
Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides
- Authors:
- Bassam Ali Sachit
- Sylvia Annabel Dass
- Rehasri Selva Rajan
- Gee Jun Tye
- Venugopal Balakrishnan
-
Affiliations: Institute for Research in Molecular Medicine, University Sains Malaysia, Penang 11800, Malaysia - Published online on: June 2, 2025 https://doi.org/10.3892/mmr.2025.13583
- Article Number: 218
-
Copyright: © Sachit et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
World Health Organization (WHO), . Global strategy to accelerate the elimination of cervical cancer as a public health problem. WHO; Geneva: 2020 | |
Wang M, Huang K, Wong MCS, Huang J, Jin Y and Zheng ZJ: Global cervical cancer incidence by histological subtype and implications for screening methods. J Epidemiol Glob Health. 14:94–101. 2024. View Article : Google Scholar : PubMed/NCBI | |
de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, et al: Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 11:1048–1056. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boni SP, Tenet V, Horo A, Heideman DAM, Bleeker MCG, Tanon A, Mian B, Mohenou ID, Ekouevi DK, Gheit T, et al: High-risk human papillomavirus distribution according to human immunodeficiency virus status among women with cervical cancer in Abidjan, Côte d'Ivoire, 2018 to 2020. Int J Cancer. 154:962–968. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li M, Yuan F, Jiang J and Zhang X: The difference of transcriptome of HPV-infected patients contributes more to the occurrence of cervical cancer than the mutations of E6 and E7 genes in HPV16. Medicine (Baltimore). 103:e368222024. View Article : Google Scholar : PubMed/NCBI | |
Jabbar SF, Abrams L, Glick A and Lambert PF: Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res. 69:4407–4414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pflaum J, Schlosser S and Müller M: p53 family and cellular stress responses in cancer. Front Oncol. 4:2852014. View Article : Google Scholar : PubMed/NCBI | |
Boyer SN, Wazer DE and Band V: E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56:4620–4624. 1996.PubMed/NCBI | |
Bahmani B, Amini-Bayat Z, Ranjbar MM, Bakhtiari N and Zarnani AH: HPV16-E7 protein T cell epitope prediction and global therapeutic peptide vaccine design based on human leukocyte antigen frequency: An in-silico study. Int J Pept Res Ther. 27:365–378. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koliopoulos G, Nyaga VN, Santesso N, Bryant A, Martin-Hirsch PP, Mustafa RA, Schünemann H, Paraskevaidis E and Arbyn M: Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst Rev. 8:CD0085872017.PubMed/NCBI | |
Cortés-Alaguero C, González-Mirasol E, Morales-Roselló J and Poblet-Martinez E: Do clinical data and human papilloma virus genotype influence spontaneous regression in grade I cervical intraepithelial neoplasia? J Turk Ger Gynecol Assoc. 18:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sroczynski G, Esteban E, Widschwendter A, Oberaigner W, Borena W, von Laer D, Hackl M, Endel G and Siebert U: Reducing overtreatment associated with overdiagnosis in cervical cancer screening-A model-based benefit-harm analysis for Austria. Int J Cancer. 147:1131–1142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Xing D, Ferrall L, Tsai YC, Hung CF and Wu TC: Identification of human MHC-I HPV18 E6/E7-specific CD8 + T cell epitopes and generation of an HPV18 E6/E7-expressing adenosquamous carcinoma in HLA-A2 transgenic mice. J Biomed Sci. 29:802022. View Article : Google Scholar : PubMed/NCBI | |
Middleton D, Menchaca L, Rood H and Komerofsky R: New allele frequency database. http://www.allelefrequencies.netTissue Antigens. 61:403–407. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Mazas A and Nunes JM: PGAE HLA Consortium of the 18th International HLA and Immunogenetics Workshop: The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol. 37:1015592024. View Article : Google Scholar : PubMed/NCBI | |
Arrieta-Bolaños E, Hernández-Zaragoza DI and Barquera R: An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet. 14:8664072023. View Article : Google Scholar : PubMed/NCBI | |
Ferrera A, Valladares W, Cabrera Y, de la Luz Hernandez M, Darragh T, Baena A, Almonte M and Herrero R: Performance of an HPV 16/18 E6 oncoprotein test for detection of cervical precancer and cancer. Int J Cancer. 145:2042–2050. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nagano K and Tsutsumi Y: Phage display technology as a powerful platform for antibody drug discovery. Viruses. 13:1782021. View Article : Google Scholar : PubMed/NCBI | |
Hammers CM and Stanley JR: Antibody phage display: Technique and applications. J Invest Dermatol. 134:1–5. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cohen M and Reiter Y: T-cell receptor-like antibodies: Targeting the intracellular proteome therapeutic potential and clinical applications. Antibodies. 2:517–534. 2013. View Article : Google Scholar | |
Andersen PS, Stryhn A, Hansen BE, Fugger L, Engberg J and Buus S: A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc Natl Acad Sci USA. 93:1820–1824. 1996. View Article : Google Scholar : PubMed/NCBI | |
Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ and Davis MM: Phenotypic analysis of antigen-specific T lymphocytes. Science. 274:94–96. 1996. View Article : Google Scholar : PubMed/NCBI | |
Garboczi DN, Hung DT and Wiley DC: HLA-A2-peptide complexes: Refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA. 89:3429–3433. 1992. View Article : Google Scholar : PubMed/NCBI | |
Denkberg G, Cohen CJ and Reiter Y: Critical role for CD8 in binding of MHC tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC-peptide tetramers to TCR. J Immunol. 167:270–276. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yazdani Z, Rafiei A, Valadan R, Ashrafi H, Pasandi M and Kardan M: Designing a potent L1 protein-based HPV peptide vaccine: A bioinformatics approach. Comput Biol Chem. 85:1072092020. View Article : Google Scholar : PubMed/NCBI | |
Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanović S SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50:213–219. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chang AY, Chau V, Landas JA and Pang Y: Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods. 1:22–25. 2017. | |
McConkey VL: DNA-barcoding for the inference of larval community structure of non-biting midges (Chironomidae) from the River Stour, Kent (unpublished thesis). Canterbury Christ Church University; 2017 | |
Figueroa-Bossi N, Balbontín R and Bossi L: Preparing plasmid DNA from bacteria. Cold Spring Harb Protoc. 2022.Pdb.prot107852. 2022. View Article : Google Scholar | |
Rodenko B, Toebes M, Hadrup SR, Van Esch WJE, Molenaar AM, Schumacher TNM and Ovaa H: Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc. 1:1120–1132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Manns JM: SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins. Curr Protoc Microbiol. 22:A.3M.1–A.3M.13. 2011. | |
Luimstra JJ, Franken KMCL, Garstka MA, Drijfhout JW, Neefjes J and Ovaa H: Production and thermal exchange of conditional peptide-MHC I multimers. Curr Protoc Immunol. 126:e852019. View Article : Google Scholar : PubMed/NCBI | |
Lee CMY, Iorno N, Sierro F and Christ D: Selection of human antibody fragments by phage display. Nat Protoc. 2:3001–3008. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dass SA, Norazmi MN, Dominguez AA, San Miguel MESG and Tye GJ: Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a mycobacterium tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A*02. Mol Immunol. 101:189–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dass SA, Norazmi MN, Acosta A, Sarmiento ME and Tye GJ: TCR-like domain antibody against mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. Int J Biol Macromol. 155:305–314. 2020. View Article : Google Scholar : PubMed/NCBI | |
Falgenhauer E, von Schönberg S, Meng C, Mückl A, Vogele K, Emslander Q, Ludwig C and Simmel FC: Evaluation of an E. coli cell extract prepared by lysozyme-assisted sonication via gene expression, phage assembly and proteomics. Chembiochem. 22:2805–2813. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rouet R, Lowe D, Dudgeon K, Roome B, Schofield P, Langley D, Andrews J, Whitfeld P, Jermutus L and Christ D: Expression of high-affinity human antibody fragments in bacteria. Nat Protoc. 7:364–373. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao WB, Shen Y, Liu WH, Li YM, Jin SJ, Xu YC, Pan LQ, Zhou Z and Chen SQ: Soluble expression of Fc-fused T cell receptors allows yielding novel bispecific T cell engagers. Biomedicines. 9:7902021. View Article : Google Scholar : PubMed/NCBI | |
Dahan R and Reiter Y: T-cell-receptor-like antibodies-generation, function and applications. Expert Rev Mol Med. 14:e62012. View Article : Google Scholar : PubMed/NCBI | |
Dass SA, Selva Rajan R, Tye GJ and Balakrishnan V: The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy. Hum Vaccin Immunother. 17:2981–2994. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan LK, Mohd-Farid B, Salsabil S, Heselynn H, Wahinuddin S, Lau S, Gun SC, Nor-Suhaila S, Eashwary M, Mohd-Shahrir MS, et al: HLA-A, -B, -C, -DRB1 and -DQB1 alleles and haplotypes in 951 Southeast Asia Malays from Peninsular Malaysia. Hum Immunol. 77:818–819. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schuler MM, Nastke MD and Stevanović S: SYFPEITHI: Database for searching and T-cell epitope prediction. Immunoinformatics: Predicting immunogenicity in silico. 75–93. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanović S: SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50:213–319. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lim BN, Chin CF, Choong YS, Ismail A and Lim TS: Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon. 117:94–101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, et al: BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis. 9:7912018. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Zhao L, Zhang Y, Qin Y, Guan Y, Zhang T, Liu C and Zhou J: Understanding the mechanisms of resistance to CAR T-cell therapy in malignancies. Front Oncol. 9:12372019. View Article : Google Scholar : PubMed/NCBI | |
Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, et al: Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med. 5:176ra332013. View Article : Google Scholar : PubMed/NCBI | |
Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B and Hoogenboom HR: Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci USA. 97:7969–7974. 2000. View Article : Google Scholar : PubMed/NCBI | |
Neethling FA, Ramakrishna V, Keler T, Buchli R, Woodburn T and Weidanz JA: Assessing vaccine potency using TCRmimic antibodies. Vaccine. 26:3092–3102. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li D, Bentley C, Anderson A, Wiblin S, Cleary KL, Koustoulidou S, Hassanali T, Yates J, Greig J, Nordkamp MO, et al: Development of a T-cell receptor mimic antibody against wild-type p53 for cancer immunotherapy. Cancer Res. 77:2699–2711. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH and Lustgarten J: Levels of specific peptide-HLA class I complex predicts tumor cell susceptibility to CTL killing. J Immunol. 177:5088–5097. 2006. View Article : Google Scholar : PubMed/NCBI | |
Epel M, Carmi I, Soueid-Baumgarten S, Oh S, Bera T, Pastan I, Berzofsky J and Reiter Y: Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur J Immunol. 38:1706–1720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S and Weidanz JA: Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J Immunol. 177:4187–4195. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cohen CJ, Hoffmann N, Farago M, Hoogenboom HR, Eisenbach L and Reiter Y: Direct detection and quantitation of a distinct T-cell epitope derived from tumor-specific epithelial cell-associated mucin using human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Cancer Res. 62:5835–5844. 2002.PubMed/NCBI | |
Lev A, Denkberg G, Cohen CJ, Tzukerman M, Skorecki KL, Chames P, Hoogenboom HR and Reiter Y: Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res. 62:3184–3194. 2002.PubMed/NCBI | |
Willemsen R, Debets R, Hart E, Hoogenboom H, Bolhuis R and Chames P: A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther. 8:1601–1608. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, et al: A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 127:2705–2718. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sastry KS, Too CT, Kaur K, Gehring AJ, Low L, Javiad A, Pollicino T, Li L, Kennedy PT, Lopatin U, et al: Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J Virol. 85:1935–1942. 2011. View Article : Google Scholar : PubMed/NCBI | |
Desai I, Thakur S and Pagariya P: Current advances in immunotherapy for cancer. Oral Oncol Rep. 12:1006522024. View Article : Google Scholar | |
Zhao Y, Zhang L, Fang W, Yang Y, Huang Y, Zou W, Wang Z, Ding M, Peng Y, Xiao S, et al: SI-B001 plus chemotherapy in patients with locally advanced or metastatic EGFR/ALK wild-type non-small cell lung cancer: A phase II, multicenter, open-label study. J Clin Oncol. 41 (16 Suppl):S90252023. View Article : Google Scholar | |
Yang Y, Zhao Y, Zhou T, Chen G, Huang Y, Liu F, Liu Z, Qu S, Lei Y, Chen X, et al: A phase Ib study of SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC). J Clin Oncol. 40 (16 Suppl):S60242022. View Article : Google Scholar | |
Lesokhin AM, Tomasson MH, Arnulf B, Bahlis NJ, Miles Prince H, Niesvizky R, Rodrίguez-Otero P, Martinez-Lopez J, Koehne G, Touzeau C, et al: Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat Med. 29:2259–2267. 2023. View Article : Google Scholar : PubMed/NCBI | |
Singh AK, Dadey DY, Rau MJ, Fitzpatrick J, Shah HK, Saikia M, Townsend R, Thotala D, Hallahan DE and Kapoor V: Blocking the functional domain of TIP1 by antibodies sensitizes cancer to radiation therapy. Biomed Pharmacother. 166:1153412023. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Chae YS, Lee KS, et al: Trastuzumab deruxtecan (T-DXd) versus treatment of physician's choice (TPC) in patients (pts) with HER2-low unresectable and/or metastatic breast cancer (mBC): Results of DESTINY-Breast04, a randomized, phase 3 study. J Clin Oncol. 40 (17 Suppl):LBA32022. View Article : Google Scholar | |
Äärelä A, Räsänen K, Holm P, Salo H and Virta P: Synthesis of site-specific antibody-[60]fullerene-oligonucleotide conjugates for cellular targeting. ACS Appl Bio Mater. 6:3189–3198. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kosuge H, Nagatoishi S, Kiyoshi M, Ishii-Watabe A, Terao Y, Ide T and Tsumoto K: Biophysical characterization of the contribution of the Fab region to the igG-fcγRIIIa interaction. Biochemistry. 62:262–269. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sela-Culang I, Kunik V and Ofran Y: The structural basis of antibody-antigen recognition. Front Immunol. 4:3022013. View Article : Google Scholar : PubMed/NCBI | |
Blum JS, Wearsch PA and Cresswell P: Pathways of antigen processing. Annu Rev Immunol. 31:443–473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Welsh RM, Selin LK and Szomolanyi-Tsuda E: Immunological memory to viral infections. Annu Rev Immunol. 22:711–743. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW and Hoogenboom HR: A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 274:18218–18230. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J, McIntyre BW, Ma Q, Li D, St John L, et al: An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood. 117:4262–4272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Duan Z and Ho M: T-cell receptor mimic antibodies for cancer immunotherapy. Mol Cancer Ther. 20:1533–1541. 2021. View Article : Google Scholar : PubMed/NCBI | |
Doran SL, Stevanović S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, Faquin WC, Hewitt SM, Sherry RM, Yang JC, et al: T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: A first-in-human, phase I/II study. J Clin Oncol. 37:2759–2768. 2019. View Article : Google Scholar : PubMed/NCBI | |
Turunen L, Takkinen K, Söderlund H and Pulli T: Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen. 14:282–293. 2009. View Article : Google Scholar : PubMed/NCBI | |
Welters MJP, Kenter GG, Piersma SJ, Vloon APG, Löwik MJG, Berends-van Der Meer DMA, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, et al: Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 14:178–187. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, Berends-van der Meer DMA, Vloon APG, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 361:1838–1847. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vigneron N: Human tumor antigens and cancer immunotherapy. Biomed Res Int. 2015:9485012015. View Article : Google Scholar : PubMed/NCBI | |
Yim EK and Park JS: The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 37:319–324. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F and Freund C: Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front Immunol. 8:2922017. View Article : Google Scholar : PubMed/NCBI | |
Van Erp EA, Luytjes W, Ferwerda G and Van Kasteren PB: Fc-mediated antibody effector functions during respiratory syncytial virus infection and disease. Front Immunol. 10:5482019. View Article : Google Scholar : PubMed/NCBI | |
Sergeeva A, He H, Ruisaard K, St John L, Alatrash G, Clise-Dwyer K, Li D, Patenia R, Hong R, Sukhumalchandra P, et al: Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo. Leukemia. 30:1475–1484. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D and Scheinberg DA: T cell receptor mimic antibodies for cancer therapy. Oncoimmunology. 5:e10498032015. View Article : Google Scholar : PubMed/NCBI | |
Ataie N, Xiang J, Cheng N, Brea EJ, Lu W, Scheinberg DA, Liu C and Ng HL: Structure of a TCR-mimic antibody with target predicts pharmacogenetics. J Mol Biol. 428:194–205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aruna G: Immunotoxins: A review of their use in cancer treatment. J Stem Cells Regen Med. 1:31–36. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kreitman RJ: Immunotoxins for targeted cancer therapy. AAPS J. 8:E532–E551. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klechevsky E, Gallegos M, Denkberg G, Palucka K, Banchereau J, Cohen C and Reiter Y: Antitumor activity of immunotoxins with T-cell receptor-like specificity against human melanoma xenografts. Cancer Res. 68:6360–6367. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Li YM, Zhou JJ, Zhou Z, Xu YC, Zhao WB and Chen SQ: The antitumor activity of TCR-mimic antibody-drug conjugates (TCRm-ADCs) targeting the intracellular wilms tumor 1 (WT1) oncoprotein. Int J Mol Sci. 20:39122019. View Article : Google Scholar : PubMed/NCBI | |
Kurosawa N, Wakata Y, Ida K, Midorikawa A and Isobe M: High throughput development of TCR-mimic antibody that targets survivin-2B80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep. 9:98272019. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Jin Q, Zhang Y, Ji Y, Li J, Liu X, Duan H, Feng Z, Liu Y, Zhang Y, et al: Global burden of cervical cancer: Current estimates, temporal trend and future projections based on the GLOBOCAN 2022. Journal of the National Cancer Center. 2025. View Article : Google Scholar | |
Romli R, Shahabudin S, Saddki N and Mokhtar N: Effectiveness of a health education program to improve knowledge and attitude towards cervical cancer and pap smear: A controlled community trial in Malaysia. Asian Pac J Cancer Prev. 21:853–859. 2020. View Article : Google Scholar : PubMed/NCBI | |
Catarino R, Petignat P, Dongui G and Vassilakos P: Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 6:281–290. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huy NVQ, Tam LM, Tram NVQ, Thuan DC, Vinh TQ, Thanh CN and Chuang L: The value of visual inspection with acetic acid and Pap smear in cervical cancer screening program in low resource settings-a population-based study. Gynecol Oncol Rep. 24:18–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elsheikh TM, Austin RM, Chhieng DF, Miller FS, Moriarty AT and Renshaw AA; American Society of Cytopathology, : American society of cytopathology workload recommendations for automated pap test screening: Developed by the productivity and quality assurance in the era of automated screening task force. Diagn Cytopathol. 41:174–178. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Suri V and Dabral A: Role of conventional pap smear in current times. J Colposcopy Low Genit Tract Pathol. 2:60–64. 2024. View Article : Google Scholar | |
Cocuzza CE, Martinelli M, Sina F, Piana A, Sotgiu G, Dell'Anna T and Musumeci R: Human papillomavirus DNA detection in plasma and cervical samples of women with a recent history of low grade or precancerous cervical dysplasia. PLoS One. 12:e01885922017. View Article : Google Scholar : PubMed/NCBI | |
Blitshteyn S and Brook J: Postural tachycardia syndrome (POTS) with anti-NMDA receptor antibodies after human papillomavirus vaccination. Immunol Res. 65:282–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brinth LS, Pors K, Theibel AC and Mehlsen J: Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus. Vaccine. 33:2602–2605. 2015. View Article : Google Scholar : PubMed/NCBI | |
Palmieri B, Poddighe D, Vadala M, Laurino C, Carnovale C and Clementi E: Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol Res. 65:106–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ojha RP, Jackson BE, Tota JE, Offutt-Powell TN, Singh KP and Bae S: Guillain-Barre syndrome following quadrivalent human papillomavirus vaccination among vaccine-eligible individuals in the United States. Hum Vaccin Immunother. 10:232–237. 2014. View Article : Google Scholar : PubMed/NCBI | |
Little DT and Ward HRG: Premature ovarian failure 3 years after menarche in a 16-year-old girl following human papillomavirus vaccination. BMJ Case Rep. 2012:bcr20120068792012. View Article : Google Scholar : PubMed/NCBI | |
Jørgensen L, Gøtzsche PC and Jefferson T: Benefits and harms of the human papillomavirus (HPV) vaccines: Systematic review with meta-analyses of trial data from clinical study reports. Syst Rev. 9:432020. View Article : Google Scholar : PubMed/NCBI | |
Jefferson T and Jørgensen L: Human papillomavirus vaccines, complex regional pain syndrome, postural orthostatic tachycardia syndrome, and autonomic dysfunction-a review of the regulatory evidence from the European medicines agency. Indian J Med Ethics. 2:30–37. 2017.PubMed/NCBI | |
Brotherton JML: Impact of HPV vaccination: Achievements and future challenges. Papillomavirus Res. 7:138–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abbas K, Yoo KJ, Prem K and Jit M: Equity impact of HPV vaccination on lifetime projections of cervical cancer burden among cohorts in 84 countries by global, regional, and income levels, 2010–22: A modelling study. EClinicalMedicine. 70:1025242024. View Article : Google Scholar : PubMed/NCBI | |
Spaans VM, Trietsch MD, Peters AAW, Osse M, Ter Haar N, Fleuren GJ and Jordanova ES: Precise classification of cervical carcinomas combined with somatic mutation profiling contributes to predicting disease outcome. PLoS One. 10:e01336702015. View Article : Google Scholar : PubMed/NCBI | |
Medhasi S and Chantratita N: Human leukocyte antigen (HLA) system: Genetics and association with bacterial and viral infections. J Immunol Res. 2022:97103762022. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Xiang L, Pei X, He T, Shen X, Wu X and Yang H: Mutational analysis of KRAS and its clinical implications in cervical cancer patients. J Gynecol Oncol. 29:e42018. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Wei X, Jin S, Wu Y, Zhao W, Xu Y, Pan L, Zhou Z and Chen S: TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci. 15:777–785. 2020.PubMed/NCBI | |
Skora AD, Douglass J, Hwang MS, Tam AJ, Blosser RL, Gabelli SB, Cao J, Diaz LA Jr, Papadopoulos N, Kinzler KW, et al: Generation of MANAbodies specific to HLA-restricted epitopes encoded by somatically mutated genes. Proc Natl Acad Sci USA. 112:9967–9972. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura H, Taguchi A, Kawana K, Baba S, Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, et al: Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget. 9:134512018. View Article : Google Scholar : PubMed/NCBI | |
Mora MJ, de los Ángeles Bayas-Rea R, Mejía L, Cruz C, Guerra S, Calle P, Sandoval DM, Galarza JM and Zapata-Mena S: Identification of human leukocyte antigen in precancerous and cancerous cervical lesions from Ecuadorian women. Infect Genet Evol. 105:1053652022. View Article : Google Scholar : PubMed/NCBI | |
Xiong C, Huang L, Kou H, Wang C, Zeng X, Sun H, Liu S, Wu B, Li J, Wang X, et al: Identification of novel HLA-A*11:01-restricted HPV16 E6/E7 epitopes and T-cell receptors for HPV-related cancer immunotherapy. J Immunother Cancer. 10:e0047902022. View Article : Google Scholar : PubMed/NCBI | |
Vranic S, Cyprian FS, Akhtar S and Al Moustafa AE: The role of epstein-barr virus in cervical cancer: A brief update. Front Oncol. 8:1132018. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Wang L, Cui H, Wang X, Zhang G, Ma J, Han H, He W, Wang W, Zhao Y, et al: Anti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci Rep. 4:35712014. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Hu W, Zhang YL, Hu SP, Zhang Z, He XJ and Cai XH: Anti-viral immune response in the lung and thymus: Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs. Biochem Biophys Res Commun. 502:472–478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ambagala APN, Solheim JC and Srikumaran S: Viral interference with MHC class I antigen presentation pathway: The battle continues. Vet Immunol Immunopathol. 107:1–15. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yim EK and Park JS: Biomarkers in cervical cancer. Biomark Insights. 1:215–225. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wentzensen N and von Knebel Doeberitz M: Biomarkers in cervical cancer screening. Dis Markers. 23:315–330. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suri A, Saini S, Sinha A, Agarwal S, Verma A, Parashar D, Singh S, Gupta N and Jagadish N: Cancer testis antigens: A new paradigm for cancer therapy. Oncoimmunology. 1:1194–1196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garg M, Kanojia D, Salhan S, Suri S, Gupta A, Lohiya NK and Suri A: Sperm-associated antigen 9 is a biomarker for early cervical carcinoma. Cancer. 115:2671–2683. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 319:1676–1680. 1988. View Article : Google Scholar : PubMed/NCBI | |
Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met Ö, Hölmich LR, Andersen RS, Hadrup SR, Andersen MH, et al: Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 10:1692012. View Article : Google Scholar : PubMed/NCBI | |
Svane IM and Verdegaal EM: Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: What is needed to achieve standard of care? Cancer Immunol Immunother. 63:1081–1091. 2014. View Article : Google Scholar : PubMed/NCBI | |
June CH, O'Connor RS, Kawalekar OU, Ghassemi S and Milone MC: CAR T cell immunotherapy for human cancer. Science. 359:1361–1365. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kessels HW, Wolkers MC, van den Boom MD, van den Valk MA and Schumacher TN: Immunotherapy through TCR gene transfer. Nat Immunol. 2:957–961. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hughes MS, Yu YYL, Dudley ME, Zheng Z, Robbins PF, Li Y, Wunderlich J, Hawley RG, Moayeri M, Rosenberg SA and Morgan RA: Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther. 16:457–472. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen Z, Scholten K, Martens A and Kuball J: Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood. 118:50–59. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bovolenta ER, García-Cuesta EM, Horndler L, Ponomarenko J, Schamel WW, Mellado M, Castro M, Abia D and van Santen HM: A set point in the selection of the αβTCR T cell repertoire imposed by pre-TCR signaling strength. Proc Natl Acad Sci USA. 119:e22019071192022. View Article : Google Scholar : PubMed/NCBI | |
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, et al: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314:126–129. 2006. View Article : Google Scholar : PubMed/NCBI | |
Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, et al: Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 114:535–546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Borbulevych OY, Santhanagopolan SM, Hossain M and Baker BM: TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J Immunol. 187:2453–2463. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, McGary K, Huang K, Boyer J, Corse E, et al: T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci USA. 110:6973–6978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, Baker BM and Kranz DM: Deep mutational scans as a guide to engineering high affinity T cell receptor interactions with peptide-bound major histocompatibility complex. J Biol Chem. 291:24566–24578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD, Allen PM and Kranz DM: Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel. 19:255–264. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, et al: Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res. 21:2268–2277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, et al: Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 368:1509–1518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, et al: Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 118:4817–4828. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, et al: Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. Jo J Immunother. 36:133–151. 2013. View Article : Google Scholar | |
Van den Berg JH, Gomez-Eerland R, Van de Wiel B, Hulshoff L, Van den Broek D, Bins A, Tan HL, Harper JV, Hassan NJ, Jakobsen BK, et al: Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther. 23:1541–1550. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, et al: Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 5:197ra1032013. View Article : Google Scholar : PubMed/NCBI | |
Connerotte T, Van Pel A, Godelaine D, Tartour E, Schuler-Thurner B, Lucas S, Thielemans K, Schuler G and Coulie PG: Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res. 68:3931–3940. 2008. View Article : Google Scholar : PubMed/NCBI | |
Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, Xu H, Morgan RA, Feldman SA, Johnson LA, et al: Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol. 180:6116–6131. 2008. View Article : Google Scholar : PubMed/NCBI | |
Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, et al: Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 122:863–871. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bentzen AK and Hadrup SR: T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Immunooncol Technol. 2:1–10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bijen HM, van der Steen DM, Hagedoorn RS, Wouters AK, Wooldridge L, Falkenburg JHF and Heemskerk MHM: Preclinical strategies to identify off-target toxicity of high-affinity TCRs. Mol Ther. 26:1206–1214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wooldridge L, Laugel B, Ekeruche J, Clement M, van den Berg HA, Price DA and Sewell AK: CD8 controls T cell cross-reactivity. J Immunol. 185:4625–4632. 2010. View Article : Google Scholar : PubMed/NCBI | |
Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Ozkan E, Davis MM, Wucherpfennig KW and Garcia KC: Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 157:1073–1087. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gejman RS, Klatt MG, Chang A, Jones HF, Oh CY, Chandran SS, Korontsvit T, Zakahleva V, Dao T, Klebanoff CA and Scheinberg DA: Prospective identification of cross-reactive human peptide-MHC ligands for T cell receptor based therapies. BioRxiv. 2670472018. | |
Joglekar AV, Leonard MT, Jeppson JD, Swift M, Li G, Wong S, Peng S, Zaretsky JM, Heath JR, Ribas A, et al: T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat Methods. 16:191–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bentzen AK and Hadrup SR: Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother. 66:657–666. 2017. View Article : Google Scholar : PubMed/NCBI | |
Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC and Baker BM: T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol. 14:934–942. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang SQ, Ma KY, Schonnesen AA, Zhang M, He C, Sun E, Williams CM, Jia W and Jiang N: High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat Biotechnol. 36:1156–1159. 2018. View Article : Google Scholar | |
de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A and Hulo N: ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34((Web Server Issue)): W362–W365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ohkura N, Kitagawa Y and Sakaguchi S: Development and maintenance of regulatory T cells. Immunity. 38:414–423. 2013. View Article : Google Scholar : PubMed/NCBI | |
He Q, Liu Z, Liu Z, Lai Y, Zhou X and Weng J: TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 12:992019. View Article : Google Scholar : PubMed/NCBI | |
Høydahl LS, Frick R, Sandlie I and Løset GÅ: Targeting the MHC ligandome by use of TCR-like antibodies. Antibodies (Basel). 8:322019. View Article : Google Scholar : PubMed/NCBI |