|
1
|
Park J, Jeong GH, Song M, Yon DK, Lee SW,
Koyanagi A, Jacob L, Kostev K, Dragioti E, Radua J, et al: The
global, regional, and national burden of inflammatory bowel
diseases, 1990–2019: A systematic analysis for the global burden of
disease study 2019. Dig Liver Dis. 55:1352–1359. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Franzosa EA, Sirota-Madi A, Avila-Pacheco
J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H,
McIver LJ, et al: Gut microbiome structure and metabolic activity
in inflammatory bowel disease. Nat Microbiol. 4:293–305. 2019.
View Article : Google Scholar
|
|
3
|
Jeong DY, Kim S, Son MJ, Son CY, Kim JY,
Kronbichler A, Lee KH and Shin JI: Induction and maintenance
treatment of inflammatory bowel disease: A comprehensive review.
Autoimmun Rev. 18:439–454. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Na SY and Moon W: Perspectives on current
and novel treatments for inflammatory bowel disease. Gut Liver.
13:604–616. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Duan Y, Kelley N and He Y: Role of the
NLRP3 inflammasome in neurodegenerative diseases and therapeutic
implications. Neural Regen Res. 15:1249–1250. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Broz P and Dixit VM: Inflammasomes:
Mechanism of assembly, regulation and signalling. Nat Rev Immunol.
16:407–420. 2016. View Article : Google Scholar
|
|
7
|
Paik S, Kim JK, Silwal P, Sasakawa C and
Jo EK: An update on the regulatory mechanisms of NLRP3 inflammasome
activation. Cell Mol Immunol. 18:1141–1160. 2021. View Article : Google Scholar
|
|
8
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar
K and Kishore A: New Insights on NLRP3 Inflammasome: Mechanisms of
activation, inhibition, and epigenetic regulation. J Neuroimmune
Pharmacol. 19:72024. View Article : Google Scholar
|
|
9
|
Abo-Ouf H, Hooper AW, White EJ, Janse van
Rensburg HJ, Trigatti BL and Igdoura SA: Deletion of tumor necrosis
factor-α ameliorates neurodegeneration in Sandhoff disease mice.
Hum Mol Genet. 22:3960–3975. 2013. View Article : Google Scholar
|
|
10
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu
S, Ruan J, Zhou Y and Jin T: NLRP inflammasomes in health and
disease. Mol Biomed. 5:142024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hong H, Kim BS and Im HI:
Pathophysiological role of neuroinflammation in neurodegenerative
diseases and psychiatric disorders. Int Neurourol J. 20 (Suppl
1):S2–S7. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Herman FJ and Pasinetti GM: Principles of
inflammasome priming and inhibition: Implications for psychiatric
disorders. Brain Behav Immun. 73:66–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xiang H, Zhu F, Xu Z and Xiong J: Role of
inflammasomes in kidney diseases via both canonical and
Non-canonical pathways. Front Cell Dev Biol. 8:1062020. View Article : Google Scholar
|
|
14
|
Bauernfeind FG, Horvath G, Stutz A,
Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks
BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating
pattern recognition and cytokine receptors license NLRP3
inflammasome activation by regulating NLRP3 expression. J Immunol.
183:787–791. 2009. View Article : Google Scholar
|
|
15
|
Franchi L, Eigenbrod T and Núñez G:
Cutting edge: TNF-alpha mediates sensitization to ATP and silica
via the NLRP3 inflammasome in the absence of microbial stimulation.
J Immunol. 183:792–796. 2009. View Article : Google Scholar
|
|
16
|
Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G,
An L, Zhang Y and Meng G: Cutting Edge: TRAF6 mediates TLR/IL-1R
signaling-induced nontranscriptional priming of the NLRP3
inflammasome. J Immunol. 199:1561–1566. 2017. View Article : Google Scholar
|
|
17
|
Mangan MSJ, Olhava EJ, Roush WR, Seidel
HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in
inflammatory diseases. Nat Rev Drug Discov. 17:588–606. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Franchi L, Eigenbrod T, Muñoz-Planillo R
and Nuñez G: The inflammasome: A caspase-1-activation platform that
regulates immune responses and disease pathogenesis. Nat Immunol.
10:241–247. 2009. View Article : Google Scholar
|
|
19
|
Swanson KV, Deng M and Ting JP: The NLRP3
inflammasome: Molecular activation and regulation to therapeutics.
Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar
|
|
20
|
Shimada K, Crother TR, Karlin J, Dagvadorj
J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et
al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome
during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu J, Jia Z and Gong W: Circulating
mitochondrial DNA stimulates innate immune signaling pathways to
mediate acute kidney injury. Front Immunol. 12:6806482021.
View Article : Google Scholar
|
|
22
|
Pellegrini C, Fornai M, Antonioli L,
Blandizzi C and Calderone V: Phytochemicals as novel therapeutic
strategies for NLRP3 inflammasome-related neurological, metabolic,
and inflammatory diseases. Int J Mol Sci. 20:28762019. View Article : Google Scholar
|
|
23
|
Muñoz-Planillo R, Kuffa P, Martínez-Colón
G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common
trigger of NLRP3 inflammasome activation by bacterial toxins and
particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar
|
|
24
|
Rossol M, Pierer M, Raulien N, Quandt D,
Meusch U, Rothe K, Schubert K, Schöneberg T, Schaefer M, Krügel U,
et al: Extracellular Ca2+ is a danger signal activating the NLRP3
inflammasome through G protein-coupled calcium sensing receptors.
Nat Commun. 3:13292012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee GS, Subramanian N, Kim AI,
Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner
DL and Chae JJ: The calcium-sensing receptor regulates the NLRP3
inflammasome through Ca2+ and cAMP. Nature. 492:123–127. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Werner LE and Wagner U: Calcium-sensing
receptor-mediated NLRP3 inflammasome activation in rheumatoid
arthritis and autoinflammation. Front Physiol. 13:10785692023.
View Article : Google Scholar
|
|
27
|
Tang T, Lang X, Xu C, Wang X, Gong T, Yang
Y, Cui J, Bai L, Wang J, Jiang W and Zhou R: CLICs-dependent
chloride efflux is an essential and proximal upstream event for
NLRP3 inflammasome activation. Nat Commun. 8:2022017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hornung V, Bauernfeind F, Halle A, Samstad
EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and
aluminum salts activate the NALP3 inflammasome through phagosomal
destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar
|
|
29
|
Cassel SL, Eisenbarth SC, Iyer SS, Sadler
JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA and
Sutterwala FS: The Nalp3 inflammasome is essential for the
development of silicosis. Proc Natl Acad Sci USA. 105:9035–9040.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Halle A, Hornung V, Petzold GC, Stewart
CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and
Golenbock DT: The NALP3 inflammasome is involved in the innate
immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008.
View Article : Google Scholar
|
|
31
|
Kelley N, Jeltema D, Duan Y and He YY: The
NLRP3 inflammasome: An overview of mechanisms of activation and
regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar
|
|
32
|
Netea MG, Nold-Petry CA, Nold MF, Joosten
LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G,
Heinhuis B, Devesa I, et al: Differential requirement for the
activation of the inflammasome for processing and release of
IL-1beta in monocytes and macrophages. Blood. 113:2324–2335. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang ZK, Yang YS, Chen Y, Yuan J, Sun G
and Peng LH: Intestinal microbiota pathogenesis and fecal
microbiota transplantation for inflammatory bowel disease. World J
Gastroenterol. 20:14805–14820. 2014. View Article : Google Scholar
|
|
34
|
Yang F, He Z, Pan X, Xie S, Liang X, Geng
L, Xu W and Gong S: Enhancing intestinal epithelial microtubule
stability could alleviate IBD symptoms. Cell Commun Signal.
23:2632025. View Article : Google Scholar
|
|
35
|
Hugot JP, Laurent-Puig P, Gower-Rousseau
C, Olson JM, Lee JC, Beaugerie L, Naom I, Dupas JL, Van Gossum A,
Orholm M, et al: Mapping of a susceptibility locus for Crohn's
disease on chromosome 16. Nature. 379:821–823. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ogura Y, Bonen DK, Inohara N, Nicolae DL,
Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, et
al: A frameshift mutation in NOD2 associated with susceptibility to
Crohn's disease. Nature. 411:603–606. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nayar S, Morrison JK, Giri M, Gettler K,
Chuang LS, Walker LA, Ko HM, Kenigsberg E, Kugathasan S, Merad M,
et al: A myeloid-stromal niche and gp130 rescue in NOD2-driven
Crohn's disease. Nature. 593:275–281. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu JZ, van Sommeren S, Huang H, Ng SC,
Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al:
Association analyses identify 38 susceptibility loci for
inflammatory bowel disease and highlight shared genetic risk across
populations. Nat Genet. 47:979–986. 2015. View Article : Google Scholar
|
|
39
|
Chen GB, Lee SH, Brion MJ, Montgomery GW,
Wray NR, Radford-Smith GL and Visscher PM; International IBD
Genetics Consortium, : Estimation and partitioning of
(co)heritability of inflammatory bowel disease from GWAS and
immunochip data. Hum Mol Genet. 23:4710–4720. 2014. View Article : Google Scholar
|
|
40
|
Cao G, Luo Q, Wu Y and Chen G:
Inflammatory bowel disease and rheumatoid arthritis share a common
genetic structure. Front Immunol. 15:13598572024. View Article : Google Scholar
|
|
41
|
Wang X, Li T and Chen Q: Causal
relationship between ulcerative colitis and male infertility: A
two-sample Mendelian randomization study. PLoS One.
19:e03038272024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jia K and Shen J: Transcriptome-wide
association studies associated with Crohn's disease: Challenges and
perspectives. Cell Biosci. 14:292024. View Article : Google Scholar
|
|
43
|
Juillerat P, Pittet V, Bulliard JL,
Guessous I, Antonino AT, Mottet C, Felley C, Vader JP and Michetti
P: Prevalence of inflammatory bowel disease in the canton of vaud
(Switzerland): A population-based cohort study. J Crohns Colitis.
2:131–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ng SC, Bernstein CN, Vatn MH, Lakatos PL,
Loftus EV Jr, Tysk C, O'Morain C, Moum B and Colombel JF;
Epidemiology Natural History Task Force of the International
Organization of Inflammatory Bowel Disease (IOIBD), : Geographical
variability and environmental risk factors in inflammatory bowel
disease. Gut. 62:630–649. 2013. View Article : Google Scholar
|
|
45
|
Braegger CP, Ballabeni P, Rogler D,
Vavricka SR, Friedt M and Pittet V; Swiss IBD Cohort Study Group, :
Epidemiology of inflammatory bowel disease: Is there a shift toward
onset at a younger age? J Pediatr Gastroenterol Nutr. 53:141–144.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Molodecky NA, Soon IS, Rabi DM, Ghali WA,
Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema
HW and Kaplan GG: Increasing incidence and prevalence of the
inflammatory bowel diseases with time, based on systematic review.
Gastroenterology. 142:e46–e30. 2012. View Article : Google Scholar
|
|
47
|
Wild CP: Complementing the genome with an
‘exposome’: The outstanding challenge of environmental exposure
measurement in molecular epidemiology. Cancer Epidemiol Biomarkers
Prev. 14:1847–1850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rogler G and Vavricka SL: Exposome in IBD:
Recent insights in environmental factors that influence the onset
and course of IBD. Inflamm Bowel Dis. 21:400–408. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ananthakrishnan AN, McGinley EL, Binion DG
and Saeian K: Ambient air pollution correlates with
hospitalizations for inflammatory bowel disease: An ecologic
analysis. Inflamm Bowel Dis. 17:1138–1145. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Andersen V, Olsen A, Carbonnel F,
Tjønneland A and Vogel U: Diet and risk of inflammatory bowel
disease. Dig Liver Dis. 44:185–194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sandu O, Song K, Cai W, Zheng F, Uribarri
J and Vlassara H: Insulin resistance and type 2 diabetes in
high-fat-fed mice are linked to high glycotoxin intake. Diabetes.
54:2314–2319. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Martini GA and Brandes JW: Increased
consumption of refined carbohydrates in patients with Crohn's
disease. Klin Wochenschr. 54:367–371. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
D'Souza S, Levy E, Mack D, Israel D,
Lambrette P, Ghadirian P, Deslandres C, Morgan K, Seidman EG and
Amre DK: Dietary patterns and risk for Crohn's disease in children.
Inflamm Bowel Dis. 14:367–373. 2008. View Article : Google Scholar
|
|
54
|
Danese S, Sans M and Fiocchi C:
Inflammatory bowel disease: The role of environmental factors.
Autoimmun Rev. 3:394–400. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Alperen CC, Soydas B, Serin E, Erbayrak M,
Savas NA, Unler GK, Meral CE, Toprak U, Boyacioglu AS and Dagli U:
Role of environmental risk factors in the etiology of inflammatory
bowel diseases: A Multicenter Study. Dig Dis Sci. 69:2927–2936.
2024. View Article : Google Scholar
|
|
56
|
Kronman MP, Zaoutis TE, Haynes K, Feng R
and Coffin SE: Antibiotic exposure and IBD development among
children: A population-based cohort study. Pediatrics.
130:e794–e803. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Narula N, Wong ECL, Pray C, Marshall JK,
Rangarajan S, Islam S, Bahonar A, Alhabib KF, Kontsevaya A, Ariffin
F, et al: Associations of antibiotics, hormonal therapies, oral
contraceptives, and Long-term NSAIDS with inflammatory bowel
disease: Results from the prospective urban rural epidemiology
(PURE) Study. Clin Gastroenterol Hepatol. 21:2649–2659.e16. 2023.
View Article : Google Scholar
|
|
58
|
Cornish JA, Tan E, Simillis C, Clark SK,
Teare J and Tekkis PP: The risk of oral contraceptives in the
etiology of inflammatory bowel disease: A meta-analysis. Am J
Gastroenterol. 103:2394–2400. 2008. View Article : Google Scholar
|
|
59
|
Cosnes J, Carbonnel F, Beaugerie L, Le
Quintrec Y and Gendre JP: Effects of cigarette smoking on the
long-term course of Crohn's disease. Gastroenterology. 110:424–431.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Thomas GA, Rhodes J and Green JT:
Inflammatory bowel disease and smoking-a review. Am J
Gastroenterol. 93:144–149. 1998. View Article : Google Scholar
|
|
61
|
Birrenbach T and Böcker U: Inflammatory
bowel disease and smoking: A review of epidemiology,
pathophysiology, and therapeutic implications. Inflamm Bowel Dis.
10:848–859. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mentella MC, Scaldaferri F, Pizzoferrato
M, Gasbarrini A and Miggiano GAD: Nutrition, IBD and Gut
Microbiota: A review. Nutrients. 12:9442020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
de Mattos BR, Garcia MP, Nogueira JB,
Paiatto LN, Albuquerque CG, Souza CL, Fernandes LG, Tamashiro WM
and Simioni PU: Inflammatory bowel disease: An overview of immune
mechanisms and biological treatments. Mediators Inflamm.
2015:4930122015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen Y, Cui W, Li X and Yang H:
Interaction between commensal bacteria, immune response and the
intestinal barrier in inflammatory bowel disease. Front Immunol.
12:7619812021. View Article : Google Scholar
|
|
65
|
Flint HJ, Scott KP, Louis P and Duncan SH:
The role of the gut microbiota in nutrition and health. Nat Rev
Gastroenterol Hepatol. 9:577–589. 2012. View Article : Google Scholar
|
|
66
|
Shreiner AB, Kao JY and Young VB: The gut
microbiome in health and in disease. Curr Opin Gastroenterol.
31:69–75. 2015. View Article : Google Scholar
|
|
67
|
Li T and Chiang JYL: Bile acid signaling
in metabolic and inflammatory diseases and drug development.
Pharmacol Rev. 76:1221–1253. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li S, Chen J, Zheng Y and Zhang Y:
Weissella paramesenteroides NRIC1542 inhibits dextran sodium
sulfate-induced colitis in mice through regulating gut microbiota
and SIRT1/NF-κB signaling pathway. FASEB J. 38:e237912024.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Taurog JD, Richardson JA, Croft JT,
Simmons WA, Zhou M, Fernández-Sueiro JL, Balish E and Hammer RE:
The germfree state prevents development of gut and joint
inflammatory disease in HLA-B27 transgenic rats. J Exp Med.
180:2359–2364. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Veltkamp C, Tonkonogy SL, De Jong YP,
Albright C, Grenther WB, Balish E, Terhorst C and Sartor RB:
Continuous stimulation by normal luminal bacteria is essential for
the development and perpetuation of colitis in Tg(epsilon26) mice.
Gastroenterology. 120:900–913. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Singh V, Yeoh BS, Walker RE, Xiao X, Saha
P, Golonka RM, Cai J, Bretin ACA, Cheng X, Liu Q, et al: Microbiota
fermentation-NLRP3 axis shapes the impact of dietary fibers on
intestinal inflammation. Gut. 68:1801–1812. 2019. View Article : Google Scholar
|
|
72
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ardizzone A, Capra AP, Repici A, Lanza M,
Bova V, Palermo N, Paterniti I and Esposito E: Rebalancing
NOX2/Nrf2 to limit inflammation and oxidative stress across
gut-brain axis in migraine. Free Radic Biol Med. 213:65–78. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou L, Liu T, Huang B, Luo M, Chen Z,
Zhao Z, Wang J, Leung D, Yang X, Chan KW, et al: Excessive
deubiquitination of NLRP3-R779C variant contributes to
very-early-onset inflammatory bowel disease development. J Allergy
Clin Immunol. 147:267–279. 2021. View Article : Google Scholar
|
|
75
|
Guan Y, Cheng H, Zhang N, Cai Y, Zhang Q,
Jiang X, Wang A, Zeng H and Jia B: The role of the esophageal and
intestinal microbiome in gastroesophageal reflux disease: Past,
present, and future. Front Immunol. 16:15584142025. View Article : Google Scholar
|
|
76
|
Yuan S, Liu BH, Cheng WW, Meng H, Hou XT,
Xue JC, Zhang HM and Zhang QG: Polyphyllin VI modulates macrophage
polarization through autophagy-NLRP3 inflammasome to alleviate
inflammatory bowel disease. Phytomedicine. 143:1566402025.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Keane S, Herring M, Rolny P, Wettergren Y
and Ejeskär K: Inflammation suppresses DLG2 expression decreasing
inflammasome formation. J Cancer Res Clin Oncol. 148:2295–2311.
2022. View Article : Google Scholar
|
|
78
|
Lin X, Xu M, Lan R, Hu D, Zhang S, Zhang
S, Lu Y, Sun H, Yang J, Liu L and Xu J: Gut commensal Alistipes
shahii improves experimental colitis in mice with reduced
intestinal epithelial damage and cytokine secretion. mSystems.
10:e0160724205 View Article : Google Scholar
|
|
79
|
Li H, Fan C, Lu H, Feng C, He P, Yang X,
Xiang C, Zuo J and Tang W: Protective role of berberine on
ulcerative colitis through modulating enteric glial
cells-intestinal epithelial cells-immune cells interactions. Acta
Pharm Sin B. 10:447–461. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lee SH, Hu LL, Gonzalez-Navajas J, Seo GS,
Shen C, Brick J, Herdman S, Varki N, Corr M, Lee J and Raz E: ERK
activation drives intestinal tumorigenesis in Apc min/+ mice. Nat
Med. 16:665–670. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang SL, Zhang MM, Zhou H, Su GQ, Ding Y,
Xu GH, Wang X, Li CF, Huang WF and Yi LT: Inhibition of NLRP3
attenuates sodium dextran sulfate-induced inflammatory bowel
disease through gut microbiota regulation. Biomed J. 46:1005802023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tan G, Huang C, Chen J, Chen B and Zhi F:
Gasdermin-E-mediated pyroptosis participates in the pathogenesis of
Crohn's disease by promoting intestinal inflammation. Cell Rep.
35:1092652021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L,
Zhao K, Deng H and Sun Z: Natural compounds target programmed cell
death (PCD) signaling mechanism to treat ulcerative colitis: A
review. Front Pharmacol. 15:13336572024. View Article : Google Scholar
|
|
84
|
Wang M, Xu B, Liu L and Wang D: Oridonin
attenuates dextran sulfate sodium-induced ulcerative colitis in
mice via the Sirt1/NF-κB/p53 pathway. Mol Med Rep. 26:3122022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xu Q, Sun W, Zhang J, Mei Y, Bao J, Hou S,
Zhou X and Mao L: Inflammasome-targeting natural compounds in
inflammatory bowel disease: Mechanisms and therapeutic potential.
Front Immunol. 13:9632912022. View Article : Google Scholar
|
|
86
|
Zhou ZJ, Dong JY, Qiu Y, Zhang GL, Wei K,
He LH, Sun YN, Jiang HZ, Zhang SS, Guo XR, et al: Sulforaphane
decreases oxidative stress and inhibits NLRP3 inflammasome
activation in a mouse model of ulcerative colitis. Biomed
Pharmacother. 175:1167062024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Salem MB, El-Lakkany NM, Hammam OA and
Seif El-Din SH: Bacillus clausii spores maintain gut homeostasis in
murine ulcerative colitis via modulating microbiota, apoptosis, and
the TXNIP/NLRP3 inflammasome cascade. Toxicol Rep. 14:1018582024.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dharmapuri G, Kotha AK, Kalangi SK and
Reddanna P: Mangiferin, a naturally occurring glucosylxanthone,
induces apoptosis in Caco-2 cells in vitro and exerts protective
effects on acetic Acid-induced ulcerative colitis in mice through
the regulation of NLRP3. ACS Pharmacol Transl Sci. 7:1270–1277.
2024. View Article : Google Scholar
|
|
89
|
Chen Y, Niu Y, Hao W, Zhang W, Lu J, Zhou
J, Du L and Xie W: Pineapple leaf phenols attenuate DSS-induced
colitis in mice and inhibit inflammatory damage by targeting the
NF-κB pathway. Molecules. 26:76562021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Marinho S, Illanes M, Ávila-Román J,
Motilva V and Talero E: Anti-inflammatory effects of rosmarinic
Acid-loaded nanovesicles in acute colitis through modulation of
NLRP3 inflammasome. Biomolecules. 11:1622021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhang HX, Li YY, Liu ZJ and Wang JF:
Quercetin effectively improves LPS-induced intestinal inflammation,
pyroptosis, and disruption of the barrier function through the
TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro. Food Nutr
Res. Dec 30–2022.(Epub ahead of print). doi: 10.29219/fnr.v66.8948.
View Article : Google Scholar
|
|
92
|
Tian HM, Wang SP, Wang HY and Lu XM:
Protective effect of naringin on NLRP3 inflammasome in newborn mice
with necrotizing enterocolitis. Chin J Immunol. 1196–1200.
2021.
|
|
93
|
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y and
Xie J: Kaempferol alleviates murine experimental colitis by
restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis.
Front Immunol. 12:6798972021. View Article : Google Scholar
|
|
94
|
Liu Q, Zuo R, Wang K, Nong FF, Fu YJ,
Huang SW, Pan ZF, Zhang Y, Luo X, Deng XL, et al: Oroxindin
inhibits macrophage NLRP3 inflammasome activation in DSS-induced
ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB
pathway. Acta Pharmacol Sin. 41:771–781. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sergent T, Piront N, Meurice J, Toussaint
O and Schneider YJ: Anti-inflammatory effects of dietary phenolic
compounds in an in vitro model of inflamed human intestinal
epithelium. Chem Biol Interact. 188:659–667. 2010. View Article : Google Scholar
|
|
96
|
Kim DH, Hossain MA, Kang YJ, Jang JY, Lee
YJ, Im E, Yoon JH, Kim HS, Chung HY and Kim ND: Baicalein, an
active component of Scutellaria baicalensis Georgi, induces
apoptosis in human colon cancer cells and prevents AOM/DSS-induced
colon cancer in mice. Int J Oncol. 43:1652–1658. 2013. View Article : Google Scholar
|
|
97
|
Dong J, Liang W, Wang T, Sui J, Wang J,
Deng Z and Chen D: Saponins regulate intestinal inflammation in
colon cancer and IBD. Pharmacol Re. 144:66–72. 2019. View Article : Google Scholar
|
|
98
|
Rhule A, Navarro S, Smith JR and Shepherd
DM: Panax notoginseng attenuates LPS-induced pro-inflammatory
mediators in RAW264.7 cells. J Ethnopharmacol. 106:121–128. 2006.
View Article : Google Scholar
|
|
99
|
Joh EH, Lee IA, Jung IH and Kim DH:
Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1
activation-the key step of inflammation. Biochem Pharmacol.
82:278–286. 2011. View Article : Google Scholar
|
|
100
|
Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX,
Wang JH, Wang JM, Zhang R and Li X: Differential effects of
ginsenosides on NO and TNF-alpha production by LPS-activated N9
microglia. Int Immunopharmacol. 7:313–320. 2007. View Article : Google Scholar
|
|
101
|
Lee IA, Hyam SR, Jang SE, Han MJ and Kim
DH: Ginsenoside Re ameliorates inflammation by inhibiting the
binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food
Chem. 60:9595–9602. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH,
Cheng WW, Zhao M, Li HB, Guo XF, Di C, et al: Natural products
modulate NLRP3 in ulcerative colitis. Front Pharmacol.
14:12658252023. View Article : Google Scholar
|
|
103
|
Lee SM: Anti-inflammatory effects of
ginsenosides Rg5, Rz1, and Rk1: Inhibition of TNF-α-induced NF-κB,
COX-2, and iNOS transcriptional expression. Phytother Res.
28:1893–1896. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou
J, Peng S, Le TH, Chen Y, Zhao S, et al: Ginsenoside Rd ameliorates
colitis by inducing p62-driven mitophagy-mediated NLRP3
inflammasome inactivation in mice. Biochem Pharmacol. 155:366–379.
2018. View Article : Google Scholar
|
|
105
|
Christianson DW: Structural and chemical
biology of terpenoid cyclases. Chem Rev. 117:11570–11648. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tian Z, Liu Y, Yang B, Zhang J, He H, Ge
H, Wu Y and Shen Z: Astagalus polysaccharide attenuates murine
colitis through inhibiton of the NLRP3 inflammasome. Planta Med.
83:70–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dai J, Wang W, He F, Wang Y and Zou D:
Alleviation of DSS-induced colitis by Meconopsis
polysaccharides correlated with reduced PI3K/AKT signaling and
gut microbiome diversity. Front Pharmacol. 16:14596682025.
View Article : Google Scholar
|
|
108
|
Zhou YX, Gong XH, Zhang H and Peng C: A
review on the pharmacokinetics of paeoniflorin and its
anti-inflammatory and immunomodulatory effects. Biomed
Pharmacother. 130:1105052020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fan Q, Guan X, Hou Y, Liu Y, Wei W, Cai X,
Zhang Y, Wang G, Zheng X and Hao H: Paeoniflorin modulates gut
microbial production of indole-3-lactate and epithelial autophagy
to alleviate colitis in mice. Phytomedicine. 79:1533452020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Selvakumar D, Evans D, Coyte KZ,
McLaughlin J, Brass A, Hancock L and Cruickshank S: Understanding
the development and function of the gut microbiota in health and
inflammation. Frontline Gastroenterol. 13:e13–e21. 2022. View Article : Google Scholar
|
|
111
|
Dupont HL, Jiang ZD, Dupont AW and Utay
NS: The intestinal microbiome in human health and disease. Trans Am
Clin Climatol Assoc. 131:178–197. 2020.
|
|
112
|
Martel J, Chang SH, Ko YF, Hwang TL, Young
JD and Ojcius DM: Gut barrier disruption and chronic disease.
Trends Endocrinol Metabolism. 33:247–265. 2022. View Article : Google Scholar
|
|
113
|
Luo Y, Huang X, Hu H, Wang Y, Feng X, Chen
S and Luo H: Intestinal microflora promotes Th2-mediated immunity
through NLRP3 in damp and heat environments. Front Immunol.
15:13670532024. View Article : Google Scholar
|
|
114
|
Yuan Z, Yang L, Zhang X, Ji P, Hua Y and
Wei Y: Huang-lian-jie-du decoction ameliorates acute ulcerative
colitis in mice by regulating NF-κB and Nrf2 signaling pathways and
enhancing intestinal barrier function. Front Pharmacol.
10:4729662019. View Article : Google Scholar
|
|
115
|
Tang X, Zeng T, Deng W, Zhao W, Liu Y,
Huang Q, Deng Y, Xie W and Huang W: Gut microbe-derived betulinic
acid alleviates sepsis-induced acute liver injury by inhibiting
macrophage NLRP3 inflammasome in mice. mBio. 16:e03020242025.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li X, Lin D, Hu X, Shi X, Huang W, Ouyang
Y, Chen X, Xiong Y, Wu X, Hong D and Chen H: Akkermansia
muciniphila modulates central nervous system autoimmune response
and cognitive impairment by inhibiting hippocampal NLRP3-mediated
Neuroinflammation. CNS Neurosci Ther. 31:e703202025. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Shen XH, Guan J, Lu DP, Hong SC, Yu L and
Chen X: Peptostreptococcus anaerobius enhances dextran sulfate
sodium-induced colitis by promoting nf-κB-NLRP3-dependent
macrophage pyroptosis. Virulence. 15:24353912024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wei X, Leng X, Li G, Wang R, Chi L and Sun
D: Advances in research on the effectiveness and mechanism of
Traditional Chinese Medicine formulas for colitis-associated
colorectal cancer. Front Pharmacol. 14:11206722023. View Article : Google Scholar
|
|
119
|
Chen Y, Cai M, Shen B, Fan C and Zhou X:
Electroacupuncture at Zusanli regulates the pathological phenotype
of inflammatory bowel disease by modulating the NLRP3 inflammasome
pathway. Immun Inflamm Dis. 12:e13662024. View Article : Google Scholar : PubMed/NCBI
|