Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing

  • Authors:
    • Li Zhang
    • Jialiang Guo
    • Shan Feng
    • Yue Zheng
    • Haixu Wang
    • Huijie Ma
    • Wei Chen
    • Yingze Zhang
    • Zhiyong Hou
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, P.R. China, Department of General Medicine, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, P.R. China, Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Article Number: 223
    |
    Published online on: June 5, 2025
       https://doi.org/10.3892/mmr.2025.13588
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Increased incidence of traumatic fracture markedly effects the quality of life of patients. Using a rat model of femur fracture, the present study aimed to investigate the effects of otubain 2 (OTUB2), a deubiquitinating enzyme, on bone fracture healing. Bone marrow mesenchymal stem cells (BMSCs) were harvested from the marrow cavity of rat femurs and tibiae and subsequently subjected to osteogenic differentiation in vitro. Results of the present study revealed that lentivirus‑mediated OTUB2 overexpression accelerated rat bone fracture healing, potentiated fracture callus formation and cartilaginous ossification and regulated the expression of proteins associated with bone remodeling. In addition, OTUB2 overexpression facilitated the osteogenic differentiation and mineralization of BMSCs and promoted the expression of TNF‑receptor associated factor 3 (TRAF3) both in vivo and in vitro. Co‑immunoprecipitation analysis was used to verify the physical interaction between OTUB2 and TRAF3 and further results demonstrated that OTUB2 reduced the ubiquitination of TRAF3. The results of the present study also demonstrated that TRAF3 knockdown repressed the OTUB2‑induced osteogenic differentiation and mineralization of BMSCs. Collectively, these results demonstrated that OTUB2 may stabilize TRAF3 to accelerate bone fracture healing.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Marsell R and Einhorn TA: The biology of fracture healing. Injury. 42:551–555. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Singh V: Medicinal plants and bone healing. Natl J Maxillofac Surg. 8:4–11. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Quirk BJ, Sannagowdara K, Buchmann EV, Jensen ES, Gregg DC and Whelan HT: Effect of near-infrared light on in vitro cellular ATP production of osteoblasts and fibroblasts and on fracture healing with intramedullary fixation. J Clin Orthop Trauma. 7:234–241. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Cheng TL, Schindeler A and Little DG: BMP-2 delivered via sucrose acetate isobutyrate (SAIB) improves bone repair in a rat open fracture model. J Orthop Res. 34:1168–1176. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Praemer A, Furner SE and Rice DP: Musculoskeletal conditions in the United States. Am Acad Orthop Surg. 22:1–199. 1976.

6 

Antapur P, Mahomed N and Gandhi R: Fractures in the elderly: When is hip replacement a necessity? Clin Interv Aging. 6:1–7. 2011.PubMed/NCBI

7 

Giannoudis PV, Einhorn TA and Marsh D: Fracture healing: The diamond concept. Injury. 38 (Suppl 4):S3–S6. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Zhang L, Jin L, Guo J, Bao K, Hu J, Zhang Y, Hou Z and Zhang L: Chronic intermittent hypobaric hypoxia enhances bone fracture healing. Front Endocrinol (Lausanne). 11:5826702021. View Article : Google Scholar : PubMed/NCBI

9 

Saul D and Khosla S: Fracture healing in the setting of endocrine diseases, aging and cellular senescence. Endocr Rev. 43:984–1002. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Park J, Cho J and Song EJ: Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J and Gu W: Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 416:648–653. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Ouyang S, Zeng Z, Liu Z, Zhang Z, Sun J, Wang X, Ma M, Ye X, Yu J and Kang W: OTUB2 regulates KRT80 stability via deubiquitination and promotes tumour proliferation in gastric cancer. Cell Death Discov. 8:452022. View Article : Google Scholar : PubMed/NCBI

13 

Zhu Q, Fu Y, Li L, Liu CH and Zhang L: The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev. 67:1013032021. View Article : Google Scholar : PubMed/NCBI

14 

Stanišić V, Malovannaya A, Qin J, Lonard DM and O'Malley BW: OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ERalpha transcriptional activity. J Biol Chem. 284:16135–16145. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D and Manolagas SC: Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 97:135–187. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI

17 

Jähn K, Saito H, Taipaleenmäki H, Gasser A, Hort N, Feyerabend F, Schlüter H, Rueger JM, Lehmann W, Willumeit-Römer R and Hesse E: Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 36:350–360. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Li XY, Mao XF, Tang XQ, Han QQ, Jiang LX, Qiu YM, Dai J and Wang YX: Regulation of Gli2 stability by deubiquitinase OTUB2. Biochem Biophys Res Commun. 505:113–118. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Jiang Y, Zhang J, Li Z and Jia G: Bone marrow mesenchymal stem cell-derived exosomal miR-25 regulates the ubiquitination and degradation of Runx2 by SMURF1 to promote fracture healing in mice. Front Med (Lausanne). 7:5775782020. View Article : Google Scholar : PubMed/NCBI

20 

Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen J, Jing Y, Cao L, Chen X and Su J: Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells. J Orthop Translat. 35:72–80. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Arthur A and Gronthos S: Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci. 21:97592020. View Article : Google Scholar : PubMed/NCBI

22 

Wang X, Wang C, Gou W, Xu X, Wang Y, Wang A, Xu W, Guo Q, Liu S, Lu Q, et al: The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model. Stem Cell Res Ther. 9:2722018. View Article : Google Scholar : PubMed/NCBI

23 

Chen L, Shi K, Ditzel N, Qiu W, Figeac F, Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, et al: KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun. 14:20162023. View Article : Google Scholar : PubMed/NCBI

24 

Jing Z, Qiong Z, Yonggang W and Yanping L: Rat bone marrow mesenchymal stem cells improve regeneration of thin endometrium in rat. Fertil Steril. 101:587–594. 2014. View Article : Google Scholar : PubMed/NCBI

25 

National Research Counci: Committee for the Update of the Guide for the Care and Use of Laboratory Animals, . Guide for the Care and Use of Laboratory Animals. 8th. National Academies Press; Washington, DC: 2011

26 

Song JL, Zheng W, Chen W, Qian Y, Ouyang YM and Fan CY: Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med. 49:e3322017. View Article : Google Scholar : PubMed/NCBI

27 

Chrastil J, Sampson C, Jones KB and Higgins TF: Postoperative opioid administration inhibits bone healing in an animal model. Clin Orthop Relat Res. 471:4076–4081. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA and Mohr AM: A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med. 7:367–376. 2024. View Article : Google Scholar : PubMed/NCBI

29 

Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Nagpal R and Mohr AM: Multicompartmental traumatic injury induces sex-specific alterations in the gut microbiome. J Trauma Acute Care Surg. 95:30–38. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Liang W, Ding P, Li G, Lu E and Zhao Z: Hydroxyapatite nanoparticles facilitate osteoblast differentiation and bone formation within sagittal suture during expansion in rats. Drug Des Devel Ther. 15:905–917. 2021. View Article : Google Scholar : PubMed/NCBI

32 

Tseng JC, Meganck J, Peterson JD and Hopkinton M: Quantum GX microCT Imaging System: Features and Performance. PerkinElmer; Hopkington, MA: 2015

33 

Ishikawa M, Ito H, Kitaori T, Murata K, Shibuya H, Furu M, Yoshitomi H, Fujii T, Yamamoto K and Matsuda S: MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing. PLoS One. 9:e1049542014. View Article : Google Scholar : PubMed/NCBI

34 

Ferrin I, Beloqui I, Zabaleta L, Salcedo JM, Trigueros C and Martin AG: Isolation, culture, and expansion of mesenchymal stem cells. Methods Mol Biol. 1590:177–190. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Sun Y, Xu L, Huang S, Hou Y, Liu Y, Chan KM, Pan XH and Li G: mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model. Biomed Res Int. 2015:4123272015. View Article : Google Scholar : PubMed/NCBI

36 

Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X and Li G: MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep. 7:4092017. View Article : Google Scholar : PubMed/NCBI

37 

Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Murali MR, Abbas AA and Kamarul T: Platelet-rich concentrate in serum free medium enhances osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells. PeerJ. 4:e23472016. View Article : Google Scholar : PubMed/NCBI

38 

Faul F, Erdfelder E, Lang AG and Buchner A: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 39:175–191. 2007. View Article : Google Scholar : PubMed/NCBI

39 

De Winter JCF: Using the Student's t-test with extremely small sample sizes. Pract Assess Res Eval. 18:102013.

40 

Sullivan GM and Feinn R: Using effect size-or why the P-value is not enough. J Grad Med Educ. 4:279–282. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Li J, Ayoub A, Xiu Y, Yin X, Sanders JO, Mesfin A, Xing L, Yao Z and Boyce BF: TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun. 10:27952019. View Article : Google Scholar : PubMed/NCBI

42 

Hashimoto K, Shinyashiki Y, Ohtani K, Kakinoki R and Akagi M: How proximal femur fracture patients aged 65 and older fare in survival and cause of death 5+ years after surgery: A long-term follow-up. Medicine (Baltimore). 102:e338632023. View Article : Google Scholar : PubMed/NCBI

43 

Boyce BF and Xing L: The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 5:98–104. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Ma C, Gao J, Liang J, Dai W, Wang Z, Xia M, Chen T, Huang S, Na J, Xu L, et al: HDAC6 inactivates Runx2 promoter to block osteogenesis of bone marrow stromal cells in age-related bone loss of mice. Stem Cell Res Ther. 12:4842021. View Article : Google Scholar : PubMed/NCBI

45 

Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K and Komori T: Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol. 166:85–95. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Ducy P, Zhang R, Geoffroy V, Ridall AL and Karsenty G: Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 89:747–754. 1997. View Article : Google Scholar : PubMed/NCBI

47 

Haarhaus M, Cianciolo G, Barbuto S, La Manna G, Gasperoni L, Tripepi G, Plebani M, Fusaro M and Magnusson P: Alkaline phosphatase: An old friend as treatment target for cardiovascular and mineral bone disorders in chronic kidney disease. Nutrients. 14:21242022. View Article : Google Scholar : PubMed/NCBI

48 

Chang JH, Hu H, Jin J, Puebla-Osorio N, Xiao Y, Gilbert BE, Brink R, Ullrich SE and Sun SC: TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med. 211:137–151. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Yi Z, Lin WW, Stunz LL and Bishop GA: Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev. 25:147–156. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Wang D, Cai G, Wang H and He J: TRAF3, a target of MicroRNA-363-3p, suppresses senescence and regulates the balance between osteoblastic and adipocytic differentiation of rat bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 29:737–745. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Yao Z, Ayoub A, Srinivasan V, Wu J, Tang C, Duan R, Milosavljevic A, Xing L, Ebetino FH, Frontier AJ and Boyce BF: Hydroxychloroquine and a low antiresorptive activity bisphosphonate conjugate prevent and reverse ovariectomy-induced bone loss in mice through dual antiresorptive and anabolic effects. Bone Res. 12:522024. View Article : Google Scholar : PubMed/NCBI

52 

Yao Z, Lei W, Duan R, Li Y, Luo L and Boyce BF: RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem. 292:10169–10179. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Boyce BF, Li J, Xing L and Yao Z: Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Front Immunol. 9:22632018. View Article : Google Scholar : PubMed/NCBI

54 

Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao Z, Xing L and Boyce BF: Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest. 124:297–310. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Mevissen TET and Komander D: Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 86:159–192. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, Gao Y, Ran Y, Tien P and Shu HB: Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem. 285:4291–4297. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang L, Guo J, Feng S, Zheng Y, Wang H, Ma H, Chen W, Zhang Y and Hou Z: Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing. Mol Med Rep 32: 223, 2025.
APA
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H. ... Hou, Z. (2025). Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing. Molecular Medicine Reports, 32, 223. https://doi.org/10.3892/mmr.2025.13588
MLA
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H., Chen, W., Zhang, Y., Hou, Z."Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing". Molecular Medicine Reports 32.2 (2025): 223.
Chicago
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H., Chen, W., Zhang, Y., Hou, Z."Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing". Molecular Medicine Reports 32, no. 2 (2025): 223. https://doi.org/10.3892/mmr.2025.13588
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang L, Guo J, Feng S, Zheng Y, Wang H, Ma H, Chen W, Zhang Y and Hou Z: Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing. Mol Med Rep 32: 223, 2025.
APA
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H. ... Hou, Z. (2025). Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing. Molecular Medicine Reports, 32, 223. https://doi.org/10.3892/mmr.2025.13588
MLA
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H., Chen, W., Zhang, Y., Hou, Z."Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing". Molecular Medicine Reports 32.2 (2025): 223.
Chicago
Zhang, L., Guo, J., Feng, S., Zheng, Y., Wang, H., Ma, H., Chen, W., Zhang, Y., Hou, Z."Otubain 2 stabilizes TNF‑receptor associated factor 3 to accelerate bone fracture healing". Molecular Medicine Reports 32, no. 2 (2025): 223. https://doi.org/10.3892/mmr.2025.13588
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team