
IPSC‑derived NK cells for immunotherapy and therapeutic perspective (Review)
- Authors:
- Xiyao Wei
- Chen Su
- Yueyang Liu
- Ningbo Wei
- Kexin Xiang
- Qijun Qian
- Zenghui Xu
-
Affiliations: Shanghai Cell Therapy Group Co., Ltd., Shanghai 201805, P.R. China - Published online on: June 3, 2025 https://doi.org/10.3892/mmr.2025.13587
- Article Number: 222
-
Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Bald T, Krummel MF, Smyth MJ and Barry KC: The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 21:835–847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Sun Z, Zhu X, Zheng X, Zhou Y, Lu Y, Yan P, Wang H, Liu H, Jin J, et al: GARP-mediated active TGF-beta1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood. 140:2788–2804. 2022. View Article : Google Scholar : PubMed/NCBI | |
Terren I, Orrantia A, Vitalle J, Astarloa-Pando G, Zenarruzabeitia O and Borrego F: Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol. 57:213–224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hernani R, Benzaquen A and Solano C: Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev. 111:1024792022. View Article : Google Scholar : PubMed/NCBI | |
Mansour AG, Teng KY, Li Z, Zhu Z, Chen H, Tian L, Ali A, Zhang J, Lu T, Ma S, et al: Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv. 7:6225–6239. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Matosevic S: Gene-edited and CAR-NK cells: Opportunities and challenges with engineering of NK cells for immunotherapy. Mol Ther Oncolytics. 27:224–238. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raneros AB, Lopez-Larrea C and Suarez-Alvarez B: Acute myeloid leukemia and NK cells: Two warriors confront each other. Oncoimmunology. 8:e15396172019. View Article : Google Scholar : PubMed/NCBI | |
Woan KV, Kim H, Bjordahl R, Davis ZB, Gaidarova S, Goulding J, Hancock B, Mahmood S, Abujarour R, Wang H, et al: Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell. 28:2062–2075.e2065. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hermanson DL, Moriarity BS and Kaufman DS: Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 23:181–192.e185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Sun Y, Dong X, Liu Z, Sugimura R and Xie G: IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother. 165:1151232023. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, Meng Z, Wu C, Guan KL, Malmberg KJ and Kaufman DS: Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell. 27:224–237.e226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farahzadi R, Valipour B, Anakok OF, Fathi E and Montazersaheb S: The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol. 77:1017972023. View Article : Google Scholar : PubMed/NCBI | |
Mace EM: Human natural killer cells: Form, function, and development. J Allergy Clin Immunol. 151:371–385. 2023. View Article : Google Scholar : PubMed/NCBI | |
Galat Y, Du Y, Perepitchka M, Li XN, Balyasnikova IV, Tse WT, Dambaeva S, Schneiderman S, Iannaccone PM, Becher O, et al: In vitro vascular differentiation system efficiently produces natural killer cells for cancer immunotherapies. Oncoimmunology. 12:22406702023. View Article : Google Scholar : PubMed/NCBI | |
Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E, Darretta V, Moretta L and Mingari MC: CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci USA. 108:2402–2407. 2011. View Article : Google Scholar : PubMed/NCBI | |
López-Botet M, De Maria A, Muntasell A, Della Chiesa M and Vilches C: Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol. 65:1017062023. View Article : Google Scholar : PubMed/NCBI | |
Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC and Hsu KC: Single-cell profiling aligns CD56bright and cytomegalovirus-induced adaptive natural killer cells to a naïve-memory relationship. Front Immunol. 15:14994922024. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Liu J, Zhang X, Xiao Y, Jiang G and Huang X: Activation status of CD56 dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol. 40:1103–1112. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oboshi W, Watanabe T, Matsuyama Y, Kobara A, Yukimasa N, Ueno I, Aki K, Tada T and Hosoi E: The influence of NK cell-mediated ADCC: Structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Hum Immunol. 77:165–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Federicis D, Capuano C, Ciuti D, Molfetta R, Galandrini R and Palmieri G: Nutrient transporter pattern in CD56dim NK cells: CD16 (FcγRIIIA)-dependent modulation and association with memory NK cell functional profile. Front Immunol. 15:14777762024. View Article : Google Scholar : PubMed/NCBI | |
Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al: CD56 bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 127:4042–4058. 2017. View Article : Google Scholar : PubMed/NCBI | |
Enomoto Y, Li P, Jenkins LM, Anastasakis D, Lyons GC, Hafner M and Leonard WJ: Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther. 29:734–749. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lachota M, Zielniok K, Palacios D, Kanaya M, Penna L, Hoel HJ, Wiiger MT, Kveberg L, Hautz W, Zagożdżon R and Malmberg KJ: Mapping the chemotactic landscape in NK cells reveals subset-specific synergistic migratory responses to dual chemokine receptor ligation. EBioMedicine. 96:1048112023. View Article : Google Scholar : PubMed/NCBI | |
Toffoli E, van Vliet A, Forbes C, Arns AJ, Verheul HWM, Tuynman J, van der Vliet HJ, Spanholtz J and de Gruijl TD: Allogeneic NK cells induce the in vitro activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions. Clin Exp Immunol. 216:159–171. 2024. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Mogeda C, van Ansenwoude CM, van der Molen L, Strijbis EM, Mebius RE and de Vries HE: The role of CD56bright NK cells in neurodegenerative disorders. J Neuroinflammation. 21:482024. View Article : Google Scholar : PubMed/NCBI | |
van de Donk N, Richardson PG and Malavasi F: CD38 antibodies in multiple myeloma: Back to the future. Blood. 131:13–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wagner JA and Fehniger TA: Human adaptive natural killer cells: Beyond NKG2C. Trends Immunol. 37:351–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J and Künkele A: Adoptive cell therapy in pediatric extracranial solid tumors: Current approaches and future challenges. Eur J Cancer. 194:1133472023. View Article : Google Scholar : PubMed/NCBI | |
Taylor BC and Balko JM: Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 13:8448662022. View Article : Google Scholar : PubMed/NCBI | |
Shreeve N, Depierreux D, Hawkes D, Traherne JA, Sovio U, Huhn O, Jayaraman J, Horowitz A, Ghadially H, Perry JRB, et al: The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity. 54:1231–1244.e1234. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pollock NR, Harrison GF and Norman PJ: Immunogenomics of killer cell immunoglobulin-like receptor (KIR) and HLA class I: Coevolution and consequences for human health. J Allergy Clin Immunol Pract. 10:1763–1775. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rascle P, Woolley G, Jost S, Manickam C and Reeves RK: NK cell education: Physiological and pathological influences. Front Immunol. 14:10871552023. View Article : Google Scholar : PubMed/NCBI | |
Neo SY, Jing X, Tong L, Tong D, Gao J, Chen Z, De Los Santos MC, Burduli N, De Souza Ferreira S, Wagner AK, et al: Tumor MHC class I expression alters cancer-associated myelopoiesis driven by host NK cells. J Immunother Cancer. 10:e0053082022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, et al: A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 186:3903–3920.e3921. 2023. View Article : Google Scholar : PubMed/NCBI | |
Toyoda H, Kuramasu A, Hosonuma M, Murayama M, Narikawa Y, Isobe J, Baba Y, Tajima K, Funayama E, Shida M, et al: MHC class I polypeptide-related sequence B shedding modulates pancreatic tumor immunity via the activation of NKG2DLow T cells. Sci Rep. 14:234012024. View Article : Google Scholar : PubMed/NCBI | |
Harkus U, Wankell M, Palamuthusingam P, McFarlane C and Hebbard L: Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol. 86:799–815. 2022. View Article : Google Scholar : PubMed/NCBI | |
Eugene J, Jouand N, Ducoin K, Dansette D, Oger R, Deleine C, Leveque E, Meurette G, Podevin J, Matysiak T, et al: The inhibitory receptor CD94/NKG2A on CD8(+) tumor-infiltrating lymphocytes in colorectal cancer: A promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod Pathol. 33:468–482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Xu J, Huang Q, Huang M, Wen H, Zhang C, Wang J, Song J, Zheng M, Sun H, et al: High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology. 6:e12645622017. View Article : Google Scholar : PubMed/NCBI | |
Mahgoub S, Abosalem H, Emara M, Kotb N, Maged A and Soror S: Restoring NK cells functionality via cytokine activation enhances cetuximab-mediated NK-cell ADCC: A promising therapeutic tool for HCC patients. Mol Immunol. 137:221–227. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hò GGT, Celik AA, Huyton T, Hiemisch W, Blasczyk R, Simper GS and Bade-Doeding C: NKG2A/CD94 is a new immune receptor for HLA-G and distinguishes amino acid differences in the HLA-G heavy chain. Int J Mol Sci. 21:43622020. View Article : Google Scholar : PubMed/NCBI | |
Laskowski TJ, Biederstadt A and Rezvani K: Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 22:557–575. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bibby JA, Agarwal D, Freiwald T, Kunz N, Merle NS, West EE, Singh P, Larochelle A, Chinian F, Mukherjee S, et al: Systematic single-cell pathway analysis to characterize early T cell activation. Cell Rep. 41:1116972022. View Article : Google Scholar : PubMed/NCBI | |
Wong JKM, Dolcetti R, Rhee H, Simpson F and Souza-Fonseca-Guimaraes F: Weaponizing natural killer cells for solid cancer immunotherapy. Trends Cancer. 9:111–121. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dixon KJ, Wu J and Walcheck B: Engineering anti-tumor monoclonal antibodies and Fc receptors to enhance ADCC by human NK cells. Cancers (Basel). 13:3122021. View Article : Google Scholar : PubMed/NCBI | |
Kim IY, Kim HY, Song HW, Park JO, Choi YH and Choi E: Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon. 9:e169622023. View Article : Google Scholar : PubMed/NCBI | |
Bottino C, Castriconi R, Moretta L and Moretta A: Cellular ligands of activating NK receptors. Trends Immunol. 26:221–226. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Liu Q, Zhou S, He H, Zhao M and Ma W: Engineering CAR-NK cells targeting CD33 with concomitant extracellular secretion of anti-CD16 antibody revealed superior antitumor effects toward myeloid leukemia. Cancer Lett. 558:2161032023. View Article : Google Scholar : PubMed/NCBI | |
Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kohlhapp FJ, O'Sullivan JA, Moore TV, Zloza A and Guevara-Patino JA: NKG2D signaling shifts the balance of CD8 T cells from single cytokine- to polycytokine-producing effector cells. Mol Immunol. 155:1–6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Corvino D, Kumar A and Bald T: Plasticity of NK cells in cancer. Front Immunol. 13:8883132022. View Article : Google Scholar : PubMed/NCBI | |
Asl KD, Rafat A, Mazloumi Z, Valipour B, Movassaghpour A, Talebi M, Mahdavi M, Nasrabadi HT and Charoudeh HN: Cord blood stem cell-generated KIR(+)NK cells effectively target leukemia cell lines. Hum Immunol. 84:98–105. 2023. View Article : Google Scholar : PubMed/NCBI | |
Klingemann H: The NK-92 cell line-30 years later: Its impact on natural killer cell research and treatment of cancer. Cytotherapy. 25:451–457. 2023. View Article : Google Scholar : PubMed/NCBI | |
García Aponte OF, Kozma B, Egger D, Kasper C and Herwig C: Kinetics of NK-92 growth and functionality in pseudo-static cultures. Biochemical Engineering J. 196:1089292023. View Article : Google Scholar | |
Clara JA, Levy ER, Reger R, Barisic S, Chen L, Cherkasova E, Chakraborty M, Allan DSJ and Childs R: High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells. J Immunother Cancer. 10:e0038042022. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Crow D: Could iPSCs enable ‘Off-the-Shelf’ cell therapy? Cell. 177:1667–1669. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naama M and Buganim Y: Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev. 81:1020842023. View Article : Google Scholar : PubMed/NCBI | |
Goodridge JP, Mahmood S, Zhu H, Gaidarova S, Blum R, Bjordahl R, Cichocki F, Chu H, Bonello G, Lee T, et al: FT596: Translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies. Blood. 134:3012019. View Article : Google Scholar | |
Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T, Medcalf A, Lee TT, Fitch M, Robbins D and Flynn P: Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Reports. 2:366–381. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kiran S, Xue Y, Sarker DB, Li Y and Sang QXA: Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater. 36:301–316. 2024.PubMed/NCBI | |
Lv Y, Rao Z, Liu L, Jia J, Wu C, Xu J, Du Y, Liu Y, Liu B, Shi J, et al: The efficient generation of functional human hepatocytes from chemically induced pluripotent stem cells. Cell Prolif. 57:e135402024. View Article : Google Scholar : PubMed/NCBI | |
Lupo KB, Moon JI, Chambers AM and Matosevic S: Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 23:939–952. 2021. View Article : Google Scholar : PubMed/NCBI | |
Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, et al: Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 7:e302642012. View Article : Google Scholar : PubMed/NCBI | |
Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, Lee DA and Kaufman DS: Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2:274–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiao W, Dong P, Chen H and Zhang J: Advances in induced pluripotent stem cell-derived natural killer cell therapy. Cells. 13:19762024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Weiskittel TM, Zhu Y, Xue D, Zhang H, Shen Y, Yu H, Li J, Hou L, Guo H, et al: Comparative dissection of transcriptional landscapes of human iPSC-NK differentiation and NK cell development. Life Med. 3:lnae0322024. View Article : Google Scholar : PubMed/NCBI | |
Thangaraj JL, Coffey M, Lopez E and Kaufman DS: Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell. 31:1327–1343.e1325. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Cui Q, Sun G, Chao J, Wang C, Chen X, Ye P, Zhou T, Jeyachandran AV, Sun O, et al: Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep. 43:1148672024. View Article : Google Scholar : PubMed/NCBI | |
Goldenson BH, Hor P and Kaufman DS: iPSC-derived natural killer cell therapies-expansion and targeting. Front Immunol. 13:8411072022. View Article : Google Scholar : PubMed/NCBI | |
Bernareggi D, Gonsalves C, Schabla M, Gárate-Carrillo A, El-Kalay M, Kaufman DS, Hollingsworth R and Zhu H: 336 A novel method for efficient cGMP production of natural killer cells from clonal master induced pluripotent stem cells for next generation, off-the-shelf cancer immunotherapy. Regular and Young Investigator Award Abstracts. A354. 2022. View Article : Google Scholar | |
Maddineni S, Silberstein JL and Sunwoo JB: Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells. J Immunother Cancer. 10:e0046932022. View Article : Google Scholar : PubMed/NCBI | |
Patel M, Park D, Tarantolo S, Dowlati A, Olson D, Kaneko Y, Tang M, Soukharev S, Takizawa M, Okada Y, et al: 754 A phase 1/2 study of ASP1570 in participants with locally advanced or metastatic solid tumors who have progressed on, or are ineligible for, all available standard therapies. Regular and Young Investigator Award Abstracts. A786. 2022. View Article : Google Scholar | |
Bachanova V, Ghobadi A, Patel K, Park JH, Flinn IW, Shah P, Wong C, Bickers C, Szabo P, Wong L, et al: Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-Cell lymphoma. Blood. 138:823. 2021. View Article : Google Scholar | |
Tang SY, Zha S, Du Z, Zeng J, Zhu D, Luo Y and Wang S: Targeted integration of EpCAM-specific CAR in human induced pluripotent stem cells and their differentiation into NK cells. Stem Cell Res Ther. 12:5802021. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Caligiuri MA and Yu J: Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43:833–847. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vahidi S, Touchaei AZ and Samadani AA: IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol. 133:1121562024. View Article : Google Scholar : PubMed/NCBI | |
Seo IH, Eun HS, Kim JK, Lee H, Jeong S, Choi SJ, Lee J, Lee BS, Kim SH, Rou WS, et al: IL-15 enhances CCR5-mediated migration of memory CD8(+) T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep. 36:1094382021. View Article : Google Scholar : PubMed/NCBI | |
Valipour B, Abedelahi A, Naderali E, Velaei K, Movassaghpour A, Talebi M, Montazersaheb S, Karimipour M, Darabi M, Chavoshi H, et al: Cord blood stem cell derived CD16(+) NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody. Life Sci. 242:1172232020. View Article : Google Scholar : PubMed/NCBI | |
Quatrini L, Vacca P, Tumino N, Besi F, Di Pace AL, Scordamaglia F, Martini S, Munari E, Mingari MC, Ugolini S and Moretta L: Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. J Allergy Clin Immunol. 147:349–360. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen AP, Gao P, Lin L, Ashok P, He H, Ma C, Zou DL, Allain V, Boyne A, Juillerat A, et al: An improved approach to generate IL-15+/+/TGFβR2−/− iPSC-derived natural killer cells using TALEN. Cell Rep Methods. 4:1008572024. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS and Khatua S: Advances in NK cell therapy for brain tumors. NPJ Precis Oncol. 7:172023. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Phan MTT, Hwang I, Park J and Cho D: Comparison of the different anti-CD16 antibody clones in the activation and expansion of peripheral blood NK cells. Sci Rep. 13:94932023. View Article : Google Scholar : PubMed/NCBI | |
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R and Palmieri G: Harnessing CD16-mediated NK cell functions to enhance therapeutic efficacy of tumor-targeting mAbs. Cancers (Basel). 13:25002021. View Article : Google Scholar : PubMed/NCBI | |
Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B and Miller J: NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 121:3599–3608. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu J, Newton R, Bahaie NS, Long C and Walcheck B: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils. Biochim Biophys Acta. 1833:680–685. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, Zhou S, Zhao X and Li Y: Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol. 16:622023. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto K, Blum R and Kaufman DS: ADAM17-deficient pluripotent stem cell-derived natural killer cells possess improved antibody-dependent cellular cytotoxicity and antitumor activity. Blood. 136:22020. View Article : Google Scholar | |
Biederstädt A and Rezvani K: Engineering the next generation of CAR-NK immunotherapies. Int J Hematol. 114:554–571. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Du X, Li J and Qin FXF: Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer. 128:492–504. 2023. View Article : Google Scholar : PubMed/NCBI | |
Stikvoort A, van der Schans J, Sarkar S, Poels R, Ruiter R, Naik J, Yuan H, de Bruijn JD, van de Donk NWCJ, Zweegman S, et al: CD38-specific chimeric antigen receptor expressing natural killer KHYG-1 cells: A proof of concept for an ‘Off the Shelf’ therapy for multiple myeloma. Hemasphere. 5:e5962021. View Article : Google Scholar : PubMed/NCBI | |
Seiffert M: TIGIT: An immune checkpoint beyond T cells in chronic lymphocytic leukemia. Haematologica. 108:1979–1981. 2023. View Article : Google Scholar : PubMed/NCBI | |
Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, Tobin NP, Blake E, Seitz C, Thomas R, et al: CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 130:1185–1198. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M and Matosevic S: synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun. 15:19092024. View Article : Google Scholar : PubMed/NCBI | |
Reiser J, Chan SR, Mathavan K, Sillitti D, Mottershead C, Mattson B, Pache M, Gutierrez A, Scoon W, Zhu Y, et al: FT555: Off-the-Shelf CAR-NK cell therapy co-targeting GPRC5D and CD38 for the treatment of multiple myeloma. Blood. 140:4560–4561. 2022. View Article : Google Scholar | |
Vahidian F, Khosroshahi LM, Akbarzadeh M, Jahanban-Esfahlan A, Baghbanzadeh A, Ali-Hassanzadeh M and Safarzadeh E: The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes. 63:1018172022. View Article : Google Scholar : PubMed/NCBI | |
Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cichocki F, Bjordahl R, Gaidarova S, Mahmood S, Abujarour R, Wang H, Tuininga K, Felices M, Davis ZB, Bendzick L, et al: iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 12:eaaz56182020. View Article : Google Scholar : PubMed/NCBI | |
Karagiannis P and Kim SI: iPSC-derived natural killer cells for cancer immunotherapy. Mol Cells. 44:541–548. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karvouni M, Vidal-Manrique M, Susek KH, Hussain A, Gilljam M, Zhang Y, Gray JD, Lund J, Kaufmann G, Ljunggren HG, et al: Challenges in alphaCD38-chimeric antigen receptor (CAR)-expressing natural killer (NK) cell-based immunotherapy in multiple myeloma: Harnessing the CD38dim phenotype of cytokine-stimulated NK cells as a strategy to prevent fratricide. Cytotherapy. 25:763–772. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bjordahl R, Gaidarova S, Goodridge JP, Mahmood S, Bonello G, Robinson M, Ruller C, Pribadi M, Lee T, Abujarour R, et al: FT576: A novel multiplexed engineered off-the-shelf natural killer cell immunotherapy for the dual-targeting of CD38 and Bcma for the treatment of multiple myeloma. Blood. 134:32142019. View Article : Google Scholar | |
Goodridge JP, Bjordahl R, Mahmood S, Reiser J, Gaidarova S, Blum R, Cichocki F, Chu H, Bonello G, Lee T, et al: FT576: Multi-Specific Off-the-shelf CAR-NK cell therapy engineered for enhanced persistence, avoidance of self-fratricide and optimized mab combination therapy to prevent antigenic escape and elicit a deep and durable response in multiple myeloma. Blood. 136:4–5. 2020. View Article : Google Scholar | |
Dhakal B, Berdeja JG, Gregory T, Ly T, Bickers C, Zong X, Wong L, Goodridge JP, Cooley S, Valamehr B, et al: Interim phase I clinical data of FT576 as monotherapy and in combination with daratumumab in subjects with relapsed/refractory multiple myeloma. Blood. 140:4586–4587. 2022. View Article : Google Scholar | |
Wang L, Wang Y, He X, Mo Z, Zhao M, Liang X, Hu K, Wang K, Yue Y, Mo G, et al: CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells. Cell Rep Med. 6:1018892025. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Mansour AG, Teng KY, Sun G, Shi Y and Caligiuri MA: iPSC-derived natural killer cells expressing EGFR-CAR against glioblastoma. Cancer Research. 80:33132020. View Article : Google Scholar | |
Wang Y, Wang L, Shao M, He X, Yue Y, Zhou Y, Yang L, Huang H and Hu Y: Off-the-Shelf, multiplexed-engineered iPSC-derived CD33 CAR-NK cells for treatment of acute myeloid leukemia. Blood. 140:126852022. View Article : Google Scholar | |
Shapiro RM and Romee R: iPSC-derived CD19 CAR NK cells for relapsed or refractory lymphoma. Lancet. 405:98–99. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ghobadi A, Bachanova V, Patel K, Park JH, Flinn I, Riedell PA, Bachier C, Diefenbach CS, Wong C, Bickers C, et al: Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: A phase 1, first-in-human trial. Lancet. 405:127–136. 2025. View Article : Google Scholar : PubMed/NCBI | |
Merino A, Maakaron J and Bachanova V: Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev. 60:1010732023. View Article : Google Scholar : PubMed/NCBI | |
Bachanova V, Cayci Z, Lewis D, Maakaron JE, Janakiram M, Bartz A, Payne S, Wong C, Cooley S, Valamehr B, et al: Initial clinical activity of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-Derived CD19 CAR NK cell therapy in Relapsed/Refractory B-Cell lymphoma. Blood. 136:82020. View Article : Google Scholar | |
Bachanova V, Deol A, Al-Juhaishi TMS, Lulla PD, Byrne MT, Wong C, Bickers C, Greene T, Wong L, Villa B, et al: Safety and efficacy of FT522, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-Derived CD19 CAR NK cell therapy with alloimmune defense receptor (ADR) in Relapsed/Refractory B-Cell lymphoma. Blood. 144:65432024. View Article : Google Scholar | |
Patel K, Namburi S, Latif T and Oluwole OO: Interim results from the ELiPSE-1 study: A phase 1, multicenter, open-label study of CNTY-101 in subjects with relapsed or refractory CD19-positive B-cell malignancies. J Clin Oncol. 42:70232024. View Article : Google Scholar | |
Borges L, Wallet MA, Bullaughey CL, Naso MF, Gurung B, Keating S, Carton JM, Wheeler JC, Campion L, Mendonca M, et al: Development of multi-engineered iPSC-derived CAR-NK cells for the treatment of B-cell malignancies. Blood. 138:17292021. View Article : Google Scholar | |
Sermer D, Elavalakanar P, Abramson JS, Palomba ML, Salles G and Arnason J: Targeting CD19 for diffuse large B cell lymphoma in the era of CARs: Other modes of transportation. Blood Rev. 57:1010022023. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran I, Rothman S, Clausi M, McFadden K, Salantes B, Jih G, Brigman T, Kelly S, Hall MS, Yee S, et al: Multiple doses of Cnty-101, an iPSC-derived allogeneic CD19 targeting CAR-NK product, are safe and result in tumor microenvironment changes associated with response: A case study. Blood. 142:16542023. View Article : Google Scholar | |
Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X and Li M: Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol. 11:11889052023. View Article : Google Scholar : PubMed/NCBI | |
Huyghe M, Desterke C, Imeri J, Belliard N, Chaker D, Oudrirhi N, Bezerra H, Turhan AG, Bennaceur-Griscelli A and Griscelli F: Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities. Front Immunol. 15:14637362024. View Article : Google Scholar : PubMed/NCBI | |
Nianias A and Themeli M: Induced pluripotent stem cell (iPSC)-derived lymphocytes for adoptive cell immunotherapy: recent advances and challenges. Curr Hematol Malig Rep. 14:261–268. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Cheng L, Liu L and Li X: NK cells are never alone: Crosstalk and communication in tumour microenvironments. Mol Cancer. 22:342023. View Article : Google Scholar : PubMed/NCBI | |
Linke JA, Munn LL and Jain RK: Compressive stresses in cancer: Characterization and implications for tumour progression and treatment. Nat Rev Cancer. 24:768–791. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xie D, Zhu S and Bai L: Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci. 59:1290–1296. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhou H, Liu G, Wu J, Yuan Y and Shang A: Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022:31193752022. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Lu C, Zhang B, Li H, Zhao X, Chen H, Liu Y and Cui X: Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J Transl Med. 22:2292024. View Article : Google Scholar : PubMed/NCBI | |
Lozada JR, Zhang B, Miller JS and Cichocki F: NK cells from human cytomegalovirus-seropositive individuals have a distinct metabolic profile that correlates with elevated mTOR signaling. J Immunol. 211:539–550. 2023. View Article : Google Scholar : PubMed/NCBI | |
Osuna-Espinoza KY and Rosas-Taraco AG: Metabolism of NK cells during viral infections. Front Immunol. 14:10641012023. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K and Xia L: Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: From bench to bedside. Exp Hematol Oncol. 13:722024. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H and Chen K: Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 12:11149–11165. 2023. View Article : Google Scholar : PubMed/NCBI | |
Arner EN and Rathmell JC: Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 41:421–433. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Jimenez-Cortegana C, Tay AHM, Wickstrom S, Galluzzi L and Lundqvist A: NK cells and solid tumors: Therapeutic potential and persisting obstacles. Mol Cancer. 21:2062022. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY and Fantin VR: Natural killer cell therapies. Nature. 626:727–736. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tarannum M, Romee R and Shapiro RM: Innovative strategies to improve the clinical application of NK cell-based immunotherapy. Front Immunol. 13:8591772022. View Article : Google Scholar : PubMed/NCBI | |
Carreira-Santos S, Lopez-Sejas N, Gonzalez-Sanchez M, Sánchez-Hernández E, Pera A, Hassouneh F, Durán E, Solana R, Casado JG and Tarazona R: Enhanced expression of natural cytotoxicity receptors on cytokine-induced memory-like natural killer cells correlates with effector function. Front Immunol. 14:12564042023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Guan D, Wang S, Chai LYA, Xu S and Lam KP: Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Front Immunol. 11:2022020. View Article : Google Scholar : PubMed/NCBI | |
Poznanski SM, Barra NG, Ashkar AA and Schertzer JD: Immunometabolism of T cells and NK cells: Metabolic control of effector and regulatory function. Inflamm Res. 67:813–828. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shankar K, Zingler-Hoslet I, Tabima DM, Zima S, Shi L, Gimse K, Forsberg MH, Katta V, Davis SZ, Maldonado D, et al: Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. Mol Ther. 33:1014–1030. 2024. View Article : Google Scholar | |
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, et al: Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 128:4654–4668. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI | |
Clerico M, Ragaini S and Cavallo F: Non-Hodgkin lymphoma treated with anti-CD20 antibody-based immunochemotherapy. Resistance to Anti-Cd20 Antibodies and Approaches for their Reversal Elsevier. 103–122. 2024. View Article : Google Scholar | |
Hoffman B and Liebermann DA: Apoptotic signaling by c-MYC. Oncogene. 27:6462–6472. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ding S: Therapeutic reprogramming toward regenerative medicine. Chem Rev. 125:1805–1822. 2025. View Article : Google Scholar : PubMed/NCBI | |
Agostini A, Orlacchio A, Carbone C and Guerriero I: Understanding tricky cellular and molecular interactions in pancreatic tumor microenvironment: New food for thought. Front Immunol. 13:8762912022. View Article : Google Scholar : PubMed/NCBI |