomed Pharmacother. 179:1173662024. View Article : Google Scholar : PubMed/NCBI

128 

Pomeroy AE, Schmidt EV, Sorger PK and Palmer AC: Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 8:915–929. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Dias MP, Moser SC, Ganesan S and Jonkers J: Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 18:773–791. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Ravi P, Wang V, Fichorova RN, McGregor B, Wei XX, Basaria S and Sweeney CJ: IGF-1 axis changes with ADT and docetaxel in metastatic prostate cancer. Endocr Relat Cancer. 30:e2302412023. View Article : Google Scholar : PubMed/NCBI

131 

Codony-Servat J, Cuatrecasas M, Asensio E, Montironi C, Martínez-Cardús A, Marín-Aguilera M, Horndler C, Martínez-Balibrea E, Rubini M, Jares P, et al: Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Br J Cancer. 117:1777–1786. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Qiu N, He YF, Zhang SM, Zhan YT, Han GD, Jiang M, He WX, Zhou J, Liang HL, Ao X, et al: Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett. 464:25–36. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI

134 

Zheng Y, Sowers JY and Houston KD: IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via Erk pathway activation. Front Endocrinol (Lausanne). 11:2332020. View Article : Google Scholar : PubMed/NCBI

135 

Suzuki H, Iwamoto H, Seki T, Nakamura T, Masuda A, Sakaue T, Tanaka T, Imamura Y, Niizeki T, Nakano M, et al: Tumor-derived insulin-like growth factor-binding protein-1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors. Cancer Commun (Lond). 43:415–434. 2023. View Article : Google Scholar : PubMed/NCBI

136 

Lu H, Ai J, Zheng Y, Zhou W, Zhang L, Zhu J, Zhang H and Wang S: IGFBP2/ITGA5 promotes gefitinib resistance via activating STAT3/CXCL1 axis in non-small cell lung cancer. Cell Death Dis. 15:4472024. View Article : Google Scholar : PubMed/NCBI

137 

Coleman KL, Chiaramonti M, Haddad B, Ranzenberger R, Henning H, Al Khashali H, Ray R, Darweesh B, Guthrie J, Heyl D and Evans HG: Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance. Cells. 12:4052023. View Article : Google Scholar : PubMed/NCBI

138 

Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, et al: A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 186:3903–3920.e21. 2023. View Article : Google Scholar : PubMed/NCBI

139 

Yu L, Ding Y, Wan T, Deng T, Huang H and Liu J: Significance of CD47 and Its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 12:7681152021. View Article : Google Scholar : PubMed/NCBI

140 

Sun Y, Yin Z, Li S, Wu L, Zhang Y, Zhao Y, Gomes Dos Santos IL, Subudhi S, Lei P, Muzikansky A, et al: Losartan rewires the tumor-immune microenvironment and suppresses IGF-1 to overcome resistance to chemo-immunotherapy in ovarian cancer. Br J Cancer. 131:1683–1693. 2024. View Article : Google Scholar : PubMed/NCBI

141 

Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, et al: Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest. 134:e1833662024. View Article : Google Scholar : PubMed/NCBI

142 

Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM and Brodt P: Targeting the IGF-Axis potentiates immunotherapy for pancreatic ductal adenocarcinoma liver metastases by altering the immunosuppressive microenvironment. Mol Cancer Ther. 20:2469–2482. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Pointer KB, Pitroda SP and Weichselbaum RR: Radiotherapy and immunotherapy: Open questions and future strategies. Trends Cancer. 8:9–20. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Hessels AC, Langendijk JA, Gawryszuk A, Heersters MAAM, van der Salm NLM, Tissing WJE, van der Weide HL and Maduro JH: Review-Late toxicity of abdominal and pelvic radiotherapy for childhood cancer. Radiother Oncol. 170:27–36. 2022. View Article : Google Scholar : PubMed/NCBI

145 

Zong R, Chen X, Feng J and Xu S: IGF-1R depletion sensitizes colon cancer cell lines to radiotherapy. Cancer Biomark. 32:199–206. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Chen L, Zhu Z, Gao W, Jiang Q, Yu J and Fu C: Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity. Gene. 627:484–490. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Chen JH, T H Wu A, T W Tzeng D, Huang CC, Tzeng YM and Chao TY: Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of β-catenin/Notch1/Akt signaling. Phytomedicine. 52:70–78. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM and Liao JW: Anti-oxidant, anti-mutagenic activity and safety evaluation of antrocin. Toxics. 11:5472023. View Article : Google Scholar : PubMed/NCBI

149 

Chen YA, Tzeng DTW, Huang YP, Lin CJ, Lo UG, Wu CL, Lin H, Hsieh JT, Tang CH and Lai CH: Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers (Basel). 11:342018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu D, Dong S and Zhou W: Insulin‑like growth factor in cancer: New perspectives (Review). Mol Med Rep 32: 209, 2025.
APA
Wu, D., Dong, S., & Zhou, W. (2025). Insulin‑like growth factor in cancer: New perspectives (Review). Molecular Medicine Reports, 32, 209. https://doi.org/10.3892/mmr.2025.13574
MLA
Wu, D., Dong, S., Zhou, W."Insulin‑like growth factor in cancer: New perspectives (Review)". Molecular Medicine Reports 32.2 (2025): 209.
Chicago
Wu, D., Dong, S., Zhou, W."Insulin‑like growth factor in cancer: New perspectives (Review)". Molecular Medicine Reports 32, no. 2 (2025): 209. https://doi.org/10.3892/mmr.2025.13574
Copy and paste a formatted citation
x
Spandidos Publications style
Wu D, Dong S and Zhou W: Insulin‑like growth factor in cancer: New perspectives (Review). Mol Med Rep 32: 209, 2025.
APA
Wu, D., Dong, S., & Zhou, W. (2025). Insulin‑like growth factor in cancer: New perspectives (Review). Molecular Medicine Reports, 32, 209. https://doi.org/10.3892/mmr.2025.13574
MLA
Wu, D., Dong, S., Zhou, W."Insulin‑like growth factor in cancer: New perspectives (Review)". Molecular Medicine Reports 32.2 (2025): 209.
Chicago
Wu, D., Dong, S., Zhou, W."Insulin‑like growth factor in cancer: New perspectives (Review)". Molecular Medicine Reports 32, no. 2 (2025): 209. https://doi.org/10.3892/mmr.2025.13574
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team