1
|
Marsell R and Einhorn TA: The biology of
fracture healing. Injury. 42:551–555. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Singh V: Medicinal plants and bone
healing. Natl J Maxillofac Surg. 8:4–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Quirk BJ, Sannagowdara K, Buchmann EV,
Jensen ES, Gregg DC and Whelan HT: Effect of near-infrared light on
in vitro cellular ATP production of osteoblasts and fibroblasts and
on fracture healing with intramedullary fixation. J Clin Orthop
Trauma. 7:234–241. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cheng TL, Schindeler A and Little DG:
BMP-2 delivered via sucrose acetate isobutyrate (SAIB) improves
bone repair in a rat open fracture model. J Orthop Res.
34:1168–1176. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Praemer A, Furner SE and Rice DP:
Musculoskeletal conditions in the United States. Am Acad Orthop
Surg. 22:1–199. 1976.
|
6
|
Antapur P, Mahomed N and Gandhi R:
Fractures in the elderly: When is hip replacement a necessity? Clin
Interv Aging. 6:1–7. 2011.PubMed/NCBI
|
7
|
Giannoudis PV, Einhorn TA and Marsh D:
Fracture healing: The diamond concept. Injury. 38 (Suppl 4):S3–S6.
2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang L, Jin L, Guo J, Bao K, Hu J, Zhang
Y, Hou Z and Zhang L: Chronic intermittent hypobaric hypoxia
enhances bone fracture healing. Front Endocrinol (Lausanne).
11:5826702021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saul D and Khosla S: Fracture healing in
the setting of endocrine diseases, aging and cellular senescence.
Endocr Rev. 43:984–1002. 2022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Park J, Cho J and Song EJ:
Ubiquitin-proteasome system (UPS) as a target for anticancer
treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li M, Chen D, Shiloh A, Luo J, Nikolaev
AY, Qin J and Gu W: Deubiquitination of p53 by HAUSP is an
important pathway for p53 stabilization. Nature. 416:648–653. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ouyang S, Zeng Z, Liu Z, Zhang Z, Sun J,
Wang X, Ma M, Ye X, Yu J and Kang W: OTUB2 regulates KRT80
stability via deubiquitination and promotes tumour proliferation in
gastric cancer. Cell Death Discov. 8:452022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu Q, Fu Y, Li L, Liu CH and Zhang L: The
functions and regulation of Otubains in protein homeostasis and
diseases. Ageing Res Rev. 67:1013032021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stanišić V, Malovannaya A, Qin J, Lonard
DM and O'Malley BW: OTU Domain-containing ubiquitin
aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen
receptor (ER) alpha and affects ERalpha transcriptional activity. J
Biol Chem. 284:16135–16145. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Almeida M, Laurent MR, Dubois V, Claessens
F, O'Brien CA, Bouillon R, Vanderschueren D and Manolagas SC:
Estrogens and androgens in skeletal physiology and pathophysiology.
Physiol Rev. 97:135–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim JM, Lin C, Stavre Z, Greenblatt MB and
Shim JH: Osteoblast-osteoclast communication and bone homeostasis.
Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jähn K, Saito H, Taipaleenmäki H, Gasser
A, Hort N, Feyerabend F, Schlüter H, Rueger JM, Lehmann W,
Willumeit-Römer R and Hesse E: Intramedullary Mg2Ag nails augment
callus formation during fracture healing in mice. Acta Biomater.
36:350–360. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li XY, Mao XF, Tang XQ, Han QQ, Jiang LX,
Qiu YM, Dai J and Wang YX: Regulation of Gli2 stability by
deubiquitinase OTUB2. Biochem Biophys Res Commun. 505:113–118.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang Y, Zhang J, Li Z and Jia G: Bone
marrow mesenchymal stem cell-derived exosomal miR-25 regulates the
ubiquitination and degradation of Runx2 by SMURF1 to promote
fracture healing in mice. Front Med (Lausanne). 7:5775782020.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen
J, Jing Y, Cao L, Chen X and Su J: Loss of Bcl-3 delays bone
fracture healing through activating NF-κB signaling in mesenchymal
stem cells. J Orthop Translat. 35:72–80. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arthur A and Gronthos S: Clinical
application of bone marrow mesenchymal stem/stromal cells to repair
skeletal tissue. Int J Mol Sci. 21:97592020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang X, Wang C, Gou W, Xu X, Wang Y, Wang
A, Xu W, Guo Q, Liu S, Lu Q, et al: The optimal time to inject bone
mesenchymal stem cells for fracture healing in a murine model. Stem
Cell Res Ther. 9:2722018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen L, Shi K, Ditzel N, Qiu W, Figeac F,
Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, et al:
KIAA1199 deficiency enhances skeletal stem cell differentiation to
osteoblasts and promotes bone regeneration. Nat Commun.
14:20162023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jing Z, Qiong Z, Yonggang W and Yanping L:
Rat bone marrow mesenchymal stem cells improve regeneration of thin
endometrium in rat. Fertil Steril. 101:587–594. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
National Research Counci: Committee for
the Update of the Guide for the Care and Use of Laboratory Animals,
. Guide for the Care and Use of Laboratory Animals. 8th. National
Academies Press; Washington, DC: 2011
|
26
|
Song JL, Zheng W, Chen W, Qian Y, Ouyang
YM and Fan CY: Lentivirus-mediated microRNA-124 gene-modified bone
marrow mesenchymal stem cell transplantation promotes the repair of
spinal cord injury in rats. Exp Mol Med. 49:e3322017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chrastil J, Sampson C, Jones KB and
Higgins TF: Postoperative opioid administration inhibits bone
healing in an animal model. Clin Orthop Relat Res. 471:4076–4081.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kelly LS, Munley JA, Pons EE, Kannan KB,
Whitley EM, Bible LE, Efron PA and Mohr AM: A rat model of
multicompartmental traumatic injury and hemorrhagic shock induces
bone marrow dysfunction and profound anemia. Animal Model Exp Med.
7:367–376. 2024. View Article : Google Scholar : PubMed/NCBI
|
29
|
Munley JA, Kelly LS, Park G, Gillies GS,
Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Nagpal R and
Mohr AM: Multicompartmental traumatic injury induces sex-specific
alterations in the gut microbiome. J Trauma Acute Care Surg.
95:30–38. 2023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liang W, Ding P, Li G, Lu E and Zhao Z:
Hydroxyapatite nanoparticles facilitate osteoblast differentiation
and bone formation within sagittal suture during expansion in rats.
Drug Des Devel Ther. 15:905–917. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tseng JC, Meganck J, Peterson JD and
Hopkinton M: Quantum GX microCT Imaging System: Features and
Performance. PerkinElmer; Hopkington, MA: 2015
|
33
|
Ishikawa M, Ito H, Kitaori T, Murata K,
Shibuya H, Furu M, Yoshitomi H, Fujii T, Yamamoto K and Matsuda S:
MCP/CCR2 signaling is essential for recruitment of mesenchymal
progenitor cells during the early phase of fracture healing. PLoS
One. 9:e1049542014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ferrin I, Beloqui I, Zabaleta L, Salcedo
JM, Trigueros C and Martin AG: Isolation, culture, and expansion of
mesenchymal stem cells. Methods Mol Biol. 1590:177–190. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun Y, Xu L, Huang S, Hou Y, Liu Y, Chan
KM, Pan XH and Li G: mir-21 overexpressing mesenchymal stem cells
accelerate fracture healing in a rat closed femur fracture model.
Biomed Res Int. 2015:4123272015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X
and Li G: MiR-503 promotes bone formation in distraction
osteogenesis through suppressing Smurf1 expression. Sci Rep.
7:4092017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Samuel S, Ahmad RE, Ramasamy TS,
Karunanithi P, Naveen SV, Murali MR, Abbas AA and Kamarul T:
Platelet-rich concentrate in serum free medium enhances osteogenic
differentiation of bone marrow-derived human mesenchymal stromal
cells. PeerJ. 4:e23472016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Faul F, Erdfelder E, Lang AG and Buchner
A: G*Power 3: A flexible statistical power analysis program for the
social, behavioral, and biomedical sciences. Behav Res Methods.
39:175–191. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
De Winter JCF: Using the Student's t-test
with extremely small sample sizes. Pract Assess Res Eval.
18:102013.
|
40
|
Sullivan GM and Feinn R: Using effect
size-or why the P-value is not enough. J Grad Med Educ. 4:279–282.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li J, Ayoub A, Xiu Y, Yin X, Sanders JO,
Mesfin A, Xing L, Yao Z and Boyce BF: TGFβ-induced degradation of
TRAF3 in mesenchymal progenitor cells causes age-related
osteoporosis. Nat Commun. 10:27952019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hashimoto K, Shinyashiki Y, Ohtani K,
Kakinoki R and Akagi M: How proximal femur fracture patients aged
65 and older fare in survival and cause of death 5+ years after
surgery: A long-term follow-up. Medicine (Baltimore).
102:e338632023. View Article : Google Scholar : PubMed/NCBI
|
43
|
Boyce BF and Xing L: The RANKL/RANK/OPG
pathway. Curr Osteoporos Rep. 5:98–104. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ma C, Gao J, Liang J, Dai W, Wang Z, Xia
M, Chen T, Huang S, Na J, Xu L, et al: HDAC6 inactivates Runx2
promoter to block osteogenesis of bone marrow stromal cells in
age-related bone loss of mice. Stem Cell Res Ther. 12:4842021.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Fujita T, Azuma Y, Fukuyama R, Hattori Y,
Yoshida C, Koida M, Ogita K and Komori T: Runx2 induces osteoblast
and chondrocyte differentiation and enhances their migration by
coupling with PI3K-Akt signaling. J Cell Biol. 166:85–95. 2004.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Ducy P, Zhang R, Geoffroy V, Ridall AL and
Karsenty G: Osf2/Cbfa1: A transcriptional activator of osteoblast
differentiation. Cell. 89:747–754. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Haarhaus M, Cianciolo G, Barbuto S, La
Manna G, Gasperoni L, Tripepi G, Plebani M, Fusaro M and Magnusson
P: Alkaline phosphatase: An old friend as treatment target for
cardiovascular and mineral bone disorders in chronic kidney
disease. Nutrients. 14:21242022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chang JH, Hu H, Jin J, Puebla-Osorio N,
Xiao Y, Gilbert BE, Brink R, Ullrich SE and Sun SC: TRAF3 regulates
the effector function of regulatory T cells and humoral immune
responses. J Exp Med. 211:137–151. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yi Z, Lin WW, Stunz LL and Bishop GA:
Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte
functions. Cytokine Growth Factor Rev. 25:147–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang D, Cai G, Wang H and He J: TRAF3, a
target of MicroRNA-363-3p, suppresses senescence and regulates the
balance between osteoblastic and adipocytic differentiation of rat
bone marrow-derived mesenchymal stem cells. Stem Cells Dev.
29:737–745. 2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yao Z, Ayoub A, Srinivasan V, Wu J, Tang
C, Duan R, Milosavljevic A, Xing L, Ebetino FH, Frontier AJ and
Boyce BF: Hydroxychloroquine and a low antiresorptive activity
bisphosphonate conjugate prevent and reverse ovariectomy-induced
bone loss in mice through dual antiresorptive and anabolic effects.
Bone Res. 12:522024. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yao Z, Lei W, Duan R, Li Y, Luo L and
Boyce BF: RANKL cytokine enhances TNF-induced osteoclastogenesis
independently of TNF receptor associated factor (TRAF) 6 by
degrading TRAF3 in osteoclast precursors. J Biol Chem.
292:10169–10179. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Boyce BF, Li J, Xing L and Yao Z: Bone
remodeling and the role of TRAF3 in osteoclastic bone resorption.
Front Immunol. 9:22632018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao
Z, Xing L and Boyce BF: Chloroquine reduces osteoclastogenesis in
murine osteoporosis by preventing TRAF3 degradation. J Clin Invest.
124:297–310. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Mevissen TET and Komander D: Mechanisms of
deubiquitinase specificity and regulation. Annu Rev Biochem.
86:159–192. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu
Y, Gao Y, Ran Y, Tien P and Shu HB: Regulation of virus-triggered
signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3
and TRAF6. J Biol Chem. 285:4291–4297. 2010. View Article : Google Scholar : PubMed/NCBI
|