Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides

  • Authors:
    • Bassam Ali Sachit
    • Sylvia Annabel Dass
    • Rehasri Selva Rajan
    • Gee Jun Tye
    • Venugopal Balakrishnan
  • View Affiliations / Copyright

    Affiliations: Institute for Research in Molecular Medicine, University Sains Malaysia, Penang 11800, Malaysia
    Copyright: © Sachit et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 218
    |
    Published online on: June 2, 2025
       https://doi.org/10.3892/mmr.2025.13583
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical cancer is the fourth most prevalent cancer among female patients globally, largely due to persistent infections with high‑risk human papillomavirus (HPV). Viral oncoproteins E6 and E7, produced by HPV, serve a role in driving cellular transformation and maintaining the malignant phenotype. T cell receptor (TCR)‑like antibodies serve as a potential diagnostic tool to capture the oncogenic peptide that is present in MHC. As these antibodies serve as innate antigen detectors, orchestrating immune responses against both cell surface and intracellular proteins. In the present study, a human domain antibody (DAB) phage library was screened by evaluating synthesized HPV18 (E6 and E7) peptide‑major histocompatibility complexes (p‑MHC‑A24) to identify target‑specific TCR‑like antibodies. The present study successfully identified three TCR‑like DABs that specifically target HPV18 (E6 and E7) p‑MHC‑A24 complexes. Characterization of the amino acid sequences in the complementarity‑determining regions 1, 2 and 3 was performed using VBASE2 and the international ImMunoGeneTics information system®/vquest databases. Evaluation of soluble TCR‑like antibodies confirmed strong and selective affinity for the targets through western blotting and ELISA. The present study aimed to clarify the specificity of TCR‑like antibodies against specific targets and demonstrated that TCR‑like antibodies may serve as early diagnostic and immunotherapeutic tools for HPV‑associated cervical cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

World Health Organization (WHO), . Global strategy to accelerate the elimination of cervical cancer as a public health problem. WHO; Geneva: 2020

2 

Wang M, Huang K, Wong MCS, Huang J, Jin Y and Zheng ZJ: Global cervical cancer incidence by histological subtype and implications for screening methods. J Epidemiol Glob Health. 14:94–101. 2024. View Article : Google Scholar : PubMed/NCBI

3 

de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, et al: Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 11:1048–1056. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Boni SP, Tenet V, Horo A, Heideman DAM, Bleeker MCG, Tanon A, Mian B, Mohenou ID, Ekouevi DK, Gheit T, et al: High-risk human papillomavirus distribution according to human immunodeficiency virus status among women with cervical cancer in Abidjan, Côte d'Ivoire, 2018 to 2020. Int J Cancer. 154:962–968. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Zhang L, Li M, Yuan F, Jiang J and Zhang X: The difference of transcriptome of HPV-infected patients contributes more to the occurrence of cervical cancer than the mutations of E6 and E7 genes in HPV16. Medicine (Baltimore). 103:e368222024. View Article : Google Scholar : PubMed/NCBI

6 

Jabbar SF, Abrams L, Glick A and Lambert PF: Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res. 69:4407–4414. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Pflaum J, Schlosser S and Müller M: p53 family and cellular stress responses in cancer. Front Oncol. 4:2852014. View Article : Google Scholar : PubMed/NCBI

8 

Boyer SN, Wazer DE and Band V: E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56:4620–4624. 1996.PubMed/NCBI

9 

Bahmani B, Amini-Bayat Z, Ranjbar MM, Bakhtiari N and Zarnani AH: HPV16-E7 protein T cell epitope prediction and global therapeutic peptide vaccine design based on human leukocyte antigen frequency: An in-silico study. Int J Pept Res Ther. 27:365–378. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Koliopoulos G, Nyaga VN, Santesso N, Bryant A, Martin-Hirsch PP, Mustafa RA, Schünemann H, Paraskevaidis E and Arbyn M: Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst Rev. 8:CD0085872017.PubMed/NCBI

11 

Cortés-Alaguero C, González-Mirasol E, Morales-Roselló J and Poblet-Martinez E: Do clinical data and human papilloma virus genotype influence spontaneous regression in grade I cervical intraepithelial neoplasia? J Turk Ger Gynecol Assoc. 18:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Sroczynski G, Esteban E, Widschwendter A, Oberaigner W, Borena W, von Laer D, Hackl M, Endel G and Siebert U: Reducing overtreatment associated with overdiagnosis in cervical cancer screening-A model-based benefit-harm analysis for Austria. Int J Cancer. 147:1131–1142. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Peng S, Xing D, Ferrall L, Tsai YC, Hung CF and Wu TC: Identification of human MHC-I HPV18 E6/E7-specific CD8 + T cell epitopes and generation of an HPV18 E6/E7-expressing adenosquamous carcinoma in HLA-A2 transgenic mice. J Biomed Sci. 29:802022. View Article : Google Scholar : PubMed/NCBI

14 

Middleton D, Menchaca L, Rood H and Komerofsky R: New allele frequency database. http://www.allelefrequencies.netTissue Antigens. 61:403–407. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Sanchez-Mazas A and Nunes JM: PGAE HLA Consortium of the 18th International HLA and Immunogenetics Workshop: The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol. 37:1015592024. View Article : Google Scholar : PubMed/NCBI

16 

Arrieta-Bolaños E, Hernández-Zaragoza DI and Barquera R: An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet. 14:8664072023. View Article : Google Scholar : PubMed/NCBI

17 

Ferrera A, Valladares W, Cabrera Y, de la Luz Hernandez M, Darragh T, Baena A, Almonte M and Herrero R: Performance of an HPV 16/18 E6 oncoprotein test for detection of cervical precancer and cancer. Int J Cancer. 145:2042–2050. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Nagano K and Tsutsumi Y: Phage display technology as a powerful platform for antibody drug discovery. Viruses. 13:1782021. View Article : Google Scholar : PubMed/NCBI

19 

Hammers CM and Stanley JR: Antibody phage display: Technique and applications. J Invest Dermatol. 134:1–5. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Cohen M and Reiter Y: T-cell receptor-like antibodies: Targeting the intracellular proteome therapeutic potential and clinical applications. Antibodies. 2:517–534. 2013. View Article : Google Scholar

21 

Andersen PS, Stryhn A, Hansen BE, Fugger L, Engberg J and Buus S: A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc Natl Acad Sci USA. 93:1820–1824. 1996. View Article : Google Scholar : PubMed/NCBI

22 

Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ and Davis MM: Phenotypic analysis of antigen-specific T lymphocytes. Science. 274:94–96. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Garboczi DN, Hung DT and Wiley DC: HLA-A2-peptide complexes: Refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA. 89:3429–3433. 1992. View Article : Google Scholar : PubMed/NCBI

24 

Denkberg G, Cohen CJ and Reiter Y: Critical role for CD8 in binding of MHC tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC-peptide tetramers to TCR. J Immunol. 167:270–276. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Yazdani Z, Rafiei A, Valadan R, Ashrafi H, Pasandi M and Kardan M: Designing a potent L1 protein-based HPV peptide vaccine: A bioinformatics approach. Comput Biol Chem. 85:1072092020. View Article : Google Scholar : PubMed/NCBI

26 

Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanović S SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50:213–219. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Chang AY, Chau V, Landas JA and Pang Y: Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods. 1:22–25. 2017.

28 

McConkey VL: DNA-barcoding for the inference of larval community structure of non-biting midges (Chironomidae) from the River Stour, Kent (unpublished thesis). Canterbury Christ Church University; 2017

29 

Figueroa-Bossi N, Balbontín R and Bossi L: Preparing plasmid DNA from bacteria. Cold Spring Harb Protoc. 2022.Pdb.prot107852. 2022. View Article : Google Scholar

30 

Rodenko B, Toebes M, Hadrup SR, Van Esch WJE, Molenaar AM, Schumacher TNM and Ovaa H: Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc. 1:1120–1132. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Manns JM: SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins. Curr Protoc Microbiol. 22:A.3M.1–A.3M.13. 2011.

32 

Luimstra JJ, Franken KMCL, Garstka MA, Drijfhout JW, Neefjes J and Ovaa H: Production and thermal exchange of conditional peptide-MHC I multimers. Curr Protoc Immunol. 126:e852019. View Article : Google Scholar : PubMed/NCBI

33 

Lee CMY, Iorno N, Sierro F and Christ D: Selection of human antibody fragments by phage display. Nat Protoc. 2:3001–3008. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Dass SA, Norazmi MN, Dominguez AA, San Miguel MESG and Tye GJ: Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a mycobacterium tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A*02. Mol Immunol. 101:189–196. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Dass SA, Norazmi MN, Acosta A, Sarmiento ME and Tye GJ: TCR-like domain antibody against mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. Int J Biol Macromol. 155:305–314. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Falgenhauer E, von Schönberg S, Meng C, Mückl A, Vogele K, Emslander Q, Ludwig C and Simmel FC: Evaluation of an E. coli cell extract prepared by lysozyme-assisted sonication via gene expression, phage assembly and proteomics. Chembiochem. 22:2805–2813. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Rouet R, Lowe D, Dudgeon K, Roome B, Schofield P, Langley D, Andrews J, Whitfeld P, Jermutus L and Christ D: Expression of high-affinity human antibody fragments in bacteria. Nat Protoc. 7:364–373. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Zhao WB, Shen Y, Liu WH, Li YM, Jin SJ, Xu YC, Pan LQ, Zhou Z and Chen SQ: Soluble expression of Fc-fused T cell receptors allows yielding novel bispecific T cell engagers. Biomedicines. 9:7902021. View Article : Google Scholar : PubMed/NCBI

39 

Dahan R and Reiter Y: T-cell-receptor-like antibodies-generation, function and applications. Expert Rev Mol Med. 14:e62012. View Article : Google Scholar : PubMed/NCBI

40 

Dass SA, Selva Rajan R, Tye GJ and Balakrishnan V: The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy. Hum Vaccin Immunother. 17:2981–2994. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Tan LK, Mohd-Farid B, Salsabil S, Heselynn H, Wahinuddin S, Lau S, Gun SC, Nor-Suhaila S, Eashwary M, Mohd-Shahrir MS, et al: HLA-A, -B, -C, -DRB1 and -DQB1 alleles and haplotypes in 951 Southeast Asia Malays from Peninsular Malaysia. Hum Immunol. 77:818–819. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Schuler MM, Nastke MD and Stevanović S: SYFPEITHI: Database for searching and T-cell epitope prediction. Immunoinformatics: Predicting immunogenicity in silico. 75–93. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanović S: SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50:213–319. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Lim BN, Chin CF, Choong YS, Ismail A and Lim TS: Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon. 117:94–101. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, et al: BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis. 9:7912018. View Article : Google Scholar : PubMed/NCBI

46 

Cheng J, Zhao L, Zhang Y, Qin Y, Guan Y, Zhang T, Liu C and Zhou J: Understanding the mechanisms of resistance to CAR T-cell therapy in malignancies. Front Oncol. 9:12372019. View Article : Google Scholar : PubMed/NCBI

47 

Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, et al: Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med. 5:176ra332013. View Article : Google Scholar : PubMed/NCBI

48 

Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B and Hoogenboom HR: Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci USA. 97:7969–7974. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Neethling FA, Ramakrishna V, Keler T, Buchli R, Woodburn T and Weidanz JA: Assessing vaccine potency using TCRmimic antibodies. Vaccine. 26:3092–3102. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Li D, Bentley C, Anderson A, Wiblin S, Cleary KL, Koustoulidou S, Hassanali T, Yates J, Greig J, Nordkamp MO, et al: Development of a T-cell receptor mimic antibody against wild-type p53 for cancer immunotherapy. Cancer Res. 77:2699–2711. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH and Lustgarten J: Levels of specific peptide-HLA class I complex predicts tumor cell susceptibility to CTL killing. J Immunol. 177:5088–5097. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Epel M, Carmi I, Soueid-Baumgarten S, Oh S, Bera T, Pastan I, Berzofsky J and Reiter Y: Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur J Immunol. 38:1706–1720. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S and Weidanz JA: Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J Immunol. 177:4187–4195. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Cohen CJ, Hoffmann N, Farago M, Hoogenboom HR, Eisenbach L and Reiter Y: Direct detection and quantitation of a distinct T-cell epitope derived from tumor-specific epithelial cell-associated mucin using human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Cancer Res. 62:5835–5844. 2002.PubMed/NCBI

55 

Lev A, Denkberg G, Cohen CJ, Tzukerman M, Skorecki KL, Chames P, Hoogenboom HR and Reiter Y: Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res. 62:3184–3194. 2002.PubMed/NCBI

56 

Willemsen R, Debets R, Hart E, Hoogenboom H, Bolhuis R and Chames P: A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther. 8:1601–1608. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, et al: A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 127:2705–2718. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Sastry KS, Too CT, Kaur K, Gehring AJ, Low L, Javiad A, Pollicino T, Li L, Kennedy PT, Lopatin U, et al: Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J Virol. 85:1935–1942. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Desai I, Thakur S and Pagariya P: Current advances in immunotherapy for cancer. Oral Oncol Rep. 12:1006522024. View Article : Google Scholar

60 

Zhao Y, Zhang L, Fang W, Yang Y, Huang Y, Zou W, Wang Z, Ding M, Peng Y, Xiao S, et al: SI-B001 plus chemotherapy in patients with locally advanced or metastatic EGFR/ALK wild-type non-small cell lung cancer: A phase II, multicenter, open-label study. J Clin Oncol. 41 (16 Suppl):S90252023. View Article : Google Scholar

61 

Yang Y, Zhao Y, Zhou T, Chen G, Huang Y, Liu F, Liu Z, Qu S, Lei Y, Chen X, et al: A phase Ib study of SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC). J Clin Oncol. 40 (16 Suppl):S60242022. View Article : Google Scholar

62 

Lesokhin AM, Tomasson MH, Arnulf B, Bahlis NJ, Miles Prince H, Niesvizky R, Rodrίguez-Otero P, Martinez-Lopez J, Koehne G, Touzeau C, et al: Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat Med. 29:2259–2267. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Singh AK, Dadey DY, Rau MJ, Fitzpatrick J, Shah HK, Saikia M, Townsend R, Thotala D, Hallahan DE and Kapoor V: Blocking the functional domain of TIP1 by antibodies sensitizes cancer to radiation therapy. Biomed Pharmacother. 166:1153412023. View Article : Google Scholar : PubMed/NCBI

64 

Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Chae YS, Lee KS, et al: Trastuzumab deruxtecan (T-DXd) versus treatment of physician's choice (TPC) in patients (pts) with HER2-low unresectable and/or metastatic breast cancer (mBC): Results of DESTINY-Breast04, a randomized, phase 3 study. J Clin Oncol. 40 (17 Suppl):LBA32022. View Article : Google Scholar

65 

Äärelä A, Räsänen K, Holm P, Salo H and Virta P: Synthesis of site-specific antibody-[60]fullerene-oligonucleotide conjugates for cellular targeting. ACS Appl Bio Mater. 6:3189–3198. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Kosuge H, Nagatoishi S, Kiyoshi M, Ishii-Watabe A, Terao Y, Ide T and Tsumoto K: Biophysical characterization of the contribution of the Fab region to the igG-fcγRIIIa interaction. Biochemistry. 62:262–269. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Sela-Culang I, Kunik V and Ofran Y: The structural basis of antibody-antigen recognition. Front Immunol. 4:3022013. View Article : Google Scholar : PubMed/NCBI

69 

Blum JS, Wearsch PA and Cresswell P: Pathways of antigen processing. Annu Rev Immunol. 31:443–473. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Welsh RM, Selin LK and Szomolanyi-Tsuda E: Immunological memory to viral infections. Annu Rev Immunol. 22:711–743. 2004. View Article : Google Scholar : PubMed/NCBI

71 

de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW and Hoogenboom HR: A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 274:18218–18230. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J, McIntyre BW, Ma Q, Li D, St John L, et al: An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood. 117:4262–4272. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Duan Z and Ho M: T-cell receptor mimic antibodies for cancer immunotherapy. Mol Cancer Ther. 20:1533–1541. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Doran SL, Stevanović S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, Faquin WC, Hewitt SM, Sherry RM, Yang JC, et al: T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: A first-in-human, phase I/II study. J Clin Oncol. 37:2759–2768. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Turunen L, Takkinen K, Söderlund H and Pulli T: Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen. 14:282–293. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Welters MJP, Kenter GG, Piersma SJ, Vloon APG, Löwik MJG, Berends-van Der Meer DMA, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, et al: Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 14:178–187. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, Berends-van der Meer DMA, Vloon APG, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 361:1838–1847. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Vigneron N: Human tumor antigens and cancer immunotherapy. Biomed Res Int. 2015:9485012015. View Article : Google Scholar : PubMed/NCBI

79 

Yim EK and Park JS: The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 37:319–324. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F and Freund C: Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front Immunol. 8:2922017. View Article : Google Scholar : PubMed/NCBI

81 

Van Erp EA, Luytjes W, Ferwerda G and Van Kasteren PB: Fc-mediated antibody effector functions during respiratory syncytial virus infection and disease. Front Immunol. 10:5482019. View Article : Google Scholar : PubMed/NCBI

82 

Sergeeva A, He H, Ruisaard K, St John L, Alatrash G, Clise-Dwyer K, Li D, Patenia R, Hong R, Sukhumalchandra P, et al: Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo. Leukemia. 30:1475–1484. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D and Scheinberg DA: T cell receptor mimic antibodies for cancer therapy. Oncoimmunology. 5:e10498032015. View Article : Google Scholar : PubMed/NCBI

84 

Ataie N, Xiang J, Cheng N, Brea EJ, Lu W, Scheinberg DA, Liu C and Ng HL: Structure of a TCR-mimic antibody with target predicts pharmacogenetics. J Mol Biol. 428:194–205. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Aruna G: Immunotoxins: A review of their use in cancer treatment. J Stem Cells Regen Med. 1:31–36. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Kreitman RJ: Immunotoxins for targeted cancer therapy. AAPS J. 8:E532–E551. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Klechevsky E, Gallegos M, Denkberg G, Palucka K, Banchereau J, Cohen C and Reiter Y: Antitumor activity of immunotoxins with T-cell receptor-like specificity against human melanoma xenografts. Cancer Res. 68:6360–6367. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Shen Y, Li YM, Zhou JJ, Zhou Z, Xu YC, Zhao WB and Chen SQ: The antitumor activity of TCR-mimic antibody-drug conjugates (TCRm-ADCs) targeting the intracellular wilms tumor 1 (WT1) oncoprotein. Int J Mol Sci. 20:39122019. View Article : Google Scholar : PubMed/NCBI

89 

Kurosawa N, Wakata Y, Ida K, Midorikawa A and Isobe M: High throughput development of TCR-mimic antibody that targets survivin-2B80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep. 9:98272019. View Article : Google Scholar : PubMed/NCBI

90 

Wu J, Jin Q, Zhang Y, Ji Y, Li J, Liu X, Duan H, Feng Z, Liu Y, Zhang Y, et al: Global burden of cervical cancer: Current estimates, temporal trend and future projections based on the GLOBOCAN 2022. Journal of the National Cancer Center. 2025. View Article : Google Scholar

91 

Romli R, Shahabudin S, Saddki N and Mokhtar N: Effectiveness of a health education program to improve knowledge and attitude towards cervical cancer and pap smear: A controlled community trial in Malaysia. Asian Pac J Cancer Prev. 21:853–859. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Catarino R, Petignat P, Dongui G and Vassilakos P: Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 6:281–290. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Huy NVQ, Tam LM, Tram NVQ, Thuan DC, Vinh TQ, Thanh CN and Chuang L: The value of visual inspection with acetic acid and Pap smear in cervical cancer screening program in low resource settings-a population-based study. Gynecol Oncol Rep. 24:18–20. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Elsheikh TM, Austin RM, Chhieng DF, Miller FS, Moriarty AT and Renshaw AA; American Society of Cytopathology, : American society of cytopathology workload recommendations for automated pap test screening: Developed by the productivity and quality assurance in the era of automated screening task force. Diagn Cytopathol. 41:174–178. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Kumar A, Suri V and Dabral A: Role of conventional pap smear in current times. J Colposcopy Low Genit Tract Pathol. 2:60–64. 2024. View Article : Google Scholar

96 

Cocuzza CE, Martinelli M, Sina F, Piana A, Sotgiu G, Dell'Anna T and Musumeci R: Human papillomavirus DNA detection in plasma and cervical samples of women with a recent history of low grade or precancerous cervical dysplasia. PLoS One. 12:e01885922017. View Article : Google Scholar : PubMed/NCBI

97 

Blitshteyn S and Brook J: Postural tachycardia syndrome (POTS) with anti-NMDA receptor antibodies after human papillomavirus vaccination. Immunol Res. 65:282–284. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Brinth LS, Pors K, Theibel AC and Mehlsen J: Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus. Vaccine. 33:2602–2605. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Palmieri B, Poddighe D, Vadala M, Laurino C, Carnovale C and Clementi E: Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol Res. 65:106–116. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Ojha RP, Jackson BE, Tota JE, Offutt-Powell TN, Singh KP and Bae S: Guillain-Barre syndrome following quadrivalent human papillomavirus vaccination among vaccine-eligible individuals in the United States. Hum Vaccin Immunother. 10:232–237. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Little DT and Ward HRG: Premature ovarian failure 3 years after menarche in a 16-year-old girl following human papillomavirus vaccination. BMJ Case Rep. 2012:bcr20120068792012. View Article : Google Scholar : PubMed/NCBI

102 

Jørgensen L, Gøtzsche PC and Jefferson T: Benefits and harms of the human papillomavirus (HPV) vaccines: Systematic review with meta-analyses of trial data from clinical study reports. Syst Rev. 9:432020. View Article : Google Scholar : PubMed/NCBI

103 

Jefferson T and Jørgensen L: Human papillomavirus vaccines, complex regional pain syndrome, postural orthostatic tachycardia syndrome, and autonomic dysfunction-a review of the regulatory evidence from the European medicines agency. Indian J Med Ethics. 2:30–37. 2017.PubMed/NCBI

104 

Brotherton JML: Impact of HPV vaccination: Achievements and future challenges. Papillomavirus Res. 7:138–140. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Abbas K, Yoo KJ, Prem K and Jit M: Equity impact of HPV vaccination on lifetime projections of cervical cancer burden among cohorts in 84 countries by global, regional, and income levels, 2010–22: A modelling study. EClinicalMedicine. 70:1025242024. View Article : Google Scholar : PubMed/NCBI

106 

Spaans VM, Trietsch MD, Peters AAW, Osse M, Ter Haar N, Fleuren GJ and Jordanova ES: Precise classification of cervical carcinomas combined with somatic mutation profiling contributes to predicting disease outcome. PLoS One. 10:e01336702015. View Article : Google Scholar : PubMed/NCBI

107 

Medhasi S and Chantratita N: Human leukocyte antigen (HLA) system: Genetics and association with bacterial and viral infections. J Immunol Res. 2022:97103762022. View Article : Google Scholar : PubMed/NCBI

108 

Jiang W, Xiang L, Pei X, He T, Shen X, Wu X and Yang H: Mutational analysis of KRAS and its clinical implications in cervical cancer patients. J Gynecol Oncol. 29:e42018. View Article : Google Scholar : PubMed/NCBI

109 

Shen Y, Wei X, Jin S, Wu Y, Zhao W, Xu Y, Pan L, Zhou Z and Chen S: TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci. 15:777–785. 2020.PubMed/NCBI

110 

Skora AD, Douglass J, Hwang MS, Tam AJ, Blosser RL, Gabelli SB, Cao J, Diaz LA Jr, Papadopoulos N, Kinzler KW, et al: Generation of MANAbodies specific to HLA-restricted epitopes encoded by somatically mutated genes. Proc Natl Acad Sci USA. 112:9967–9972. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Nakamura H, Taguchi A, Kawana K, Baba S, Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, et al: Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget. 9:134512018. View Article : Google Scholar : PubMed/NCBI

112 

Mora MJ, de los Ángeles Bayas-Rea R, Mejía L, Cruz C, Guerra S, Calle P, Sandoval DM, Galarza JM and Zapata-Mena S: Identification of human leukocyte antigen in precancerous and cancerous cervical lesions from Ecuadorian women. Infect Genet Evol. 105:1053652022. View Article : Google Scholar : PubMed/NCBI

113 

Xiong C, Huang L, Kou H, Wang C, Zeng X, Sun H, Liu S, Wu B, Li J, Wang X, et al: Identification of novel HLA-A*11:01-restricted HPV16 E6/E7 epitopes and T-cell receptors for HPV-related cancer immunotherapy. J Immunother Cancer. 10:e0047902022. View Article : Google Scholar : PubMed/NCBI

114 

Vranic S, Cyprian FS, Akhtar S and Al Moustafa AE: The role of epstein-barr virus in cervical cancer: A brief update. Front Oncol. 8:1132018. View Article : Google Scholar : PubMed/NCBI

115 

Zhang G, Wang L, Cui H, Wang X, Zhang G, Ma J, Han H, He W, Wang W, Zhao Y, et al: Anti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci Rep. 4:35712014. View Article : Google Scholar : PubMed/NCBI

116 

Liu Q, Hu W, Zhang YL, Hu SP, Zhang Z, He XJ and Cai XH: Anti-viral immune response in the lung and thymus: Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs. Biochem Biophys Res Commun. 502:472–478. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Ambagala APN, Solheim JC and Srikumaran S: Viral interference with MHC class I antigen presentation pathway: The battle continues. Vet Immunol Immunopathol. 107:1–15. 2005. View Article : Google Scholar : PubMed/NCBI

118 

Yim EK and Park JS: Biomarkers in cervical cancer. Biomark Insights. 1:215–225. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Wentzensen N and von Knebel Doeberitz M: Biomarkers in cervical cancer screening. Dis Markers. 23:315–330. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Suri A, Saini S, Sinha A, Agarwal S, Verma A, Parashar D, Singh S, Gupta N and Jagadish N: Cancer testis antigens: A new paradigm for cancer therapy. Oncoimmunology. 1:1194–1196. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Garg M, Kanojia D, Salhan S, Suri S, Gupta A, Lohiya NK and Suri A: Sperm-associated antigen 9 is a biomarker for early cervical carcinoma. Cancer. 115:2671–2683. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 319:1676–1680. 1988. View Article : Google Scholar : PubMed/NCBI

123 

Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met Ö, Hölmich LR, Andersen RS, Hadrup SR, Andersen MH, et al: Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 10:1692012. View Article : Google Scholar : PubMed/NCBI

124 

Svane IM and Verdegaal EM: Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: What is needed to achieve standard of care? Cancer Immunol Immunother. 63:1081–1091. 2014. View Article : Google Scholar : PubMed/NCBI

125 

June CH, O'Connor RS, Kawalekar OU, Ghassemi S and Milone MC: CAR T cell immunotherapy for human cancer. Science. 359:1361–1365. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Kessels HW, Wolkers MC, van den Boom MD, van den Valk MA and Schumacher TN: Immunotherapy through TCR gene transfer. Nat Immunol. 2:957–961. 2001. View Article : Google Scholar : PubMed/NCBI

127 

Hughes MS, Yu YYL, Dudley ME, Zheng Z, Robbins PF, Li Y, Wunderlich J, Hawley RG, Moayeri M, Rosenberg SA and Morgan RA: Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther. 16:457–472. 2005. View Article : Google Scholar : PubMed/NCBI

128 

Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen Z, Scholten K, Martens A and Kuball J: Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood. 118:50–59. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Bovolenta ER, García-Cuesta EM, Horndler L, Ponomarenko J, Schamel WW, Mellado M, Castro M, Abia D and van Santen HM: A set point in the selection of the αβTCR T cell repertoire imposed by pre-TCR signaling strength. Proc Natl Acad Sci USA. 119:e22019071192022. View Article : Google Scholar : PubMed/NCBI

130 

Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, et al: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314:126–129. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, et al: Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 114:535–546. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Borbulevych OY, Santhanagopolan SM, Hossain M and Baker BM: TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J Immunol. 187:2453–2463. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, McGary K, Huang K, Boyer J, Corse E, et al: T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci USA. 110:6973–6978. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, Baker BM and Kranz DM: Deep mutational scans as a guide to engineering high affinity T cell receptor interactions with peptide-bound major histocompatibility complex. J Biol Chem. 291:24566–24578. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD, Allen PM and Kranz DM: Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel. 19:255–264. 2006. View Article : Google Scholar : PubMed/NCBI

136 

Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, et al: Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res. 21:2268–2277. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011. View Article : Google Scholar : PubMed/NCBI

138 

Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, et al: Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 368:1509–1518. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, et al: Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 118:4817–4828. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, et al: Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. Jo J Immunother. 36:133–151. 2013. View Article : Google Scholar

141 

Van den Berg JH, Gomez-Eerland R, Van de Wiel B, Hulshoff L, Van den Broek D, Bins A, Tan HL, Harper JV, Hassan NJ, Jakobsen BK, et al: Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther. 23:1541–1550. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, et al: Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 5:197ra1032013. View Article : Google Scholar : PubMed/NCBI

143 

Connerotte T, Van Pel A, Godelaine D, Tartour E, Schuler-Thurner B, Lucas S, Thielemans K, Schuler G and Coulie PG: Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res. 68:3931–3940. 2008. View Article : Google Scholar : PubMed/NCBI

144 

Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, Xu H, Morgan RA, Feldman SA, Johnson LA, et al: Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol. 180:6116–6131. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, et al: Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 122:863–871. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Bentzen AK and Hadrup SR: T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Immunooncol Technol. 2:1–10. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Bijen HM, van der Steen DM, Hagedoorn RS, Wouters AK, Wooldridge L, Falkenburg JHF and Heemskerk MHM: Preclinical strategies to identify off-target toxicity of high-affinity TCRs. Mol Ther. 26:1206–1214. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Wooldridge L, Laugel B, Ekeruche J, Clement M, van den Berg HA, Price DA and Sewell AK: CD8 controls T cell cross-reactivity. J Immunol. 185:4625–4632. 2010. View Article : Google Scholar : PubMed/NCBI

149 

Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Ozkan E, Davis MM, Wucherpfennig KW and Garcia KC: Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 157:1073–1087. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Gejman RS, Klatt MG, Chang A, Jones HF, Oh CY, Chandran SS, Korontsvit T, Zakahleva V, Dao T, Klebanoff CA and Scheinberg DA: Prospective identification of cross-reactive human peptide-MHC ligands for T cell receptor based therapies. BioRxiv. 2670472018.

151 

Joglekar AV, Leonard MT, Jeppson JD, Swift M, Li G, Wong S, Peng S, Zaretsky JM, Heath JR, Ribas A, et al: T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat Methods. 16:191–198. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Bentzen AK and Hadrup SR: Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother. 66:657–666. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC and Baker BM: T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol. 14:934–942. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Zhang SQ, Ma KY, Schonnesen AA, Zhang M, He C, Sun E, Williams CM, Jia W and Jiang N: High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat Biotechnol. 36:1156–1159. 2018. View Article : Google Scholar

155 

de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A and Hulo N: ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34((Web Server Issue)): W362–W365. 2006. View Article : Google Scholar : PubMed/NCBI

156 

Ohkura N, Kitagawa Y and Sakaguchi S: Development and maintenance of regulatory T cells. Immunity. 38:414–423. 2013. View Article : Google Scholar : PubMed/NCBI

157 

He Q, Liu Z, Liu Z, Lai Y, Zhou X and Weng J: TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 12:992019. View Article : Google Scholar : PubMed/NCBI

158 

Høydahl LS, Frick R, Sandlie I and Løset GÅ: Targeting the MHC ligandome by use of TCR-like antibodies. Antibodies (Basel). 8:322019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sachit BA, Dass SA, Rajan RS, Tye GJ and Balakrishnan V: Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides. Mol Med Rep 32: 218, 2025.
APA
Sachit, B.A., Dass, S.A., Rajan, R.S., Tye, G.J., & Balakrishnan, V. (2025). Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides. Molecular Medicine Reports, 32, 218. https://doi.org/10.3892/mmr.2025.13583
MLA
Sachit, B. A., Dass, S. A., Rajan, R. S., Tye, G. J., Balakrishnan, V."Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides". Molecular Medicine Reports 32.2 (2025): 218.
Chicago
Sachit, B. A., Dass, S. A., Rajan, R. S., Tye, G. J., Balakrishnan, V."Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides". Molecular Medicine Reports 32, no. 2 (2025): 218. https://doi.org/10.3892/mmr.2025.13583
Copy and paste a formatted citation
x
Spandidos Publications style
Sachit BA, Dass SA, Rajan RS, Tye GJ and Balakrishnan V: Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides. Mol Med Rep 32: 218, 2025.
APA
Sachit, B.A., Dass, S.A., Rajan, R.S., Tye, G.J., & Balakrishnan, V. (2025). Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides. Molecular Medicine Reports, 32, 218. https://doi.org/10.3892/mmr.2025.13583
MLA
Sachit, B. A., Dass, S. A., Rajan, R. S., Tye, G. J., Balakrishnan, V."Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides". Molecular Medicine Reports 32.2 (2025): 218.
Chicago
Sachit, B. A., Dass, S. A., Rajan, R. S., Tye, G. J., Balakrishnan, V."Development of an innovative approach for early diagnosis of cervical cancer using TCR‑like antibodies targeting HPV18 E6 and E7 peptides". Molecular Medicine Reports 32, no. 2 (2025): 218. https://doi.org/10.3892/mmr.2025.13583
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team