|
1
|
Weaver CM, Gordon CM, Janz KF, Kalkwarf
HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC and Zemel BS: The
National Osteoporosis Foundation's position statement on peak bone
mass development and lifestyle factors: A systematic review and
implementation recommendations. Osteoporos Int. 27:1281–1386. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rozenberg S, Bruyère O, Bergmann P,
Cavalier E, Gielen E, Goemaere S, Kaufman JM, Lapauw B, Laurent MR,
De Schepper J and Body JJ: How to manage osteoporosis before the
age of 50. Maturitas. 138:14–25. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang
Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated mA RNA
methylation regulates the fate of bone marrow mesenchymal stem
cells and osteoporosis. Nat Commun. 9:47722018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lademann F, Tsourdi E, Hofbauer LC and
Rauner M: Thyroid hormone actions and bone remodeling-the role of
the wnt signaling pathway. Exp Clin Endocrinol Diabetes.
128:450–454. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu
Z, Pan X, Xu J, Qiao J, Zhang T, et al: The Global Burden of
osteoporosis, low bone mass, and its related fracture in 204
countries and territories, 1990–2019. Front Endocrinol (Lausanne).
13:8822412022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Johnston CB and Dagar M: Osteoporosis in
older adults. Med Clin North Am. 104:873–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Confavreux CB, Levine RL and Karsenty G: A
paradigm of integrative physiology, the crosstalk between bone and
energy metabolisms. Mol Cell Endocrinol. 310:21–29. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cao S, Li Y, Song R, Meng X, Fuchs M,
Liang C, Kachler K, Meng X, Wen J, Schlötzer-Schrehardt U, et al:
L-arginine metabolism inhibits arthritis and inflammatory bone
loss. Ann Rheum Dis. 83:72–87. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Panahi N, Fahimfar N, Roshani S, Arjmand
B, Gharibzadeh S, Shafiee G, Migliavacca E, Breuille D, Feige JN,
Grzywinski Y, et al: Association of amino acid metabolites with
osteoporosis, a metabolomic approach: Bushehr elderly health
program. Metabolomics. 18:632022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wilson MP, Plecko B, Mills PB and Clayton
PT: Disorders affecting vitamin B6 metabolism. J Inherit Metab Dis.
42:629–646. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Montalvany-Antonucci CC, Duffles LF, de
Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira
MFM, Fukada SY, Andrade I Jr, et al: Short-chain fatty acids and
FFAR2 as suppressors of bone resorption. Bone. 125:112–121. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lucas S, Omata Y, Hofmann J, Böttcher M,
Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B,
Krönke G, et al: Short-chain fatty acids regulate systemic bone
mass and protect from pathological bone loss. Nat Commun. 9:552018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Prockop DJ and Kivirikko KI: Collagens:
Molecular biology, diseases, and potentials for therapy. Annu Rev
Biochem. 64:403–434. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shoulders MD and Raines RT: Collagen
structure and stability. Annu Rev Biochem. 78:929–958. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Whyte MP: Physiological role of alkaline
phosphatase explored in hypophosphatasia. Ann N Y Acad Sci.
1192:190–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Heaney RP and Layman DK: Amount and type
of protein influences bone health. Am J Clin Nutr. 87:1567S–1570S.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ding KH, Cain M, Davis M, Bergson C,
McGee-Lawrence M, Perkins C, Hardigan T, Shi X, Zhong Q, Xu J, et
al: Amino acids as signaling molecules modulating bone turnover.
Bone. 115:15–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Long F: Energy metabolism and bone. Bone.
115:12018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dirckx N, Moorer MC, Clemens TL and Riddle
RC: The role of osteoblasts in energy homeostasis. Nat Rev
Endocrinol. 15:651–665. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lv Z, Shi W and Zhang Q: Role of essential
amino acids in age-induced bone loss. Int J Mol Sci. 23:112812022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Devignes CS, Carmeliet G and Stegen S:
Amino acid metabolism in skeletal cells. Bone Rep. 17:1016202022.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xu F, Li W, Yang X, Na L, Chen L and Liu
G: The roles of epigenetics regulation in bone metabolism and
osteoporosis. Front Cell Dev Biol. 8:6193012021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen X, Huang X, Zhang X and Chen Z:
Metabolism-epigenetic interaction-based bone and dental
regeneration: From impacts and mechanisms to treatment potential.
Bone. 192:1173822025. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q,
Wang Y, Wang T, Xiang J and Wang B: Amino acid metabolism in immune
cells: Essential regulators of the effector functions, and
promising opportunities to enhance cancer immunotherapy. J Hematol
Oncol. 16:592023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Karner CM and Long F: Glucose metabolism
in bone. Bone. 115:2–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Alekos NS, Moorer MC and Riddle RC: Dual
effects of lipid metabolism on osteoblast function. Front
Endocrinol (Lausanne). 11:5781942020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cui Z, Feng H, He B, He J and Tian Y:
Relationship between serum amino acid levels and bone mineral
density: A mendelian randomization study. Front Endocrinol
(Lausanne). 12:7635382021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liao M, Mu Y, Su X, Zheng L, Zhang S, Chen
H, Xu S, Ma J, Ouyang R, Li W, et al: Association between
Branched-Chain Amino Acid Intake and Physical Function among
Chinese Community-Dwelling Elderly Residents. Nutrients.
14:43672022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim M, Isoda H and Okura T: Effect of
Citrulline and leucine intake with exercises on body composition,
physical activity, and amino acid concentration in older women: A
Randomized double-blind placebo-controlled study. Foods.
10:31172021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kirk B, Mooney K, Vogrin S, Jackson M,
Duque G, Khaiyat O and Amirabdollahian F: Leucine-enriched whey
protein supplementation, resistance-based exercise, and
cardiometabolic health in older adults: A randomized controlled
trial. J Cachexia Sarcopenia Muscle. 12:2022–2033. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Refaey ME, Zhong Q, Ding KH, Shi XM, Xu J,
Bollag WB, Hill WD, Chutkan N, Robbins R, Nadeau H, et al: Impact
of dietary aromatic amino acids on osteoclastic activity. Calcif
Tissue Int. 95:174–182. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Michalowska M, Znorko B, Kaminski T,
Oksztulska-Kolanek E and Pawlak D: New insights into tryptophan and
its metabolites in the regulation of bone metabolism. J Physiol
Pharmacol. 66:779–791. 2015.PubMed/NCBI
|
|
33
|
Akinsuyi OS and Roesch LFW: Meta-analysis
reveals compositional and functional microbial changes associated
with osteoporosis. Microbiol Spectr. 11:e00322232023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim BJ, Hamrick MW, Yoo HJ, Lee SH, Kim
SJ, Koh JM and Isales CM: The detrimental effects of kynurenine, a
tryptophan metabolite, on human bone metabolism. J Clin Endocrinol
Metab. 104:2334–2342. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Apalset EM, Gjesdal CG, Ueland PM, Midttun
Ø, Ulvik A, Eide GE, Meyer K and Tell GS: Interferon
(IFN)-γ-mediated inflammation and the kynurenine pathway in
relation to bone mineral density: The Hordaland health study. Clin
Exp Immunol. 176:452–460. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ling CW, Miao Z, Xiao ML, Zhou H, Jiang Z,
Fu Y, Xiong F, Zuo LS, Liu YP, Wu YY, et al: The association of gut
microbiota with osteoporosis is mediated by amino acid metabolism:
Multiomics in a large cohort. J Clin Endocrinol Metab.
106:e3852–e3864. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Miyamoto K, Hirayama A, Sato Y, Ikeda S,
Maruyama M, Soga T, Tomita M, Nakamura M, Matsumoto M, Yoshimura N
and Miyamoto T: A metabolomic profile predictive of new
osteoporosis or sarcopenia development. Metabolites. 11:2782021.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang X, Xu H, Li GH, Long MT, Cheung CL,
Vasan RS, Hsu YH, Kiel DP and Liu CT: Metabolomics insights into
osteoporosis through association with bone mineral density. J Bone
Miner Res. 36:729–738. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Eriksson AL, Friedrich N, Karlsson MK,
Ljunggren Ö, Lorentzon M, Nethander M, Wallaschofski H, Mellström D
and Ohlsson C: Serum glycine levels are associated with cortical
bone properties and fracture risk in men. J Clin Endocrinol Metab.
106:e5021–e5029. 2021.PubMed/NCBI
|
|
40
|
Jennings A, MacGregor A, Spector T and
Cassidy A: Amino acid intakes are associated with bone mineral
density and prevalence of low bone mass in women: Evidence from
discordant monozygotic twins. J Bone Miner Res. 31:326–335. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kim MH, Kim HM and Jeong HJ: Estrogen-like
osteoprotective effects of glycine in in vitro and in vivo models
of menopause. Amino Acids. 48:791–800. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li X, Lin Q, Cui Y, Wang H, Wang P, Yang
L, Ye Q, Zhang R and Zhu X: Glycine acts through estrogen receptor
alpha to mediate estrogen receptor signaling, stimulating
osteogenesis and attenuating adipogenesis in ovariectomized rats.
Mol Nutr Food Res. 66:e21008572022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang J, Yan D, Zhao A, Hou X, Zheng X,
Chen P, Bao Y and Jia W, Hu C, Zhang ZL and Jia W: Discovery of
potential biomarkers for osteoporosis using LC-MS/MS metabolomic
methods. Osteoporos Int. 30:1491–1499. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hu G, Yu Y, Ren Y, Tower RJ, Zhang GF and
Karner CM: Glutaminolysis provides nucleotides and amino acids to
regulate osteoclast differentiation in mice. EMBO Rep.
25:4515–4541. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lamont LS, McCullough AJ and Kalhan SC:
Gender differences in the regulation of amino acid metabolism. J
Appl Physiol (1985). 95:1259–1265. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM
and Su JC: Diets intervene osteoporosis via gut-bone axis. Gut
Microbes. 16:22954322024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mann ER, Lam YK and Uhlig HH: Short-chain
fatty acids: Linking diet, the microbiome and immunity. Nat Rev
Immunol. 24:577–595. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Palacios-González B, Ramírez-Salazar EG,
Rivera-Paredez B, Quiterio M, Flores YN, Macias-Kauffer L,
Moran-Ramos S, Denova-Gutiérrez E, Ibarra-González I, Vela-Amieva
M, et al: A Multi-Omic Analysis for Low Bone Mineral Density in
Postmenopausal Women Suggests a RELATIONSHIP between Diet,
Metabolites, and Microbiota. Microorganisms. 8:16302020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Palacios-González B, León-Reyes G,
Rivera-Paredez B, Ibarra-González I, Vela-Amieva M, Flores YN,
Canizales-Quinteros S, Salmerón J and Velázquez-Cruz R: Serum
metabolite profile associated with sex-dependent visceral adiposity
index and low bone mineral density in a mexican population.
Metabolites. 11:6042021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C,
Li T and Yin Y: Impact of the gut microbiota on intestinal immunity
mediated by tryptophan metabolism. Front Cell Infect Microbiol.
8:132018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X,
Zhang M, Wang B, Tao Q, Xiao C, et al: Polycyclic aromatic
hydrocarbons in bone homeostasis. Biomed Pharmacother.
146:1125472022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang L, Wang Z, Luo P, Bai S, Chen Y and
Chen W: Dietary zinc glycine supplementation improves tibia quality
of meat ducks by modulating the intestinal barrier and bone
resorption. Biol Trace Elem Res. 201:888–903. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gao W: Effects of lactobacillus on
glucolipids metabolism and intestinal flora in type 2 diabetic mice
fed with high-glucose and high-fat diet (master's thesis). Shanxi
Normal University; 2018, (In Chinese).
|
|
54
|
Amar J, Chabo C, Waget A, Klopp P, Vachoux
C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S,
et al: Intestinal mucosal adherence and translocation of commensal
bacteria at the early onset of type 2 diabetes: Molecular
mechanisms and probiotic treatment. EMBO Mol Med. 3:559–572. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Imerb N, Thonusin C, Chattipakorn N and
Chattipakorn SC: Aging, obese-insulin resistance, and bone
remodeling. Mech Ageing Dev. 191:1113352020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lau KT, Krishnamoorthy S, Sing CW and
Cheung CL: Metabolomics of osteoporosis in humans: A systematic
review. Curr Osteoporos Rep. 21:278–288. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kitaura H, Marahleh A, Ohori F, Noguchi T,
Shen WR, Qi J, Nara Y, Pramusita A, Kinjo R and Mizoguchi I:
Osteocyte-related cytokines regulate osteoclast formation and bone
resorption. Int J Mol Sci. 21:51692020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li R, Kato H, Nakata T, Yamawaki I,
Yamauchi N, Imai K, Taguchi Y and Umeda M: Essential amino acid
starvation induces cell cycle arrest, autophagy, and inhibits
osteogenic differentiation in murine osteoblast. Biochem Biophys
Res Commun. 672:168–176. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rong Y, Darnell AM, Sapp KM, Vander Heiden
MG and Spencer SL: Cells use multiple mechanisms for cell-cycle
arrest upon withdrawal of individual amino acids. Cell Rep.
42:1135392023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li R, Kato H, Fumimoto C, Nakamura Y,
Yoshimura K, Minagawa E, Omatsu K, Ogata C, Taguchi Y and Umeda M:
Essential amino acid starvation-induced oxidative stress causes DNA
damage and apoptosis in murine osteoblast-like cells. Int J Mol
Sci. 24:153142023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shen L, Yu Y and Karner CM: SLC38A2
provides proline and alanine to regulate postnatal bone mass
accrual in mice. Front Physiol. 13:9926792022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sharma D, Yu Y, Shen L, Zhang GF and
Karner CM: SLC1A5 provides glutamine and asparagine necessary for
bone development in mice. Elife. 10:e715952021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jiménez JA, Lawlor ER and Lyssiotis CA:
Amino acid metabolism in primary bone sarcomas. Front Oncol.
12:10013182022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shen L, Sharma D, Yu Y, Long F and Karner
CM: Biphasic regulation of glutamine consumption by WNT during
osteoblast differentiation. J Cell Sci.
134:jcs2516452021.PubMed/NCBI
|
|
65
|
Nie C, He T, Zhang W, Zhang G and Ma X:
Branched chain amino acids: beyond nutrition metabolism. Int J Mol
Sci. 19:9542018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Brunner JS, Vulliard L, Hofmann M, Kieler
M, Lercher A, Vogel A, Russier M, Brüggenthies JB, Kerndl M,
Saferding V, et al: Environmental arginine controls multinuclear
giant cell metabolism and formation. Nat Commun. 11:4312020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bordbar A, Mo ML, Nakayasu ES,
Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith
RD, Peterson SN, et al: Model-driven multi-omic data analysis
elucidates metabolic immunomodulators of macrophage activation. Mol
Syst Biol. 8:5582012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Onuora S: L-arginine inhibits arthritis
and bone loss by reprogramming osteoclast metabolism. Nat Rev
Rheumatol. 19:7602023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shen Y, Wang H, Xie H, Zhang J, Ma Q, Wang
S, Yuan P, Xue H, Hong H, Fan S, et al: l-arginine promotes
angio-osteogenesis to enhance oxidative stress-inhibited bone
formation by ameliorating mitophagy. J Orthop Translat. 46:53–64.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Stegen S, Moermans K, Stockmans I,
Thienpont B and Carmeliet G: The serine synthesis pathway drives
osteoclast differentiation through epigenetic regulation of NFATc1
expression. Nat Metab. 6:141–152. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhou T, Yang Y, Chen Q and Xie L:
Glutamine metabolism is essential for stemness of bone marrow
mesenchymal stem cells and bone homeostasis. Stem Cells Int.
2019:89289342019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yu Y, Newman H, Shen L, Sharma D, Hu G,
Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM:
Glutamine metabolism regulates proliferation and lineage allocation
in skeletal stem cells. Cell Metab. 29:966–978.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gao P, Tchernyshyov I, Chang TC, Lee YS,
Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and
Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial
glutaminase expression and glutamine metabolism. Nature.
458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tsumura H, Shindo M, Ito M, Igarashi A,
Takeda K, Matsumoto K, Ohkura T, Miyado K, Sugiyama F, Umezawa A
and Ito Y: Relationships between Slc1a5 and osteoclastogenesis.
Comp Med. 71:285–294. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Indo Y, Takeshita S, Ishii KA, Hoshii T,
Aburatani H, Hirao A and Ikeda K: Metabolic regulation of
osteoclast differentiation and function. J Bone Miner Res.
28:2392–2399. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Peng R, Dong Y, Zheng M, Kang H, Wang P,
Zhu M, Song K, Wu W and Li F: IL-17 promotes osteoclast-induced
bone loss by regulating glutamine-dependent energy metabolism. Cell
Death Dis. 15:1112024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM
and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res.
59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang W, Dang K, Huai Y and Qian A:
Osteoimmunology: The regulatory roles of T lymphocytes in
osteoporosis. Front Endocrinol (Lausanne). 11:4652020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mellor AL and Munn DH: IDO expression by
dendritic cells: Tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zara C, Severino A, Flego D, Ruggio A,
Pedicino D, Giglio AF, Trotta F, Lucci C, D'Amario D, Vinci R, et
al: Indoleamine 2,3-Dioxygenase (IDO) enzyme links innate immunity
and altered T-cell differentiation in Non-ST segment elevation
acute coronary syndrome. Int J Mol Sci. 19:632017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Eagle H, Oyama VI, Levy M, Horton CL and
Fleischman R: The growth response of mammalian cells in tissue
culture to L-glutamine and L-glutamic acid. J Biol Chem.
218:607–616. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Colombo SL, Palacios-Callender M, Frakich
N, Carcamo S, Kovacs I, Tudzarova S and Moncada S: Molecular basis
for the differential use of glucose and glutamine in cell
proliferation as revealed by synchronized HeLa cells. Proc Natl
Acad Sci USA. 108:21069–21074. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ahn E, Kumar P, Mukha D, Tzur A and Shlomi
T: Temporal fluxomics reveals oscillations in TCA cycle flux
throughout the mammalian cell cycle. Mol Syst Biol. 13:9532017.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Malakar P, Singha D, Choudhury D and
Shukla S: Glutamine regulates the cellular proliferation and cell
cycle progression by modulating the mTOR mediated protein levels of
β-TrCP. Cell Cycle. 22:1937–1950. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Minchenko DO, Hubenya OV, Terletsky BM,
Moenner M and Minchenko OH: Effect of glutamine or glucose
deprivation on the expression of cyclin and cyclin-dependent kinase
genes in glioma cell line U87 and its subline with suppressed
activity of signaling enzyme of endoplasmic reticulum-nuclei-1. Ukr
Biokhim Zh (1999). 83:18–29. 2011.PubMed/NCBI
|
|
86
|
Yuan L, Sheng X, Willson AK, Roque DR,
Stine JE, Guo H, Jones HM, Zhou C and Bae-Jump VL: Glutamine
promotes ovarian cancer cell proliferation through the mTOR/S6
pathway. Endocr Relat Cancer. 22:577–591. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kim B, Li J, Jang C and Arany Z: Glutamine
fuels proliferation but not migration of endothelial cells. EMBO J.
36:2321–2333. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G,
Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of
mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death
Differ. 23:1128–1139. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang
DE and Xu H: Update on the effects of energy metabolism in bone
marrow mesenchymal stem cells differentiation. Mol Metab.
58:1014502022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Skerry TM: The role of glutamate in the
regulation of bone mass and architecture. J Musculoskelet Neuronal
Interact. 8:166–173. 2008.PubMed/NCBI
|
|
91
|
Wang Y, Deng P, Liu Y, Wu Y, Chen Y, Guo
Y, Zhang S, Zheng X, Zhou L, Liu W, et al: Alpha-ketoglutarate
ameliorates age-related osteoporosis via regulating histone
methylations. Nat Commun. 11:55962020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fan M, Shi H, Yao H, Wang W, Zhang Y,
Jiang C and Lin R: Glutamate regulates gliosis of BMSCs to promote
ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem
Cell Res Ther. 13:2552022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Qian D, Wei G, Xu C, He Z, Hua J, Li J, Hu
Q, Lin S, Gong J, Meng H, et al: Bone marrow-derived mesenchymal
stem cells (BMSCs) repair acute necrotized pancreatitis by
secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci
Rep. 7:5812017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ganesan R and Rasool M: Interleukin 17
regulates SHP-2 and IL-17RA/STAT-3 dependent Cyr61, IL-23 and
GM-CSF expression and RANKL mediated osteoclastogenesis by
fibroblast-like synoviocytes in rheumatoid arthritis. Mol Immunol.
91:134–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Saraiva M, Vieira P and O'Garra A: Biology
and therapeutic potential of interleukin-10. J Exp Med.
217:e201904182020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mielle J, Morel J, Elhmioui J, Combe B,
Macia L, Dardalhon V, Taylor N, Audo R and Daien C: Glutamine
promotes the generation of B10+ cells via the mTOR/GSK3 pathway.
Eur J Immunol. 52:418–430. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu JQ, Geng XR, Hu TY, Mo LH, Luo XQ, Qiu
SY, Liu DB, Liu ZG, Shao JB, Liu ZQ and Yang PC: Glutaminolysis is
required in maintaining immune regulatory functions in B cells.
Mucosal Immunol. 15:268–278. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Coëffier M, Marion R, Ducrotté P and
Déchelotte P: Modulating effect of glutamine on IL-1beta-induced
cytokine production by human gut. Clin Nutr. 22:407–413. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Santos AC, Correia CA, de Oliveira DC,
Nogueira-Pedro A, Borelli P and Fock RA: Intravenous glutamine
administration modulates TNF-α/IL-10 ratio and attenuates NFkB
phosphorylation in a protein malnutrition model. Inflammation.
39:1883–1891. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
da Silva Lima F, Rogero MM, Ramos MC,
Borelli P and Fock RA: Modulation of the nuclear factor-kappa B
(NF-κB) signalling pathway by glutamine in peritoneal macrophages
of a murine model of protein malnutrition. Eur J Nutr.
52:1343–1351. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, He
Z, Qin L, Liang L and Luo X: Interleukin-10 inhibits interleukin-1β
production and inflammasome activation of microglia in epileptic
seizures. J Neuroinflammation. 16:662019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Levy DE and Lee CK: What does Stat3 do? J
Clin Invest. 109:1143–1148. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dos Santos GG, Hastreiter AA, Sartori T,
Borelli P and Fock RA: L-Glutamine in vitro modulates some
immunomodulatory properties of bone marrow mesenchymal stem cells.
Stem Cell Rev Rep. 13:482–490. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Refaey ME, McGee-Lawrence ME, Fulzele S,
Kennedy EJ, Bollag WB, Elsalanty M, Zhong Q, Ding KH, Bendzunas NG,
Shi XM, et al: Kynurenine, a tryptophan metabolite that accumulates
with age, induces bone loss. J Bone Miner Res. 32:2182–2193. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dalton S, Smith K, Singh K, Kaiser H,
Kolhe R, Mondal AK, Khayrullin A, Isales CM, Hamrick MW, Hill WD
and Fulzele S: Accumulation of kynurenine elevates oxidative stress
and alters microRNA profile in human bone marrow stromal cells. Exp
Gerontol. 130:1108002020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sas K, Szabó E and Vécsei L: Mitochondria,
oxidative stress and the kynurenine system, with a focus on ageing
and neuroprotection. Molecules. 23:1912018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Elmansi AM, Hussein KA, Herrero SM,
Periyasamy-Thandavan S, Aguilar-Pérez A, Kondrikova G, Kondrikov D,
Eisa NH, Pierce JL, Kaiser H, et al: Age-related increase of
kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling
and the epigenetic enzyme Hdac3 in bone marrow stromal cells. Bone
Rep. 12:1002702020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kondrikov D, Elmansi A, Bragg RT, Mobley
T, Barrett T, Eisa N, Kondrikova G, Schoeinlein P, Aguilar-Perez A,
Shi XM, et al: Kynurenine inhibits autophagy and promotes
senescence in aged bone marrow mesenchymal stem cells through the
aryl hydrocarbon receptor pathway. Exp Gerontol. 130:1108052020.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Anaya JM, Bollag WB, Hamrick MW and Isales
CM: The role of tryptophan metabolites in musculoskeletal stem cell
aging. Int J Mol Sci. 21:66702020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Sautchuk R Jr and Eliseev RA: Cell energy
metabolism and bone formation. Bone Rep. 16:1015942022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li S, Tian Q, Zheng L and Zhou Y:
Functional amino acids in the regulation of bone and its diseases.
Mol Nutr Food Res. 68:e24000942024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ledesma-Colunga MG, Passin V, Lademann F,
Hofbauer LC and Rauner M: Novel insights into osteoclast energy
metabolism. Curr Osteoporos Rep. 21:660–669. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Carbone L, Bůžková P, Fink HA, Robbins JA,
Barzilay JI, Elam RE, Isales C, Connelly MA and Mukamal KJ: Plasma
levels of branched chain amino acids, incident hip fractures, and
bone mineral density of the hip and spine. J Clin Endocrinol Metab.
108:e1358–e1364. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Su Y, Elshorbagy A, Turner C, Refsum H,
Chan R and Kwok T: Circulating amino acids are associated with bone
mineral density decline and ten-year major osteoporotic fracture
risk in older community-dwelling adults. Bone. 129:1150822019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liang B, Shi X, Wang X, Ma C, Leslie WD,
Lix LM, Shi X, Kan B and Yang S: Association between amino acids
and recent osteoporotic fracture: A matched incident case-control
study. Front Nutr. 11:13609592024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC,
Huang C, Zhu H and Shen Z: Insights and implications of sexual
dimorphism in osteoporosis. Bone Res. 12:82024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Guan Z, Luo L, Liu S, Guan Z, Zhang Q, Li
X and Tao K: The role of depletion of gut microbiota in
osteoporosis and osteoarthritis: A narrative review. Front
Endocrinol (Lausanne). 13:8474012022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hao L, Yan Y, Huang G and Li H: From gut
to bone: deciphering the impact of gut microbiota on osteoporosis
pathogenesis and management. Front Cell Infect Microbiol.
14:14167392024. View Article : Google Scholar : PubMed/NCBI
|