Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)

  • Authors:
    • Xiyao Wei
    • Chen Su
    • Yueyang Liu
    • Ningbo Wei
    • Kexin Xiang
    • Qijun Qian
    • Zenghui Xu
  • View Affiliations / Copyright

    Affiliations: Shanghai Cell Therapy Group Co., Ltd., Shanghai 201805, P.R. China
    Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 222
    |
    Published online on: June 3, 2025
       https://doi.org/10.3892/mmr.2025.13587
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Natural killer (NK) cell‑based immunotherapy has emerged as a transformative approach for cancer treatment However, its widespread clinical application faces several challenges, such as donor variability, limited scalability and functional heterogeneity of primary NK cells. Additionally, issues including in vivo persistence, resistance to tumor microenvironment and safety concerns related to genomic instability further hinder its clinical application. Induced pluripotent stem cell (iPSC)‑derived NK cells offer a promising solution. They provide high homogeneity and quality control, genetic engineering flexibility and inexhaustible cell source. This present review highlighted the unique advantages of iPSC‑ NK cells, including clonal uniformity, enhanced cytotoxicity and suitability for large‑scale production, positioning them as an ideal ‘off‑the‑shelf’ therapeutic platform. It discussed the biological properties of iPSC‑derived NK cells, advances in differentiation protocols and strategies to augment their anti‑tumor efficacy through genetic engineering, such as chimeric antigen receptor integration and cytokine optimization. Despite these advantages, several challenges remain, including the need to optimize differentiation efficiency, ensure the safety of gene editing (such as off‑target effects) and improve the in vivo migration and infiltration abilities. With technological advances and clinical validation, this present review aimed to guide future research toward overcoming these barriers to clinical implementation. Ultimately, it is expected that iPSC‑NK will become a core means of next‑generation immunotherapy, promoting the combination of personalized and inclusive cancer treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Bald T, Krummel MF, Smyth MJ and Barry KC: The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 21:835–847. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Wang D, Sun Z, Zhu X, Zheng X, Zhou Y, Lu Y, Yan P, Wang H, Liu H, Jin J, et al: GARP-mediated active TGF-beta1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood. 140:2788–2804. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Terren I, Orrantia A, Vitalle J, Astarloa-Pando G, Zenarruzabeitia O and Borrego F: Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol. 57:213–224. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Hernani R, Benzaquen A and Solano C: Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev. 111:1024792022. View Article : Google Scholar : PubMed/NCBI

5 

Mansour AG, Teng KY, Li Z, Zhu Z, Chen H, Tian L, Ali A, Zhang J, Lu T, Ma S, et al: Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv. 7:6225–6239. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Wu X and Matosevic S: Gene-edited and CAR-NK cells: Opportunities and challenges with engineering of NK cells for immunotherapy. Mol Ther Oncolytics. 27:224–238. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Raneros AB, Lopez-Larrea C and Suarez-Alvarez B: Acute myeloid leukemia and NK cells: Two warriors confront each other. Oncoimmunology. 8:e15396172019. View Article : Google Scholar : PubMed/NCBI

8 

Woan KV, Kim H, Bjordahl R, Davis ZB, Gaidarova S, Goulding J, Hancock B, Mahmood S, Abujarour R, Wang H, et al: Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell. 28:2062–2075.e2065. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Li Y, Hermanson DL, Moriarity BS and Kaufman DS: Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 23:181–192.e185. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Lin X, Sun Y, Dong X, Liu Z, Sugimura R and Xie G: IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother. 165:1151232023. View Article : Google Scholar : PubMed/NCBI

11 

Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, Meng Z, Wu C, Guan KL, Malmberg KJ and Kaufman DS: Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell. 27:224–237.e226. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Farahzadi R, Valipour B, Anakok OF, Fathi E and Montazersaheb S: The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol. 77:1017972023. View Article : Google Scholar : PubMed/NCBI

13 

Mace EM: Human natural killer cells: Form, function, and development. J Allergy Clin Immunol. 151:371–385. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Galat Y, Du Y, Perepitchka M, Li XN, Balyasnikova IV, Tse WT, Dambaeva S, Schneiderman S, Iannaccone PM, Becher O, et al: In vitro vascular differentiation system efficiently produces natural killer cells for cancer immunotherapies. Oncoimmunology. 12:22406702023. View Article : Google Scholar : PubMed/NCBI

15 

Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E, Darretta V, Moretta L and Mingari MC: CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci USA. 108:2402–2407. 2011. View Article : Google Scholar : PubMed/NCBI

16 

López-Botet M, De Maria A, Muntasell A, Della Chiesa M and Vilches C: Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol. 65:1017062023. View Article : Google Scholar : PubMed/NCBI

17 

Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC and Hsu KC: Single-cell profiling aligns CD56bright and cytomegalovirus-induced adaptive natural killer cells to a naïve-memory relationship. Front Immunol. 15:14994922024. View Article : Google Scholar : PubMed/NCBI

18 

Liu M, Liu J, Zhang X, Xiao Y, Jiang G and Huang X: Activation status of CD56 dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol. 40:1103–1112. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Oboshi W, Watanabe T, Matsuyama Y, Kobara A, Yukimasa N, Ueno I, Aki K, Tada T and Hosoi E: The influence of NK cell-mediated ADCC: Structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Hum Immunol. 77:165–171. 2016. View Article : Google Scholar : PubMed/NCBI

20 

De Federicis D, Capuano C, Ciuti D, Molfetta R, Galandrini R and Palmieri G: Nutrient transporter pattern in CD56dim NK cells: CD16 (FcγRIIIA)-dependent modulation and association with memory NK cell functional profile. Front Immunol. 15:14777762024. View Article : Google Scholar : PubMed/NCBI

21 

Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al: CD56 bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 127:4042–4058. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Enomoto Y, Li P, Jenkins LM, Anastasakis D, Lyons GC, Hafner M and Leonard WJ: Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther. 29:734–749. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Lachota M, Zielniok K, Palacios D, Kanaya M, Penna L, Hoel HJ, Wiiger MT, Kveberg L, Hautz W, Zagożdżon R and Malmberg KJ: Mapping the chemotactic landscape in NK cells reveals subset-specific synergistic migratory responses to dual chemokine receptor ligation. EBioMedicine. 96:1048112023. View Article : Google Scholar : PubMed/NCBI

24 

Toffoli E, van Vliet A, Forbes C, Arns AJ, Verheul HWM, Tuynman J, van der Vliet HJ, Spanholtz J and de Gruijl TD: Allogeneic NK cells induce the in vitro activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions. Clin Exp Immunol. 216:159–171. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Rodriguez-Mogeda C, van Ansenwoude CM, van der Molen L, Strijbis EM, Mebius RE and de Vries HE: The role of CD56bright NK cells in neurodegenerative disorders. J Neuroinflammation. 21:482024. View Article : Google Scholar : PubMed/NCBI

26 

van de Donk N, Richardson PG and Malavasi F: CD38 antibodies in multiple myeloma: Back to the future. Blood. 131:13–29. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Wagner JA and Fehniger TA: Human adaptive natural killer cells: Beyond NKG2C. Trends Immunol. 37:351–353. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J and Künkele A: Adoptive cell therapy in pediatric extracranial solid tumors: Current approaches and future challenges. Eur J Cancer. 194:1133472023. View Article : Google Scholar : PubMed/NCBI

29 

Taylor BC and Balko JM: Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 13:8448662022. View Article : Google Scholar : PubMed/NCBI

30 

Shreeve N, Depierreux D, Hawkes D, Traherne JA, Sovio U, Huhn O, Jayaraman J, Horowitz A, Ghadially H, Perry JRB, et al: The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity. 54:1231–1244.e1234. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Pollock NR, Harrison GF and Norman PJ: Immunogenomics of killer cell immunoglobulin-like receptor (KIR) and HLA class I: Coevolution and consequences for human health. J Allergy Clin Immunol Pract. 10:1763–1775. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Rascle P, Woolley G, Jost S, Manickam C and Reeves RK: NK cell education: Physiological and pathological influences. Front Immunol. 14:10871552023. View Article : Google Scholar : PubMed/NCBI

33 

Neo SY, Jing X, Tong L, Tong D, Gao J, Chen Z, De Los Santos MC, Burduli N, De Souza Ferreira S, Wagner AK, et al: Tumor MHC class I expression alters cancer-associated myelopoiesis driven by host NK cells. J Immunother Cancer. 10:e0053082022. View Article : Google Scholar : PubMed/NCBI

34 

Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, et al: A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 186:3903–3920.e3921. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Toyoda H, Kuramasu A, Hosonuma M, Murayama M, Narikawa Y, Isobe J, Baba Y, Tajima K, Funayama E, Shida M, et al: MHC class I polypeptide-related sequence B shedding modulates pancreatic tumor immunity via the activation of NKG2DLow T cells. Sci Rep. 14:234012024. View Article : Google Scholar : PubMed/NCBI

36 

Harkus U, Wankell M, Palamuthusingam P, McFarlane C and Hebbard L: Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol. 86:799–815. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Eugene J, Jouand N, Ducoin K, Dansette D, Oger R, Deleine C, Leveque E, Meurette G, Podevin J, Matysiak T, et al: The inhibitory receptor CD94/NKG2A on CD8(+) tumor-infiltrating lymphocytes in colorectal cancer: A promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod Pathol. 33:468–482. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Sun C, Xu J, Huang Q, Huang M, Wen H, Zhang C, Wang J, Song J, Zheng M, Sun H, et al: High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology. 6:e12645622017. View Article : Google Scholar : PubMed/NCBI

39 

Mahgoub S, Abosalem H, Emara M, Kotb N, Maged A and Soror S: Restoring NK cells functionality via cytokine activation enhances cetuximab-mediated NK-cell ADCC: A promising therapeutic tool for HCC patients. Mol Immunol. 137:221–227. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Hò GGT, Celik AA, Huyton T, Hiemisch W, Blasczyk R, Simper GS and Bade-Doeding C: NKG2A/CD94 is a new immune receptor for HLA-G and distinguishes amino acid differences in the HLA-G heavy chain. Int J Mol Sci. 21:43622020. View Article : Google Scholar : PubMed/NCBI

41 

Laskowski TJ, Biederstadt A and Rezvani K: Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 22:557–575. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Bibby JA, Agarwal D, Freiwald T, Kunz N, Merle NS, West EE, Singh P, Larochelle A, Chinian F, Mukherjee S, et al: Systematic single-cell pathway analysis to characterize early T cell activation. Cell Rep. 41:1116972022. View Article : Google Scholar : PubMed/NCBI

43 

Wong JKM, Dolcetti R, Rhee H, Simpson F and Souza-Fonseca-Guimaraes F: Weaponizing natural killer cells for solid cancer immunotherapy. Trends Cancer. 9:111–121. 2023. View Article : Google Scholar : PubMed/NCBI

44 

Dixon KJ, Wu J and Walcheck B: Engineering anti-tumor monoclonal antibodies and Fc receptors to enhance ADCC by human NK cells. Cancers (Basel). 13:3122021. View Article : Google Scholar : PubMed/NCBI

45 

Kim IY, Kim HY, Song HW, Park JO, Choi YH and Choi E: Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon. 9:e169622023. View Article : Google Scholar : PubMed/NCBI

46 

Bottino C, Castriconi R, Moretta L and Moretta A: Cellular ligands of activating NK receptors. Trends Immunol. 26:221–226. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Zhang R, Liu Q, Zhou S, He H, Zhao M and Ma W: Engineering CAR-NK cells targeting CD33 with concomitant extracellular secretion of anti-CD16 antibody revealed superior antitumor effects toward myeloid leukemia. Cancer Lett. 558:2161032023. View Article : Google Scholar : PubMed/NCBI

48 

Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Kohlhapp FJ, O'Sullivan JA, Moore TV, Zloza A and Guevara-Patino JA: NKG2D signaling shifts the balance of CD8 T cells from single cytokine- to polycytokine-producing effector cells. Mol Immunol. 155:1–6. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Corvino D, Kumar A and Bald T: Plasticity of NK cells in cancer. Front Immunol. 13:8883132022. View Article : Google Scholar : PubMed/NCBI

51 

Asl KD, Rafat A, Mazloumi Z, Valipour B, Movassaghpour A, Talebi M, Mahdavi M, Nasrabadi HT and Charoudeh HN: Cord blood stem cell-generated KIR(+)NK cells effectively target leukemia cell lines. Hum Immunol. 84:98–105. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Klingemann H: The NK-92 cell line-30 years later: Its impact on natural killer cell research and treatment of cancer. Cytotherapy. 25:451–457. 2023. View Article : Google Scholar : PubMed/NCBI

53 

García Aponte OF, Kozma B, Egger D, Kasper C and Herwig C: Kinetics of NK-92 growth and functionality in pseudo-static cultures. Biochemical Engineering J. 196:1089292023. View Article : Google Scholar

54 

Clara JA, Levy ER, Reger R, Barisic S, Chen L, Cherkasova E, Chakraborty M, Allan DSJ and Childs R: High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells. J Immunother Cancer. 10:e0038042022. View Article : Google Scholar : PubMed/NCBI

55 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Crow D: Could iPSCs enable ‘Off-the-Shelf’ cell therapy? Cell. 177:1667–1669. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Naama M and Buganim Y: Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev. 81:1020842023. View Article : Google Scholar : PubMed/NCBI

58 

Goodridge JP, Mahmood S, Zhu H, Gaidarova S, Blum R, Bjordahl R, Cichocki F, Chu H, Bonello G, Lee T, et al: FT596: Translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies. Blood. 134:3012019. View Article : Google Scholar

59 

Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T, Medcalf A, Lee TT, Fitch M, Robbins D and Flynn P: Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Reports. 2:366–381. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Kiran S, Xue Y, Sarker DB, Li Y and Sang QXA: Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater. 36:301–316. 2024.PubMed/NCBI

61 

Lv Y, Rao Z, Liu L, Jia J, Wu C, Xu J, Du Y, Liu Y, Liu B, Shi J, et al: The efficient generation of functional human hepatocytes from chemically induced pluripotent stem cells. Cell Prolif. 57:e135402024. View Article : Google Scholar : PubMed/NCBI

62 

Lupo KB, Moon JI, Chambers AM and Matosevic S: Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 23:939–952. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, et al: Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 7:e302642012. View Article : Google Scholar : PubMed/NCBI

64 

Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, Lee DA and Kaufman DS: Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2:274–283. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Qiao W, Dong P, Chen H and Zhang J: Advances in induced pluripotent stem cell-derived natural killer cell therapy. Cells. 13:19762024. View Article : Google Scholar : PubMed/NCBI

66 

Zhang L, Weiskittel TM, Zhu Y, Xue D, Zhang H, Shen Y, Yu H, Li J, Hou L, Guo H, et al: Comparative dissection of transcriptional landscapes of human iPSC-NK differentiation and NK cell development. Life Med. 3:lnae0322024. View Article : Google Scholar : PubMed/NCBI

67 

Thangaraj JL, Coffey M, Lopez E and Kaufman DS: Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell. 31:1327–1343.e1325. 2024. View Article : Google Scholar : PubMed/NCBI

68 

Qin Y, Cui Q, Sun G, Chao J, Wang C, Chen X, Ye P, Zhou T, Jeyachandran AV, Sun O, et al: Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep. 43:1148672024. View Article : Google Scholar : PubMed/NCBI

69 

Goldenson BH, Hor P and Kaufman DS: iPSC-derived natural killer cell therapies-expansion and targeting. Front Immunol. 13:8411072022. View Article : Google Scholar : PubMed/NCBI

70 

Bernareggi D, Gonsalves C, Schabla M, Gárate-Carrillo A, El-Kalay M, Kaufman DS, Hollingsworth R and Zhu H: 336 A novel method for efficient cGMP production of natural killer cells from clonal master induced pluripotent stem cells for next generation, off-the-shelf cancer immunotherapy. Regular and Young Investigator Award Abstracts. A354. 2022. View Article : Google Scholar

71 

Maddineni S, Silberstein JL and Sunwoo JB: Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells. J Immunother Cancer. 10:e0046932022. View Article : Google Scholar : PubMed/NCBI

72 

Patel M, Park D, Tarantolo S, Dowlati A, Olson D, Kaneko Y, Tang M, Soukharev S, Takizawa M, Okada Y, et al: 754 A phase 1/2 study of ASP1570 in participants with locally advanced or metastatic solid tumors who have progressed on, or are ineligible for, all available standard therapies. Regular and Young Investigator Award Abstracts. A786. 2022. View Article : Google Scholar

73 

Bachanova V, Ghobadi A, Patel K, Park JH, Flinn IW, Shah P, Wong C, Bickers C, Szabo P, Wong L, et al: Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-Cell lymphoma. Blood. 138:823. 2021. View Article : Google Scholar

74 

Tang SY, Zha S, Du Z, Zeng J, Zhu D, Luo Y and Wang S: Targeted integration of EpCAM-specific CAR in human induced pluripotent stem cells and their differentiation into NK cells. Stem Cell Res Ther. 12:5802021. View Article : Google Scholar : PubMed/NCBI

75 

Ma S, Caligiuri MA and Yu J: Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43:833–847. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Vahidi S, Touchaei AZ and Samadani AA: IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol. 133:1121562024. View Article : Google Scholar : PubMed/NCBI

77 

Seo IH, Eun HS, Kim JK, Lee H, Jeong S, Choi SJ, Lee J, Lee BS, Kim SH, Rou WS, et al: IL-15 enhances CCR5-mediated migration of memory CD8(+) T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep. 36:1094382021. View Article : Google Scholar : PubMed/NCBI

78 

Valipour B, Abedelahi A, Naderali E, Velaei K, Movassaghpour A, Talebi M, Montazersaheb S, Karimipour M, Darabi M, Chavoshi H, et al: Cord blood stem cell derived CD16(+) NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody. Life Sci. 242:1172232020. View Article : Google Scholar : PubMed/NCBI

79 

Quatrini L, Vacca P, Tumino N, Besi F, Di Pace AL, Scordamaglia F, Martini S, Munari E, Mingari MC, Ugolini S and Moretta L: Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. J Allergy Clin Immunol. 147:349–360. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Chen AP, Gao P, Lin L, Ashok P, He H, Ma C, Zou DL, Allain V, Boyne A, Juillerat A, et al: An improved approach to generate IL-15+/+/TGFβR2−/− iPSC-derived natural killer cells using TALEN. Cell Rep Methods. 4:1008572024. View Article : Google Scholar : PubMed/NCBI

81 

Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS and Khatua S: Advances in NK cell therapy for brain tumors. NPJ Precis Oncol. 7:172023. View Article : Google Scholar : PubMed/NCBI

82 

Kim J, Phan MTT, Hwang I, Park J and Cho D: Comparison of the different anti-CD16 antibody clones in the activation and expansion of peripheral blood NK cells. Sci Rep. 13:94932023. View Article : Google Scholar : PubMed/NCBI

83 

Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R and Palmieri G: Harnessing CD16-mediated NK cell functions to enhance therapeutic efficacy of tumor-targeting mAbs. Cancers (Basel). 13:25002021. View Article : Google Scholar : PubMed/NCBI

84 

Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B and Miller J: NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 121:3599–3608. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Wang Y, Wu J, Newton R, Bahaie NS, Long C and Walcheck B: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils. Biochim Biophys Acta. 1833:680–685. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, Zhou S, Zhao X and Li Y: Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol. 16:622023. View Article : Google Scholar : PubMed/NCBI

87 

Yamamoto K, Blum R and Kaufman DS: ADAM17-deficient pluripotent stem cell-derived natural killer cells possess improved antibody-dependent cellular cytotoxicity and antitumor activity. Blood. 136:22020. View Article : Google Scholar

88 

Biederstädt A and Rezvani K: Engineering the next generation of CAR-NK immunotherapies. Int J Hematol. 114:554–571. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Gao L, Du X, Li J and Qin FXF: Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer. 128:492–504. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Stikvoort A, van der Schans J, Sarkar S, Poels R, Ruiter R, Naik J, Yuan H, de Bruijn JD, van de Donk NWCJ, Zweegman S, et al: CD38-specific chimeric antigen receptor expressing natural killer KHYG-1 cells: A proof of concept for an ‘Off the Shelf’ therapy for multiple myeloma. Hemasphere. 5:e5962021. View Article : Google Scholar : PubMed/NCBI

91 

Seiffert M: TIGIT: An immune checkpoint beyond T cells in chronic lymphocytic leukemia. Haematologica. 108:1979–1981. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, Tobin NP, Blake E, Seitz C, Thomas R, et al: CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 130:1185–1198. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M and Matosevic S: synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun. 15:19092024. View Article : Google Scholar : PubMed/NCBI

94 

Reiser J, Chan SR, Mathavan K, Sillitti D, Mottershead C, Mattson B, Pache M, Gutierrez A, Scoon W, Zhu Y, et al: FT555: Off-the-Shelf CAR-NK cell therapy co-targeting GPRC5D and CD38 for the treatment of multiple myeloma. Blood. 140:4560–4561. 2022. View Article : Google Scholar

95 

Vahidian F, Khosroshahi LM, Akbarzadeh M, Jahanban-Esfahlan A, Baghbanzadeh A, Ali-Hassanzadeh M and Safarzadeh E: The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes. 63:1018172022. View Article : Google Scholar : PubMed/NCBI

96 

Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Cichocki F, Bjordahl R, Gaidarova S, Mahmood S, Abujarour R, Wang H, Tuininga K, Felices M, Davis ZB, Bendzick L, et al: iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 12:eaaz56182020. View Article : Google Scholar : PubMed/NCBI

98 

Karagiannis P and Kim SI: iPSC-derived natural killer cells for cancer immunotherapy. Mol Cells. 44:541–548. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Karvouni M, Vidal-Manrique M, Susek KH, Hussain A, Gilljam M, Zhang Y, Gray JD, Lund J, Kaufmann G, Ljunggren HG, et al: Challenges in alphaCD38-chimeric antigen receptor (CAR)-expressing natural killer (NK) cell-based immunotherapy in multiple myeloma: Harnessing the CD38dim phenotype of cytokine-stimulated NK cells as a strategy to prevent fratricide. Cytotherapy. 25:763–772. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Bjordahl R, Gaidarova S, Goodridge JP, Mahmood S, Bonello G, Robinson M, Ruller C, Pribadi M, Lee T, Abujarour R, et al: FT576: A novel multiplexed engineered off-the-shelf natural killer cell immunotherapy for the dual-targeting of CD38 and Bcma for the treatment of multiple myeloma. Blood. 134:32142019. View Article : Google Scholar

101 

Goodridge JP, Bjordahl R, Mahmood S, Reiser J, Gaidarova S, Blum R, Cichocki F, Chu H, Bonello G, Lee T, et al: FT576: Multi-Specific Off-the-shelf CAR-NK cell therapy engineered for enhanced persistence, avoidance of self-fratricide and optimized mab combination therapy to prevent antigenic escape and elicit a deep and durable response in multiple myeloma. Blood. 136:4–5. 2020. View Article : Google Scholar

102 

Dhakal B, Berdeja JG, Gregory T, Ly T, Bickers C, Zong X, Wong L, Goodridge JP, Cooley S, Valamehr B, et al: Interim phase I clinical data of FT576 as monotherapy and in combination with daratumumab in subjects with relapsed/refractory multiple myeloma. Blood. 140:4586–4587. 2022. View Article : Google Scholar

103 

Wang L, Wang Y, He X, Mo Z, Zhao M, Liang X, Hu K, Wang K, Yue Y, Mo G, et al: CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells. Cell Rep Med. 6:1018892025. View Article : Google Scholar : PubMed/NCBI

104 

Yu M, Mansour AG, Teng KY, Sun G, Shi Y and Caligiuri MA: iPSC-derived natural killer cells expressing EGFR-CAR against glioblastoma. Cancer Research. 80:33132020. View Article : Google Scholar

105 

Wang Y, Wang L, Shao M, He X, Yue Y, Zhou Y, Yang L, Huang H and Hu Y: Off-the-Shelf, multiplexed-engineered iPSC-derived CD33 CAR-NK cells for treatment of acute myeloid leukemia. Blood. 140:126852022. View Article : Google Scholar

106 

Shapiro RM and Romee R: iPSC-derived CD19 CAR NK cells for relapsed or refractory lymphoma. Lancet. 405:98–99. 2025. View Article : Google Scholar : PubMed/NCBI

107 

Ghobadi A, Bachanova V, Patel K, Park JH, Flinn I, Riedell PA, Bachier C, Diefenbach CS, Wong C, Bickers C, et al: Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: A phase 1, first-in-human trial. Lancet. 405:127–136. 2025. View Article : Google Scholar : PubMed/NCBI

108 

Merino A, Maakaron J and Bachanova V: Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev. 60:1010732023. View Article : Google Scholar : PubMed/NCBI

109 

Bachanova V, Cayci Z, Lewis D, Maakaron JE, Janakiram M, Bartz A, Payne S, Wong C, Cooley S, Valamehr B, et al: Initial clinical activity of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-Derived CD19 CAR NK cell therapy in Relapsed/Refractory B-Cell lymphoma. Blood. 136:82020. View Article : Google Scholar

110 

Bachanova V, Deol A, Al-Juhaishi TMS, Lulla PD, Byrne MT, Wong C, Bickers C, Greene T, Wong L, Villa B, et al: Safety and efficacy of FT522, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-Derived CD19 CAR NK cell therapy with alloimmune defense receptor (ADR) in Relapsed/Refractory B-Cell lymphoma. Blood. 144:65432024. View Article : Google Scholar

111 

Patel K, Namburi S, Latif T and Oluwole OO: Interim results from the ELiPSE-1 study: A phase 1, multicenter, open-label study of CNTY-101 in subjects with relapsed or refractory CD19-positive B-cell malignancies. J Clin Oncol. 42:70232024. View Article : Google Scholar

112 

Borges L, Wallet MA, Bullaughey CL, Naso MF, Gurung B, Keating S, Carton JM, Wheeler JC, Campion L, Mendonca M, et al: Development of multi-engineered iPSC-derived CAR-NK cells for the treatment of B-cell malignancies. Blood. 138:17292021. View Article : Google Scholar

113 

Sermer D, Elavalakanar P, Abramson JS, Palomba ML, Salles G and Arnason J: Targeting CD19 for diffuse large B cell lymphoma in the era of CARs: Other modes of transportation. Blood Rev. 57:1010022023. View Article : Google Scholar : PubMed/NCBI

114 

Ramachandran I, Rothman S, Clausi M, McFadden K, Salantes B, Jih G, Brigman T, Kelly S, Hall MS, Yee S, et al: Multiple doses of Cnty-101, an iPSC-derived allogeneic CD19 targeting CAR-NK product, are safe and result in tumor microenvironment changes associated with response: A case study. Blood. 142:16542023. View Article : Google Scholar

115 

Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI

116 

Xu Z, Yang J, Xin X, Liu C, Li L, Mei X and Li M: Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol. 11:11889052023. View Article : Google Scholar : PubMed/NCBI

117 

Huyghe M, Desterke C, Imeri J, Belliard N, Chaker D, Oudrirhi N, Bezerra H, Turhan AG, Bennaceur-Griscelli A and Griscelli F: Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities. Front Immunol. 15:14637362024. View Article : Google Scholar : PubMed/NCBI

118 

Nianias A and Themeli M: Induced pluripotent stem cell (iPSC)-derived lymphocytes for adoptive cell immunotherapy: recent advances and challenges. Curr Hematol Malig Rep. 14:261–268. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Zhou Y, Cheng L, Liu L and Li X: NK cells are never alone: Crosstalk and communication in tumour microenvironments. Mol Cancer. 22:342023. View Article : Google Scholar : PubMed/NCBI

120 

Linke JA, Munn LL and Jain RK: Compressive stresses in cancer: Characterization and implications for tumour progression and treatment. Nat Rev Cancer. 24:768–791. 2024. View Article : Google Scholar : PubMed/NCBI

121 

Xie D, Zhu S and Bai L: Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci. 59:1290–1296. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Gao Y, Zhou H, Liu G, Wu J, Yuan Y and Shang A: Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022:31193752022. View Article : Google Scholar : PubMed/NCBI

123 

Miao L, Lu C, Zhang B, Li H, Zhao X, Chen H, Liu Y and Cui X: Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J Transl Med. 22:2292024. View Article : Google Scholar : PubMed/NCBI

124 

Lozada JR, Zhang B, Miller JS and Cichocki F: NK cells from human cytomegalovirus-seropositive individuals have a distinct metabolic profile that correlates with elevated mTOR signaling. J Immunol. 211:539–550. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Osuna-Espinoza KY and Rosas-Taraco AG: Metabolism of NK cells during viral infections. Front Immunol. 14:10641012023. View Article : Google Scholar : PubMed/NCBI

126 

Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K and Xia L: Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: From bench to bedside. Exp Hematol Oncol. 13:722024. View Article : Google Scholar : PubMed/NCBI

127 

Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H and Chen K: Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 12:11149–11165. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Arner EN and Rathmell JC: Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 41:421–433. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Tong L, Jimenez-Cortegana C, Tay AHM, Wickstrom S, Galluzzi L and Lundqvist A: NK cells and solid tumors: Therapeutic potential and persisting obstacles. Mol Cancer. 21:2062022. View Article : Google Scholar : PubMed/NCBI

130 

Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY and Fantin VR: Natural killer cell therapies. Nature. 626:727–736. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Tarannum M, Romee R and Shapiro RM: Innovative strategies to improve the clinical application of NK cell-based immunotherapy. Front Immunol. 13:8591772022. View Article : Google Scholar : PubMed/NCBI

132 

Carreira-Santos S, Lopez-Sejas N, Gonzalez-Sanchez M, Sánchez-Hernández E, Pera A, Hassouneh F, Durán E, Solana R, Casado JG and Tarazona R: Enhanced expression of natural cytotoxicity receptors on cytokine-induced memory-like natural killer cells correlates with effector function. Front Immunol. 14:12564042023. View Article : Google Scholar : PubMed/NCBI

133 

Wang Z, Guan D, Wang S, Chai LYA, Xu S and Lam KP: Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Front Immunol. 11:2022020. View Article : Google Scholar : PubMed/NCBI

134 

Poznanski SM, Barra NG, Ashkar AA and Schertzer JD: Immunometabolism of T cells and NK cells: Metabolic control of effector and regulatory function. Inflamm Res. 67:813–828. 2018. View Article : Google Scholar : PubMed/NCBI

135 

Shankar K, Zingler-Hoslet I, Tabima DM, Zima S, Shi L, Gimse K, Forsberg MH, Katta V, Davis SZ, Maldonado D, et al: Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. Mol Ther. 33:1014–1030. 2024. View Article : Google Scholar

136 

Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, et al: Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 128:4654–4668. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI

138 

Clerico M, Ragaini S and Cavallo F: Non-Hodgkin lymphoma treated with anti-CD20 antibody-based immunochemotherapy. Resistance to Anti-Cd20 Antibodies and Approaches for their Reversal Elsevier. 103–122. 2024. View Article : Google Scholar

139 

Hoffman B and Liebermann DA: Apoptotic signaling by c-MYC. Oncogene. 27:6462–6472. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Ding S: Therapeutic reprogramming toward regenerative medicine. Chem Rev. 125:1805–1822. 2025. View Article : Google Scholar : PubMed/NCBI

141 

Agostini A, Orlacchio A, Carbone C and Guerriero I: Understanding tricky cellular and molecular interactions in pancreatic tumor microenvironment: New food for thought. Front Immunol. 13:8762912022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wei X, Su C, Liu Y, Wei N, Xiang K, Qian Q and Xu Z: IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review). Mol Med Rep 32: 222, 2025.
APA
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., & Xu, Z. (2025). IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review). Molecular Medicine Reports, 32, 222. https://doi.org/10.3892/mmr.2025.13587
MLA
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., Xu, Z."IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)". Molecular Medicine Reports 32.2 (2025): 222.
Chicago
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., Xu, Z."IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)". Molecular Medicine Reports 32, no. 2 (2025): 222. https://doi.org/10.3892/mmr.2025.13587
Copy and paste a formatted citation
x
Spandidos Publications style
Wei X, Su C, Liu Y, Wei N, Xiang K, Qian Q and Xu Z: IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review). Mol Med Rep 32: 222, 2025.
APA
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., & Xu, Z. (2025). IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review). Molecular Medicine Reports, 32, 222. https://doi.org/10.3892/mmr.2025.13587
MLA
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., Xu, Z."IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)". Molecular Medicine Reports 32.2 (2025): 222.
Chicago
Wei, X., Su, C., Liu, Y., Wei, N., Xiang, K., Qian, Q., Xu, Z."IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)". Molecular Medicine Reports 32, no. 2 (2025): 222. https://doi.org/10.3892/mmr.2025.13587
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team