
Exosomal miRNAs in pancreatitis: Mechanisms and potential applications (Review)
- Authors:
- Liwei Wang
- Jiaying Zhang
- Ziwei He
- Xiangding Kong
- Chengxiang Liu
- Yingzhi Xia
- Ming Yang
- Kuanyu Wang
-
Affiliations: Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, Nursing Department, Heilongjiang Nursing College, Harbin, Heilongjiang 150001, P.R. China, Department of General Surgery II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, Department of Anesthesiology, First Hospital of Qiqihar, Qiqihar, Heilongjiang 161001, P.R. China, Department of Orthopedics, Qiqihar Traditional Chinese Medicine Hospital, Qiqihar, Heilongjiang 161001, P.R. China - Published online on: May 23, 2025 https://doi.org/10.3892/mmr.2025.13575
- Article Number: 210
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Trikudanathan G, Yazici C, Evans Phillips A and Forsmark CE: Diagnosis and management of acute pancreatitis. Gastroenterology. 167:673–688. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hines OJ and Pandol SJ: Management of chronic pancreatitis. BMJ. 384:e0709202024. View Article : Google Scholar : PubMed/NCBI | |
Saluja A, Dudeja V, Dawra R and Sah RP: Early Intra-acinar events in pathogenesis of pancreatitis. Gastroenterology. 156:1979–1993. 2019. View Article : Google Scholar : PubMed/NCBI | |
Capurso G, Tacelli M, Vanella G, Ponz de Leon Pisani R, Dell'Anna G, Abati M, Mele R, Lauri G, Panaitescu A, Nunziata R, et al: Managing complications of chronic pancreatitis: A guide for the gastroenterologist. Expert Rev Gastroenterol Hepatol. 17:1267–1283. 2023. View Article : Google Scholar : PubMed/NCBI | |
Szatmary P, Grammatikopoulos T, Cai W, Huang W, Mukherjee R, Halloran C, Beyer G and Sutton R: Acute pancreatitis: Diagnosis and treatment. Drugs. 82:1251–1276. 2022. View Article : Google Scholar : PubMed/NCBI | |
Barreto SG, Habtezion A, Gukovskaya A, Lugea A, Jeon C, Yadav D, Hegyi P, Venglovecz V, Sutton R and Pandol SJ: Critical thresholds: Key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut. 70:194–203. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Sui S and Goel A: Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol. 99:5–23. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bayat M and Sadri Nahand J: Exosomal miRNAs: The tumor's trojan horse in selective metastasis. Mol Cancer. 23:1672024. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M and Akbari Dilmaghani N: Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res. 8:350–362. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Lv D, Yang H, Lu Y and Jia Y: A review on the current literature regarding the value of exosome miRNAs in various diseases. Ann Med. 55:22329932023. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Zhao H, Cheng D, Zhu Z, Xia Z, Lu D, Yu J, Dong R and Yue J: miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis. Int Immunopharmacol. 127:1114382024. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wang H, Jing Q, Yang Y, Xue D, Hao C and Zhang W: Regulation of pancreatic fibrosis by acinar Cell-derived exosomal miR-130a-3p via targeting of stellate cell PPAR-γ. J Inflamm Res. 14:461–477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jia YC, Ding YX, Mei WT, Wang YT, Zheng Z, Qu YX, Liang K, Li J, Cao F and Li F: Extracellular vesicles and pancreatitis: Mechanisms, status and perspectives. Int J Biol Sci. 17:549–561. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, et al: Pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis. Biomedicines. 12:26272024. View Article : Google Scholar : PubMed/NCBI | |
Zaman S and Gorelick F: Acute pancreatitis: Pathogenesis and emerging therapies. J Pancreatol. 7:10–20. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mederos MA, Reber HA and Girgis MD: Acute pancreatitis: A review. JAMA. 325:382–390. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Ni HM, Chao X, Ma X, Kolodecik T, De Lisle R, Ballabio A, Pacher P and Ding WX: Critical role of TFEB-mediated lysosomal biogenesis in Alcohol-induced pancreatitis in mice and humans. Cell Mol Gastroenterol Hepatol. 10:59–81. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Zhou X, Zippi M, Goyal H, Basharat Z, Jagielski M and Hong W: Comprehensive review on the pathogenesis of Hypertriglyceridaemia-associated acute pancreatitis. Ann Med. 55:22659392023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Gao J, Wen L, Huang K, Liu H, Zeng L, Zeng Z, Liu Y and Mo Z: Ion channels in acinar cells in acute pancreatitis: Crosstalk of calcium, iron, and copper signals. Front Immunol. 15:14442722024. View Article : Google Scholar : PubMed/NCBI | |
An J, Jiang T, Qi L and Xie K: Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev. 71-72:40–53. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ge P, Luo Y, Okoye CS and Chen H, Liu J, Zhang G, Xu C and Chen H: Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother. 132:1107702020. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Yang Y, Zhu L, Zhao X, Li J, Tang W and Wan M: Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl). 135:2773–2784. 2022.PubMed/NCBI | |
Papantoniou K, Aggeletopoulou I, Michailides C, Pastras P and Triantos C: Understanding the role of NLRP3 inflammasome in acute pancreatitis. Biology (Basel). 13:9452024.PubMed/NCBI | |
Kong F, Pan Y and Wu D: Activation and regulation of pancreatic stellate cells in chronic pancreatic fibrosis: A potential therapeutic approach for chronic pancreatitis. Biomedicines. 12:1082024. View Article : Google Scholar : PubMed/NCBI | |
Nail HM, Chiu CC, Leung CH, Ahmed MMM and Wang HD: Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci. 30:692023. View Article : Google Scholar : PubMed/NCBI | |
Melzer MK and Kleger A: Acute pancreatitis: Murine model systems unravel disease-modifying genes with potential implications for diagnostics and patient stratification. United European Gastroenterol J. 10:618–619. 2022. View Article : Google Scholar : PubMed/NCBI | |
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J and Bialkowska AB: The role of MicroRNAs in pancreatitis development and progression. Int J Mol Sci. 24:10572023. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Lee YY and Kim VN: The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol. 26:276–296. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shang R, Lee S, Senavirathne G and Lai EC: microRNAs in action: Biogenesis, function and regulation. Nat Rev Genet. 24:816–833. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Huang Q, Luo C, Wen Y, Liu R, Sun H and Tang L: MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy. J Cell Physiol. 235:1948–1961. 2020. View Article : Google Scholar : PubMed/NCBI | |
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C and Foti M: Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar : PubMed/NCBI | |
Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu K, He J, Pu W and Peng Y: The role of Exportin-5 in MicroRNA biogenesis and cancer. Genomics Proteomics Bioinformatics. 16:120–126. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hynes C and Kakumani PK: Regulatory role of RNA-binding proteins in microRNA biogenesis. Front Mol Biosci. 11:13748432024. View Article : Google Scholar : PubMed/NCBI | |
Rani V and Sengar RS: Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol Bioeng. 119:685–692. 2022. View Article : Google Scholar : PubMed/NCBI | |
Komatsu S, Kitai H and Suzuki HI: Network regulation of microRNA biogenesis and target interaction. Cells. 12:3062023. View Article : Google Scholar : PubMed/NCBI | |
Cánovas-Márquez JT, Falk S, Nicolás FE, Padmanabhan S, Zapata-Pérez R, Sánchez-Ferrer Á, Navarro E and Garre V: A ribonuclease III involved in virulence of Mucorales fungi has evolved to cut exclusively single-stranded RNA. Nucleic Acids Res. 49:5294–5307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Slezak-Prochazka I, Kluiver J, de Jong D, Kortman G, Halsema N, Poppema S, Kroesen BJ and van den Berg A: Cellular localization and processing of primary transcripts of exonic microRNAs. PLoS One. 8:e766472013. View Article : Google Scholar : PubMed/NCBI | |
Arya SB, Collie SP and Parent CA: The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol. 34:90–108. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wozniak AL, Adams A, King KE, Dunn W, Christenson LK, Hung WT and Weinman SA: The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. J Cell Biol. 219:e2019120742020. View Article : Google Scholar : PubMed/NCBI | |
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M and Sánchez-Madrid F: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 4:29802013. View Article : Google Scholar : PubMed/NCBI | |
Sonoda Y, Kano F and Murata M: Applications of cell resealing to reconstitute microRNA loading to extracellular vesicles. Sci Rep. 11:29002021. View Article : Google Scholar : PubMed/NCBI | |
Jaé N, McEwan DG, Manavski Y, Boon RA and Dimmeler S: Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Lett. 589:3182–3188. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12:19–30. 2010. View Article : Google Scholar : PubMed/NCBI | |
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly YM, Lindfors L and Valadi H: Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med. 99:1013022024. View Article : Google Scholar : PubMed/NCBI | |
Robinson H, Ruelcke JE, Lewis A, Bond CS, Fox AH, Bharti V, Wani S, Cloonan N, Lai A, Margolin D, et al: Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin Transl Med. 11:e3812021. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Bhandari K, Burrola S, Wu J and Ding WQ: Pancreatic ductal Cell-derived extracellular vesicles are effective drug carriers to enhance Paclitaxel's efficacy in pancreatic cancer cells through Clathrin-mediated endocytosis. Int J Mol Sci. 23:47732022. View Article : Google Scholar : PubMed/NCBI | |
Groot M and Lee H: Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells. 9:10442020. View Article : Google Scholar : PubMed/NCBI | |
Minhua Q, Bingzheng F, Zhiran X, Yingying Z, Yuwei Y, Ting Z, Jibing C and Hongjun G: Exosomal-microRNAs improve islet cell survival and function in islet transplantation. Curr Stem Cell Res Ther. 19:669–677. 2024. View Article : Google Scholar : PubMed/NCBI | |
Park EJ, Shimaoka M and Kiyono H: Functional flexibility of exosomes and micrornas of intestinal epithelial cells in affecting inflammation. Front Mol Biosci. 9:8544872022. View Article : Google Scholar : PubMed/NCBI | |
He K, Yang T, Yu J, Zang X, Jiang S, Xu S, Liu J, Xu Z, Wang W and Hong S: Dermatophagoides farinae microRNAs released to external environments via exosomes regulate inflammation-related gene expression in human bronchial epithelial cells. Front Immunol. 14:13032652023. View Article : Google Scholar : PubMed/NCBI | |
Isaac R, Reis FCG, Ying W and Olefsky JM: Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33:1744–1762. 2021. View Article : Google Scholar : PubMed/NCBI | |
Otahal A, Kuten-Pella O, Kramer K, Neubauer M, Lacza Z, Nehrer S and De Luna A: Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci Rep. 11:58232021. View Article : Google Scholar : PubMed/NCBI | |
Gemoll T, Rozanova S, Roder C, Hartwig S, Kalthoff H, Lehr S, ElSharawy A and Habermann JK: Protein profiling of serum extracellular vesicles reveals qualitative and quantitative differences after differential ultracentrifugation and exoquickTM isolation. J Clin Med. 9:14292020. View Article : Google Scholar : PubMed/NCBI | |
Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, Chiesi A, Salumets A and Peters M: Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem. 47:135–138. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Lv T, He L, Tang W, Zhang Y, Xiao X, Li Y, Chang X, Wang S, Pandol SJ, et al: Endocrine-exocrine miR-503-322 drives aging-associated pancreatitis via targeting MKNK1 in acinar cells. Nat Commun. 16:26132025. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Wu W, Fan F, Liu H, Ming Y, Liao W, Bai C and Gao Y: Extracellular vesicle content changes induced by melatonin promote functional recovery of pancreatic beta cells in acute pancreatitis. J Inflamm Res. 16:6397–6413. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Niu Z, Zhang R, Peng Z, Wang L, Liu Z, Gao Y, Pei H and Pan L: MALAT1 shuttled by extracellular vesicles promotes M1 polarization of macrophages to induce acute pancreatitis via miR-181a-5p/HMGB1 axis. J Cell Mol Med. 25:9241–9254. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ryu S and Lee EK: The pivotal role of macrophages in the pathogenesis of pancreatic diseases. Int J Mol Sci. 25:57652024. View Article : Google Scholar : PubMed/NCBI | |
Iyer S, Enman M, Sahay P and Dudeja V: Novel therapeutics to treat chronic pancreatitis: Targeting pancreatic stellate cells and macrophages. Expert Rev Gastroenterol Hepatol. 18:171–183. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiang H, Yu H, Zhou Q, Wu Y, Ren J, Zhao Z, Tao X and Dong D: Macrophages: A rising star in immunotherapy for chronic pancreatitis. Pharmacol Res. 185:1065082022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang H, Lu M, Qiao X, Sun B, Zhang W and Xue D: Pancreatic acinar cells employ miRNAs as mediators of intercellular communication to participate in the regulation of Pancreatitis-associated macrophage activation. Mediators Inflamm. 2016:63404572016. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Alesanco A, Marcuello M, Pastor-Jimenez M, Lopez-Puerto L, Bonjoch L, Gironella M, Carrascal M, Abian J, de-Madaria E and Closa D: Acute pancreatitis promotes the generation of two different exosome populations. Sci Rep. 9:198872019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chu J, Sun H, Zhao D, Ma B, Xue D, Zhang W and Li Z: MiR-155 aggravates impaired autophagy of pancreatic acinar cells through targeting Rictor. Acta Biochim Biophys Sin (Shanghai). 52:192–199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Yang X, Ren Y, Li X, Zhu Y, Haddock AN, Ji B, Xia L and Lu N: Inhibition of mir-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis. 10:3032019. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Tang M, Zong P, Liu H, Zhang T, Liu Y and Zhao Y: MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol. 9:6862018. View Article : Google Scholar : PubMed/NCBI | |
Tang DS, Cao F, Yan CS, Cui JT, Guo XY, Cheng L, Li L, Li YL, Ma JM, Fang K, et al: Acinar Cell-derived extracellular vesicle MiRNA-183-5p aggravates acute pancreatitis by promoting M1 macrophage polarization through downregulation of FoxO1. Front Immunol. 13:8692072022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Cao F, Ding YX, Lu JD, Fu YQ, Liu L, Guo YL, Liu S, Sun HC, Cui YQ and Li F: Acinous cell AR42J-derived exosome miR125b-5p promotes acute pancreatitis exacerbation by inhibiting M2 macrophage polarization via PI3K/AKT signaling pathway. World J Gastrointest Surg. 15:600–620. 2023. View Article : Google Scholar : PubMed/NCBI | |
Su XJ, Chen Y, Zhang QC, Peng XB, Liu YP, Wang L and Du YQ: Exosomes derived from cerulein-stimulated pancreatic acinar cells mediate peritoneal macrophage M1 polarization and pyroptosis via an miR-24-3p/MARCH3/NLRP3 axis in acute pancreatitis. Pancreas. 53:e641–e651. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z and Cao F: Mitochondrial dysfunction in pancreatic acinar cells: Mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol. 15:15030872024. View Article : Google Scholar : PubMed/NCBI | |
Cai SW, Han Y and Wang GP: miR-148a-3p exhaustion inhibits necrosis by regulating PTEN in acute pancreatitis. Int J Clin Exp Pathol. 11:5647–5657. 2018.PubMed/NCBI | |
Zhang Y, Yan L and Han W: Elevated level of miR-551b-5p is associated with inflammation and disease progression in patients with severe acute pancreatitis. Ther Apher Dial. 22:649–655. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kusnierz-Cabala B, Nowak E, Sporek M, Kowalik A, Kuzniewski M, Enguita FJ and Stepien E: Serum levels of unique miR-551-5p and endothelial-specific miR-126a-5p allow discrimination of patients in the early phase of acute pancreatitis. Pancreatology. 15:344–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Yin L, Chen Z, Waldron RT, Lugea A, Lin Y, Zhai X, Wen L, Han YP, Pandol SJ, et al: The unique pancreatic stellate cell gene expression signatures are associated with the progression from acute to chronic pancreatitis. Comput Struct Biotechnol J. 19:6375–6385. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chan LK, Tsesmelis M, Gerstenlauer M, Leithäuser F, Kleger A, Frick LD, Maier HJ and Wirth T: Functional IKK/NF-κB signaling in pancreatic stellate cells is essential to prevent autoimmune pancreatitis. Commun Biol. 5:5092022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Feng Y, Sun F, Li L, Chen J, Song Y, Zhu W, Hu X, Li Z, Kong F, et al: Optimized rAAV8 targeting acinar KLF4 ameliorates fibrosis in chronic pancreatitis via exosomes-enriched let-7s suppressing pancreatic stellate cells activation. Mol Ther. 32:2624–2640. 2024. View Article : Google Scholar : PubMed/NCBI | |
Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M and Brigstock DR: Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J Cell Commun Signal. 8:147–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lin Z, Wang L, Liu Q, Cao Z, Huang Z, Zhong M, Peng S, Zhang Y, Li Y and Ma X: RNA-Seq analyses of the role of miR-21 in acute pancreatitis. Cell Physiol Biochem. 51:2198–2211. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Cheng L, Jiang Z, Chen K, Zhou C, Sun L, Cao J, Qian W, Li J, Shan T, et al: Resveratrol inhibits ROS-Promoted activation and glycolysis of pancreatic stellate cells via suppression of miR-21. Oxid Med Cell Longev. 2018:13469582018. View Article : Google Scholar : PubMed/NCBI | |
Ciccarelli G, Di Giuseppe G, Soldovieri L, Quero G, Nista EC, Brunetti M, Cinti F, Moffa S, Capece U, Tondolo V, et al: Beta-cell function and glucose metabolism in patients with chronic pancreatitis. Eur J Intern Med. 128:112–118. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Mi N, Wu W, Zhao Y, Fan F, Liao W, Ming Y, Guan W and Bai C: Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. J Extracell Vesicles. 13:e124102024. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Liu D, Li G, Zhi M, Sun J, Qi L, Li J, Pandol SJ and Li L: Exosomal miR-140-3p and miR-143-3p from TGF-β1-treated pancreatic stellate cells target BCL2 mRNA to increase β-cell apoptosis. Mol Cell Endocrinol. 551:1116532022. View Article : Google Scholar : PubMed/NCBI | |
Lu XG, Kang X, Zhan LB, Kang LM, Fan ZW and Bai LZ: Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol. 23:7440–7449. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Feng H, Zhang L, Guo Y, Ma J and Yang L: MicroRNA-143-3p levels are reduced in the peripheral blood of patients with gestational diabetes mellitus and influences pancreatic β-cell function and viability. Exp Ther Med. 25:812023. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Zhu X and Guo S: From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis. 12:e13512024. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Chen X, Yang X, Zhang H, Li X, Wang Z, Feng S, Wen W and Xiong X: miRNA transcriptomics analysis shows miR-483-5p and miR-503-5p targeted miRNA in extracellular vesicles from severe acute pancreatitis-associated lung injury patients. Int Immunopharmacol. 125:1110752023. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S and Chen H: Intestinal mucosal immune barrier: A powerful firewall against severe acute pancreatitis-associated acute lung injury via the Gut-lung axis. J Inflamm Res. 17:2173–2193. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Li Y, Jiang Y, Li H, Wang J and Zhang D: Circulating exosomal miR-155-5p contributes to severe acute pancreatitis-associated intestinal barrier injury by targeting SOCS1 to activate NLRP3 inflammasome-mediated pyroptosis. FASEB J. 37:e230032023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yuan N, Li Y, Ma Q, Zhou Y, Qiao Z, Li S, Liu C, Zhang L, Yuan M and Sun J: Stellate ganglion block relieves acute lung injury induced by severe acute pancreatitis via the miR-155-5p/SOCS5/JAK2/STAT3 axis. Eur J Med Res. 27:2312022. View Article : Google Scholar : PubMed/NCBI | |
Balaraman AK, Moglad E, Afzal M, Babu MA, Goyal K, Roopashree R, Kaur I, Kumar S, Kumar M, Chauhan AS, et al: Liquid biopsies and exosomal ncRNA: Transforming pancreatic cancer diagnostics and therapeutics. Clin Chim Acta. 567:1201052025. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D and Li D: Exosome nanovesicles: Biomarkers and new strategies for treatment of human diseases. MedComm (2020). 5:e6602024. View Article : Google Scholar : PubMed/NCBI | |
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D and Sekar D: Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer. 21:542022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Sun Y, Yin R, Dong T, Song K, Fang Y, Liu G, Shen B and Li H: Differential expression of plasma exosomal microRNA in severe acute pancreatitis. Front Pharmacol. 13:9809302022. View Article : Google Scholar : PubMed/NCBI | |
Qu Y, Ding Y, Lu J, Jia Y, Bian C, Guo Y, Zheng Z, Mei W, Cao F and Li F: Identification of key microRNAs in exosomes derived from patients with the severe acute pancreatitis. Asian J Surg. 46:337–347. 2023. View Article : Google Scholar : PubMed/NCBI | |
Desai CS, Khan A, Bellio MA, Willis ML, Mahung C, Ma X, Baldwin X, Williams BM, Baron TH, Coleman LG, et al: Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients. Mol Cell Biochem. 476:4331–4341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nakamaru K, Tomiyama T, Kobayashi S, Ikemune M, Tsukuda S, Ito T, Tanaka T, Yamaguchi T, Ando Y, Ikeura T, et al: Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: Increased expression of microRNA-21. Pancreatology. 20:318–324. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang Q, Feng Y, Kong F, Sun F, Xie P, Zhao J, Yu H, Zhou J, Wu S, et al: A novel serum exosomal miRNA signature in the early prediction of persistent organ failure in patients with acute pancreatitis. Ann Surg. Feb 7–2024.(Epub ahead of print) doi: 10.1097/SLA.0000000000006229. View Article : Google Scholar | |
Zerem E, Kurtcehajic A, Kunosic S, Zerem Malkocevic D and Zerem O: Current trends in acute pancreatitis: Diagnostic and therapeutic challenges. World J Gastroenterol. 29:2747–2763. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Zhou X, Sun X, Fu C, Li G, Dong X, Kong X, Su X and Du Y: Serum exosomal miR-216a contributes to acute pancreatitis-associated acute lung injury by enhancing endothelial cell vascular permeability via downregulating LAMC1. Pancreas. Feb 13–2025.(Epub ahead of print). doi: 10.1097/MPA.0000000000002467. View Article : Google Scholar | |
Han SB and Lee SS: Simultaneous detection of exosomal microRNAs isolated from cancer cells using surface acoustic wave sensor array with high sensitivity and reproducibility. Micromachines (Basel). 15:2492024. View Article : Google Scholar : PubMed/NCBI | |
Trigo CM, Rodrigues JS, Camoes SP, Sola S and Miranda JP: Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res. 70:103–124. 2025. View Article : Google Scholar : PubMed/NCBI | |
Rahimian S, Mirkazemi K, Nejad AK and Doroudian M: Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol. 207:1045942025. View Article : Google Scholar : PubMed/NCBI | |
Galgaro BC, Beckenkamp LR, van den MNM, Korb VG, Naasani LIS, Roszek K and Wink MR: The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev. 41:2316–2349. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S and Song J: What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther. 11:5192020. View Article : Google Scholar : PubMed/NCBI | |
Pang K, Kong F and Wu D: Prospect of mesenchymal Stem-cell-conditioned medium in the treatment of acute pancreatitis: A systematic review. Biomedicines. 11:23432023. View Article : Google Scholar : PubMed/NCBI | |
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S and Gholizadeh O: The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal. 21:202023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Du R, Xiang A, Liu Y, Guan M and He H: Bone marrow mesenchymal stem cell-derived exosomal miR-181a-5p promotes M2 macrophage polarization to alleviate acute pancreatitis through ZEB2-mediated RACK1 ubiquitination. FASEB J. 38:e700422024. View Article : Google Scholar : PubMed/NCBI | |
Li HY, He HC, Song JF, Du YF, Guan M and Wu CY: Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal. 66:1094362020. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Pan L, Yang L, Niu Z, Wang L, Feng H and Yuan M: miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci. 272:1191892021. View Article : Google Scholar : PubMed/NCBI | |
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, et al: Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother. 154:1135552022. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Luo Y, Ge P, Lan B, Liu J, Wen H, Cao Y, Sun Z, Zhang G, Yuan H, et al: Emodin ameliorates severe acute Pancreatitis-associated acute lung injury in rats by modulating Exosome-specific miRNA expression profiles. Int J Nanomedicine. 18:6743–6761. 2023. View Article : Google Scholar : PubMed/NCBI |