Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2025 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2025 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Antifungal resistance: Emerging mechanisms and implications (Review)

  • Authors:
    • Ika N. Kadariswantiningsih
    • Maulana A. Empitu
    • Timotius Imanuel Santosa
    • Yikelamu Alimu
  • View Affiliations / Copyright

    Affiliations: Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java 60131, Indonesia, Department of Pharmacology, Faculty of Medicine, Airlangga University, Surabaya, East Java 60131, Indonesia, Department of Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Honshu 5650871, Japan
    Copyright: © Kadariswantiningsih et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 247
    |
    Published online on: July 8, 2025
       https://doi.org/10.3892/mmr.2025.13612
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Antifungal resistance is a growing concern in clinical medicine, driven by the increasing incidence of fungal infections and the limited arsenal of effective antifungal drugs. This resistance is achieved by intrinsic mechanisms, such as ineffective drug‑target binding, high efflux pump activity and unique cell wall and membrane composition, as well as acquired mechanisms, including genetic mutations, gene duplication, transposon insertions, aneuploidies and loss of heterozygosity. Antifungal tolerance, characterized by subpopulations of fungal cells that persist and proliferate even at high drug concentrations, complicates treatment. The present review aimed to examine the genetic, physiological and epigenetic factors that contribute to antifungal resistance and tolerance. Understanding these mechanisms may enable the development of novel antifungal therapies and effective diagnostic strategies to combat the increasing threat of resistant fungal infection. Advanced diagnostic tools and combination therapies are key for managing resistant infections and ongoing research into these mechanisms may enhance the ability to mitigate antifungal resistance.
View Figures

Figure 1

Genetic mechanisms of acquired
antifungal resistance in pathogenic fungi. (A) Point mutation in
Candida albicans. A single nucleotide substitution in the
ERG11 gene (such as Y132H) leads to amino acid changes in
lanosterol 14α-demethylase, decreasing azole binding and conferring
fluconazole resistance. (B) Gene duplication in Nakaseomyces
glabratus. Duplication of resistance-related genes, such as
ERG11, leads to gene upregulation and increased tolerance to
azoles. (C) Transposon insertion in Cryptococcus neoformans.
Insertion of mobile genetic elements such as CNL1 transposon
disrupts pathways involved in calcineurin signalling, contributing
to resistance against calcineurin inhibitors (for example, FK506
and rapamycin). (D) LOH in Candida albicans. LOH converts a
heterozygous MDR1 allele into a homozygous recessive state,
unmasking resistance-conferring mutations and leading to azole
resistance. (E) Aneuploidy in Candida neoformans.
Duplication of chromosomes (such as those carrying AFR1, an azole
efflux transporter gene) under antifungal stress leads to increased
drug efflux and resistance. (F) Hypermutator lineage in
Nakaseomyces glabratus. Defects in DNA repair machinery
result in elevated mutation rates. Some hypermutator strains
acquire adaptive mutations that confer resistance, while others do
not. H, hypermutator; WT, wild-type; LOH, loss of heterozygosity;
CNL1, Cryptococcus neoformans LINE-1-like element; MDR,
Multidrug Resistance; AFR, azole fungal resistance. This figure was
created using Biorender: https://BioRender.com/or7ka94”
View References

1 

Bongomin F, Gago S, Oladele RO and Denning DW: Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel). 3:572017. View Article : Google Scholar : PubMed/NCBI

2 

Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG and White TC: Hidden killers: Human fungal infections. Sci Transl Med. 4:165rv13. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Denning DW: Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 24:e428–e438. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Fisher MC, Hawkins NJ, Sanglard D and Gurr SJ: Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 360:739–742. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Enoch DA, Yang H, Aliyu SH and Micallef C: The changing epidemiology of invasive fungal infections. Methods Mol Biol. 1508:17–65. 2017. View Article : Google Scholar

6 

Lee Y, Puumala E, Robbins N and Cowen LE: Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem Rev. 121:3390–3411. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Maligie MA and Selitrennikoff CP: Cryptococcus neoformans resistance to echinocandins:(1, 3) β-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother. 49:2851–2856. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Berkow EL and Lockhart SR: Fluconazole resistance in Candida species: A current perspective. Infect Drug Resist. 10:237–245. 2017. View Article : Google Scholar

9 

Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M and Jones RN: Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect Dis. 6 (Suppl 1):S79–S94. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Wuyts J, Van Dijck P and Holtappels M: Fungal persister cells: The basis for recalcitrant infections? PLoS Pathog. 14:e10073012018. View Article : Google Scholar : PubMed/NCBI

11 

Berman J and Krysan DJ: Drug resistance and tolerance in fungi. Nat Rev Microbiol. 18:319–331. 2020. View Article : Google Scholar

12 

Rosenberg AJ, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, Dahan AM, Colombo AL, Bennett RJ and Berman J: Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun. 9:24702018. View Article : Google Scholar : PubMed/NCBI

13 

Cowen LE, Sanglard D, Howard SJ, Rogers PD and Perlin DS: Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 5:a0197522015. View Article : Google Scholar

14 

Lee Y, Robbins N and Cowen LE: Molecular mechanisms governing antifungal drug resistance. NPJ Antimicrob Resist. 1:52023. View Article : Google Scholar

15 

Revie NM, Iyer KR, Robbins N and Cowen LE: Antifungal drug resistance: Evolution, mechanisms and impact. Curr Opin Microbiol. 45:70–76. 2018. View Article : Google Scholar

16 

Shapiro RS, Robbins N and Cowen LE: Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 75:213–267. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Patra S, Raney M, Pareek A and Kaur R: Epigenetic regulation of antifungal drug resistance. J Fungi (Basel). 8:8752022. View Article : Google Scholar : PubMed/NCBI

18 

Perea S and Patterson TF: Antifungal resistance in pathogenic fungi. Clin Infect Dis. 35:1073–1080. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Hosseini P, Keniya MV, Sagatova AA, Toepfer S, Müller C, Tyndall JDA, Klinger A, Fleischer E and Monk BC: The molecular basis of the intrinsic and acquired resistance to azole antifungals in Aspergillus fumigatus. J Fungi (Basel). 10:8202024. View Article : Google Scholar : PubMed/NCBI

20 

Rosam K, Monk BC and Lackner M: Sterol 14α-Demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens. J Fungi (Basel). 7:10.3390/jof7010001. 2021. View Article : Google Scholar

21 

Caramalho R, Tyndall JDA, Monk BC, Larentis T, Lass-Flörl C and Lackner M: Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci Rep. 7:158982017. View Article : Google Scholar : PubMed/NCBI

22 

Leonardelli F, Macedo D, Dudiuk C, Cabeza MS, Gamarra S and Garcia-Effron G: Aspergillus fumigatus intrinsic fluconazole resistance is due to the naturally occurring T301I substitution in Cyp51Ap. Antimicrob Agents Chemother. 60:5420–5426. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A and Monk BC: Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 22:291–321. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A and Cannon RD: Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genet Biol. 47:127–142. 2010. View Article : Google Scholar

25 

Kovalchuk A and Driessen AJM: Phylogenetic analysis of fungal ABC transporters. BMC Genomics. 11:1–21. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Chow EWL, Song Y, Chen J, Xu X, Wang J, Chen K, Gao J and Wang Y: The transcription factor Rpn4 activates its own transcription and induces efflux pump expression to confer fluconazole resistance in Candida auris. mBio. 14:e02688–e02623. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Garcia A, Huh EY and Lee SC: Serine/Threonine phosphatase calcineurin orchestrates the intrinsic resistance to micafungin in the human-pathogenic fungus mucor circinelloides. Antimicrob Agents Chemother. 67:e00686–e00622. 2023. View Article : Google Scholar : PubMed/NCBI

28 

Al-Hatmi AMS, Meis JF and de Hoog GS: Fusarium: Molecular diversity and intrinsic drug resistance. PLoS Pathog. 12:e10054642016. View Article : Google Scholar : PubMed/NCBI

29 

Delarze E and Sanglard D: Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 23:12–19. 2015. View Article : Google Scholar

30 

Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, İlkit M, Boekhout T, Gabaldon T and Perlin DS: The quiet and underappreciated rise of drug-resistant invasive fungal pathogens. J Fungi (Basel). 6:1382020. View Article : Google Scholar : PubMed/NCBI

31 

Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, et al: Identification and characterization of mediators of fluconazole tolerance in Candida albicans. Front Microbiol. 11:5911402020. View Article : Google Scholar

32 

Koohi SR, Shankarnarayan SA, Galon CM and Charlebois DA: Identification and elimination of antifungal tolerance in Candida auris. Biomedicines. 11:8982023. View Article : Google Scholar : PubMed/NCBI

33 

Delma FZ, Melchers WJG, Verweij PE and Buil JB: Wild-type MIC distributions and epidemiological cutoff values for 5-flucytosine and Candida species as determined by EUCAST broth microdilution. JAC Antimicrob Resist. 6:dlae1532024. View Article : Google Scholar

34 

Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Jones RN, Turnidge J and Diekema DJ: Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 48:52–56. 2010. View Article : Google Scholar

35 

Espinel-Ingroff A, Colombo AL, Cordoba S, Dufresne PJ, Fuller J, Ghannoum M, Gonzalez GM, Guarro J, Kidd SE, Meis JF, et al: International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob Agents Chemother. 60:1079–1084. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Levinson T, Dahan A, Novikov A, Paran Y, Berman J and Ben-Ami R: Impact of tolerance to fluconazole on treatment response in Candida albicans bloodstream infection. Mycoses. 64:78–85. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Yu S, Paderu P, Lee A, Eirekat S, Healey KR, Chen L, Perlin DS and Zhao Y: Histone acetylation regulator Gcn5 mediates drug resistance and virulence of Candida Glabrata. Microbiol Spectr. 10:e00963222022. View Article : Google Scholar : PubMed/NCBI

38 

Garnaud C, García-Oliver E, Wang Y, Maubon D, Bailly S, Despinasse Q, Champleboux M, Govin J and Cornet M: The rim pathway mediates antifungal tolerance in Candida albicans through newly identified Rim101 transcriptional targets, including Hsp90 and Ipt1. Antimicrob Agents Chemother. 62:e01785–e01717. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wiederhold NP: Antifungal resistance: Current trends and future strategies to combat. Infect Drug Resist. 10:249–259. 2017. View Article : Google Scholar

40 

Lestrade PPA, Buil JB, van Der Beek MT, Kuijper EJ, van Dijk K, Kampinga GA, Rijnders BJA, Vonk AG, de Greeff SC, Schoffelen AF, et al: Paradoxal trends in azole-resistant Aspergillus fumigatus in a national multicenter surveillance program, the Netherlands, 2013–2018. Emerg Infect Dis. 26:1447–1455. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Edwards HM and Rhodes J: Accounting for the biological complexity of pathogenic fungi in phylogenetic dating. J Fungi (Basel). 7:6612021. View Article : Google Scholar : PubMed/NCBI

42 

White TC, Marr KA and Bowden RA: Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Re. 11:382–402. 1998. View Article : Google Scholar

43 

Gladyshev E: Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. Microbiol Spectr. 5:102017. View Article : Google Scholar

44 

Hane JK, Williams AH, Taranto AP, Solomon PS and Oliver RP: Repeat-induced point mutation: A fungal-specific, endogenous mutagenesis process. Genet Transform Syst Fungi. 2:55–68. 2015. View Article : Google Scholar

45 

Xiang MJ, Liu JY, Ni PH, Wang S, Shi C, Wei B, Ni YX and Ge HL: Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 13:386–393. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Biswas C, Marcelino VR, Van Hal S, Halliday C, Martinez E, Wang Q, Kidd S, Kennedy K, Marriott D, Morrissey CO, et al: Whole genome sequencing of Australian Candida glabrata isolates reveals genetic diversity and novel sequence types. Front Microbiol. 9:29462018. View Article : Google Scholar

47 

Rocha EMF, Garcia-Effron G, Park S and Perlin DS: A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob Agents Chemother. 51:4174–4176. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Lackner M, Tscherner M, Schaller M, Kuchler K, Mair C, Sartori B, Istel F, Arendrup MC and Lass-Flörl C: Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment. Antimicrob Agents Chemother. 58:3626–3635. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Diaz-Guerra TM, Mellado E, Cuenca-Estrella M and Rodriguez-Tudela JL: A point mutation in the 14α-Sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 47:1120–1124. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS and Edlind TD: Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: Implications for echinocandin resistance. Antimicrob Agents Chemother. 56:6304–6309. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS and Edlind TD: Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 59:450–460. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Wirsching S, Moran GP, Sullivan DJ, Coleman DC and Morschhäuser J: MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother. 45:3416–3421. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Morschhäuser J, Barker KS, Liu TT, Blaß-Warmuth J, Homayouni R and Rogers PD: The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3:e1642007. View Article : Google Scholar

54 

Abbes S, Mary C, Sellami H, Michel-Nguyen A, Ayadi A and Ranque S: Interactions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata. Front Cell Infect Microbiol. 3:742013. View Article : Google Scholar

55 

Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A and Boulware DR: Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect Dis. 17:873–881. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM and Heitman J: Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat Microbiol. 7:1239–1251. 2022. View Article : Google Scholar

57 

Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ and Amon A: Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 317:916–924. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE and Amon A: Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 322:703–709. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Tsai HJ and Nelliat A: A double-edged sword: Aneuploidy is a prevalent strategy in fungal adaptation. Genes (Basel). 10:7872019. View Article : Google Scholar : PubMed/NCBI

60 

Selmecki A, Forche A and Berman J: Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 313:367–370. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Ji H, Zhang W, Zhou Y, Zhang M, Zhu J, Song Y and Lü J: A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem. 43:2493–2505. 2000. View Article : Google Scholar : PubMed/NCBI

62 

Coste AT, Karababa M, Ischer F, Bille J and Sanglard D: TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell. 3:1639–1652. 2004. View Article : Google Scholar

63 

Selmecki AM, Dulmage K, Cowen LE, Anderson JB and Berman J: Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLOS Genet. 5:e10007052009. View Article : Google Scholar

64 

Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, et al: The evolution of drug resistance in clinical isolates of Candida albicans. Elife. 4:e006622015. View Article : Google Scholar : PubMed/NCBI

65 

Mackey AI, Fillinger RJ, Hendricks PS, Thomson GJ, Cuomo CA, Bennett RJ and Anderson MZ: Aneuploidy confers a unique transcriptional and phenotypic profile to Candida albicans. Nat Commun. 16:32872025. View Article : Google Scholar : PubMed/NCBI

66 

Sun LL, Li H, Yan TH, Fang T, Wu H, Cao YB, Lu H, Jiang YY and Yang F: Aneuploidy mediates rapid adaptation to a subinhibitory amount of fluconazole in Candida albicans. Microbiol Spectr. 11:e03016–e03022. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Sionov E, Lee H, Chang YC and Kwon-Chung KJ: Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6:e10008482010. View Article : Google Scholar : PubMed/NCBI

68 

Zhang Z, Sun L, Fu B, Deng J, Jia C, Miao M, Yang F, Cao YB and Yan TH: Aneuploidy underlies brefeldin A-induced antifungal drug resistance in Cryptococcus neoformans. Front Cell Infect Microbiol. 14:13977242024. View Article : Google Scholar

69 

Hu G, Wang J, Choi J, Jung WH, Liu I, Litvintseva AP, Bicanic T, Aurora R, Mitchell TG, Perfect JR and Kronstad JW: Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics. 12:1–19. 2011. View Article : Google Scholar

70 

Sasse C, Dunkel N, Schäfer T, Schneider S, Dierolf F, Ohlsen K and Morschhäuser J: The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in andida albicans. Mol Microbiol. 86:539–556. 2012. View Article : Google Scholar

71 

Heil CS: Loss of heterozygosity and its importance in evolution. J Mol Evol. 91:369–377. 2023. View Article : Google Scholar

72 

Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K and Berman J: Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio. 2:e00129–e00111. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Bennett RJ, Forche A and Berman J: Rapid mechanisms for generating genome diversity: Whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med. 4:a0196042014. View Article : Google Scholar : PubMed/NCBI

74 

White TC: Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 41:1482–1487. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Luna-Tapia A, Willems HME, Parker JE, Tournu H, Barker KS, Nishimoto AT, Rogers PD, Kelly SL, Peters BM and Palmer GE: Loss of Upc2p-inducible ERG3 transcription is sufficient to confer niche-specific azole resistance without compromising Candida albicans pathogenicity. mBio. 9:e00225–e00218. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Rustad TR, Stevens DA, Pfaller MA and White TC: Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology. 148:1061–1072. 2002. View Article : Google Scholar : PubMed/NCBI

77 

Gambhir N, Harris SD and Everhart SE: Evolutionary significance of fungal hypermutators: Lessons learned from clinical strains and implications for fungal plant pathogens. mSphere. 7:e00087–e00022. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Healey KR, Ortigosa CJ, Shor E and Perlin DS: Genetic drivers of multidrug resistance in Candida glabrata. Front Microbiol. 7:19952016. View Article : Google Scholar

79 

Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, Kontoyiannis DP, Sanglard D, Taj-Aldeen SJ, Alexander BD, et al: Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 7:111282016. View Article : Google Scholar : PubMed/NCBI

80 

Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B, Cuomo CA, et al: Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics. 221:iyac0312022. View Article : Google Scholar : PubMed/NCBI

81 

Vale-Silva L, Beaudoing E, Tran VDT and Sanglard D: Comparative genomics of two sequential Candida glabrata clinical isolates. G3 (Bethesda). 7:2413–2426. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Boyce KJ, Wang Y, Verma S, Shakya VPS, Xue C and Idnurm A: Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans. mBio. 8:e00595–e00517. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Dos Reis TF, Silva LP, de Castro PA, do Carmo RA, Marini MM, da Silveira JF, Ferreira BH, Rodrigues F, Lind AL, Rokas A and Goldman GH: The Aspergillus fumigatus mismatch repair MSH2 homolog is important for virulence and azole resistance. mSphere. 4:e00416–e00419. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H, Li H, Zhang L, Chen L, Tian X, et al: Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe. 32:276–289. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Silva S, Rodrigues CF, Araújo D, Rodrigues ME and Henriques M: Candida Species Biofilms' antifungal resistance. J Fungi (Basel). 3:82017. View Article : Google Scholar : PubMed/NCBI

86 

Massey J, Zarnowski R and Andes D: Role of the extracellular matrix in Candida biofilm antifungal resistance. FEMS Microbiol Rev. 47:fuad0592023. View Article : Google Scholar : PubMed/NCBI

87 

Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, Hourdel V, Varet H, Matondo M, Perfect JR, et al: Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLoS Pathog. 15:e10079452019. View Article : Google Scholar : PubMed/NCBI

88 

Alanio A, Vernel-Pauillac F, Sturny-Leclère A and Dromer F, Alanio A, Vernel-Pauillac F and Dromer F: Cryptococcus neoformans host adaptation: Toward biological evidence of dormancy. mBio. 6:e02580–e02514. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Hayes BME, Anderson MA, Traven A, van der Weerden NL and Bleackley MR: Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol life Sci. 71:2651–2666. 2014. View Article : Google Scholar

90 

Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH and Heitman J: Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21:546–559. 2002. View Article : Google Scholar : PubMed/NCBI

91 

LaFleur MD, Kumamoto CA and Lewis K: Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 50:3839–3846. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Fréalle E, Aliouat-Denis CM, Delhaes L, Hot D and Dei-Cas E: Transcriptomic insights into the oxidative response of stress-exposed Aspergillus fumigatus. Curr Pharm Des. 19:3713–3737. 2013. View Article : Google Scholar

93 

Chang Z, Yadav V, Lee SC and Heitman J: Epigenetic mechanisms of drug resistance in fungi. Fungal Genet Biol. 132:1032532019. View Article : Google Scholar

94 

Brandao FAS, Derengowski LS, Albuquerque P, Nicola AM, Silva-Pereira I and Poças-Fonseca MJ: Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence. 6:618–630. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Brandão F, Esher SK, Ost KS, Pianalto K, Nichols CB, Fernandes L, Bocca AL, Poças-Fonseca MJ and Alspaugh JA: HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci Rep. 8:52092018. View Article : Google Scholar

96 

Ranjan K, Brandão F, Morais JAV, Muehlmann LA, Silva-Pereira I, Bocca AL, Matos LF and Poças-Fonseca MJ: The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. J Photochem Photobiol B. 216:1121312021. View Article : Google Scholar : PubMed/NCBI

97 

Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR and Johnson AD: A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 148:126–138. 2012. View Article : Google Scholar

98 

Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP and Lopez-Ribot JL: The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell. 9:1531–1537. 2010. View Article : Google Scholar

99 

Li X, Cai Q, Mei H, Zhou X, Shen Y, Li D and Liu W: The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J Antimicrob Chemother. 70:1993–2003. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Freitag M: Histone methylation by SET domain proteins in fungi. Annu Rev Microbiol. 71:413–439. 2017. View Article : Google Scholar

101 

Honda S, Bicocca VT, Gessaman JD, Rountree MR, Yokoyama A, Yu EY, Selker JM and Selker EU: Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci USA. 113:E6135–E6144. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Nai YS, Huang YC, Yen MR and Chen PY: Diversity of fungal DNA methyltransferases and their association with DNA methylation patterns. Front Microbiol. 11:6169222021. View Article : Google Scholar

103 

Jeon J, Choi J, Lee GW, Park SY, Huh A, Dean RA and Lee YH: Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci Rep. 5:85672015. View Article : Google Scholar : PubMed/NCBI

104 

Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, Diedrich JK, Cook S, Shea T, Geinger E, et al: Evolutionary persistence of DNA methylation for millions of years after ancient loss of a de novo methyltransferase. Cell. 180:263–277. 2020. View Article : Google Scholar

105 

Baker KM, Hoda S, Saha D, Gregor JB, Georgescu L, Serratore ND, Zhang Y, Cheng L, Lanman NA, Briggs SD, et al: The Set1 histone H3K4 methyltransferase contributes to azole susceptibility in a species-specific manner by differentially altering the expression of drug efflux pumps and the ergosterol gene pathway. Antimicrob Agents Chemother. 66:e02250–e02221. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Khemiri I, Tebbji F, Burgain A and Sellam A: Regulation of copper uptake by the SWI/SNF chromatin remodeling complex in Candida albicans affects susceptibility to antifungal and oxidative stresses under hypoxia. FEMS Yeast Res. 24:foae0182024. View Article : Google Scholar : PubMed/NCBI

107 

Salem-Bango Z, Price TK, Chan JL, Chandrasekaran S, Garner OB and Yang S: Fungal whole-genome sequencing for species identification: From test development to clinical utilization. J Fungi (Basel). 9:1832023. View Article : Google Scholar : PubMed/NCBI

108 

Jiang S, Chen Y, Han S, Lv L and Li L: Next-generation sequencing applications for the study of fungal pathogens. Microorganisms. 10:18822022. View Article : Google Scholar : PubMed/NCBI

109 

Liu SY, Lin JQ, Wu HL, Wang CC, Huang SJ, Luo YF, Sun JH, Zhou JX, Yan SJ, He JG, et al: Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. PLoS One. 7:e303492012. View Article : Google Scholar : PubMed/NCBI

110 

Tan K and Wong KH: RNA polymerase II ChIP-seq-a powerful and highly affordable method for studying fungal genomics and physiology. Biophys Rev. 11:79–82. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Roemer T and Krysan DJ: Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 4:a0197032014. View Article : Google Scholar : PubMed/NCBI

112 

Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell E, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, et al: Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol. 20:557–571. 2022. View Article : Google Scholar

113 

Grand View Research, . Antifungal drugs market size, share & growth report 2030 [Internet]. 2025.Available from:. https://www.grandviewresearch.com/industry-analysis/antifungal-drugs-market

114 

Pyrpasopoulou A, Iosifidis E, Antachopoulos C and Roilides E: Antifungal drug dosing adjustment in critical patients with invasive fungal infections. J Emerg Crit Care Med. 3:10.21037/jeccm.2019.08.01. 2019. View Article : Google Scholar

115 

Baracaldo-Santamaría D, Cala-Garcia JD, Medina-Rincón GJ, Rojas-Rodriguez LC and Calderon-Ospina CA: Therapeutic drug monitoring of antifungal agents in critically ill patients: Is there a need for dose optimisation? Antibiotics (Basel). 11:6452022. View Article : Google Scholar

116 

Glampedakis E, Coste AT, Aruanno M, Bachmann D, Delarze E, Erard V and Lamoth F: Efficacy of antifungal monotherapies and combinations against Aspergillus calidoustus. Antimicrob Agents Chemother. 62:e01137–e01118. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Rieger CT, Ostermann H, Kolb HJ, Fiegl M, Huppmann S, Morgenstern N and Tischer J: A clinical cohort trial of antifungal combination therapy: Efficacy and toxicity in haematological cancer patients. Ann Hematol. 87:915–922. 2008. View Article : Google Scholar

118 

Candoni A, Caira M, Cesaro S, Busca A, Giacchino M, Fanci R, Delia M, Nosari A, Bonini A, Cattaneo C, et al: Multicentre surveillance study on feasibility, safety and efficacy of antifungal combination therapy for proven or probable invasive fungal diseases in haematological patients: the SEIFEM real-life combo study. Mycoses. 57:342–350. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Tu B, Yin G and Li H: Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms. BMC Microbiol. 20:1–7. 2020. View Article : Google Scholar

120 

Rodrigues CF, Alves DF and Henriques M: Combination of Posaconazole and Amphotericin B in the treatment of Candida glabrata biofilms. Microorganisms. 6:1232018. View Article : Google Scholar : PubMed/NCBI

121 

Vitale RG: Role of antifungal combinations in difficult to treat Candida infections. J Fungi (Basel). 7:7312021. View Article : Google Scholar : PubMed/NCBI

122 

Fernandes CM, Dasilva D, Haranahalli K, McCarthy JB, Mallamo J, Ojima I and Del Poeta M: The future of antifungal drug therapy: Novel compounds and targets. Antimicrob Agents Chemother. 65:e01719–e01720. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Hodges MR, Tawadrous M, Cornely OA, Thompson GR III, Slavin MA, Maertens JA, Dadwal SS, Rahav G, Hazel S, Almas M, et al: Fosmanogepix for the treatment of invasive mold diseases caused by Aspergillus species and rare molds: A phase 2, open-label study (AEGIS). Clin Infect Dis. 9:ciaf1852025. View Article : Google Scholar

124 

Oliver JD, Sibley GEM, Beckmann N, Dobb KS, Slater MJ, McEntee L, du Pré S, Livermore J, Bromley MJ, Wiederhold NP, et al: F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 113:12809–12814. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Tawfik DM, Dereux C, Tremblay JA, Boibieux A, Braye F, Cazauran JB, Rabodonirina M, Cerrato E, Guichard A, Venet F, et al: Interferon gamma as an immune modulating adjunct therapy for invasive mucormycosis after severe burn-A case report. Front Immunol. 13:8836382022. View Article : Google Scholar

126 

Albahar F, Alhamad H, Assab MA, Abu-Farha R, Alawi L and Khaleel S: The impact of antifungal stewardship on clinical and performance measures: A global systematic review. Trop Med Infect Dis. 9:82023. View Article : Google Scholar : PubMed/NCBI

127 

Kühbacher A, Birch M, Oliver JD and Gsaller F: Anti-Aspergillus activities of olorofim at sub-MIC levels during early-stage growth. Microbiol Spectr. 12:e03304–e03323. 2024. View Article : Google Scholar

128 

Rhein J, Hullsiek KH, Tugume L, Nuwagira E, Mpoza E, Evans EE, Kiggundu R, Pastick KA, Ssebambulidde K, Akampurira A, et al: Adjunctive sertraline for HIV-associated cryptococcal meningitis: A randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis. 19:843–851. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Liu Q, Guo X, Jiang G, Wu G, Miao H, Liu K, Chen S, Sakamoto N, Kuno T, Yao F and Fang Y: NADPH-cytochrome P450 reductase Ccr1 is a target of tamoxifen and participates in its antifungal activity via regulating cell wall integrity in fission yeast. Antimicrob Agents Chemother. 64:e00079–e00072. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Dai X, Liu X, Li J, Chen H, Yan C, Li Y, Liu H, Deng D and Wang X: Structural insights into the inhibition mechanism of fungal GWT1 by manogepix. Nat Commun. 15:91942024. View Article : Google Scholar : PubMed/NCBI

131 

Schwebke JR, Sobel R, Gersten JK, Sussman SA, Lederman SN, Jacobs MA, Chappell BT, Weinstein DL, Moffett AH, Azie NE, et al: Ibrexafungerp versus placebo for vulvovaginal candidiasis treatment: A phase 3, randomized, controlled superiority trial (VANISH 303). Clin Infect Dis. 74:1979–1985. 2022. View Article : Google Scholar : PubMed/NCBI

132 

(FDA) USF and DA, . Drug trials snapshots: brexafemme [Internet]. FDA; 2023, Available from:. https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-brexafemme

133 

Firooz A, Nafisi S and Maibach HI: Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm. 495:599–607. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Nami S, Aghebati-Maleki A and Aghebati-Maleki L: Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J. 20:562–584. 2021.PubMed/NCBI

135 

Stone NRH, Bicanic T, Salim R and Hope W: Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 76:485–500. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, Ssebambulidde K, Tugume L, Rhein J, et al: Single-dose liposomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 386:1109–1120. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Empitu MA, Kadariswantiningsih IN and Shakri NM: Pharmacological strategies for targeting biofilms in otorhinolaryngologic infections and overcoming antimicrobial resistance. Biomed Rep. 22:952025. View Article : Google Scholar : PubMed/NCBI

138 

Vera-González N, Bailey-Hytholt CM, Langlois L, de Camargo Ribeiro F, de Souza Santos EL, Junqueira JC and Shukla A: Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm Candida albicans. J Biomed Mater Res Part A. 108:2263–2276. 2020. View Article : Google Scholar

139 

El-Housiny S, Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER and El-Nabarawi MA: Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv. 25:78–90. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Raad I, Mohamed JA, Reitzel RA, Jiang Y, Raad S, Al Shuaibi M, Chaftari AM and Hachem RY: Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother. 56:935–941. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kadariswantiningsih IN, Empitu MA, Santosa TI and Alimu Y: Antifungal resistance: Emerging mechanisms and implications (Review). Mol Med Rep 32: 247, 2025.
APA
Kadariswantiningsih, I.N., Empitu, M.A., Santosa, T.I., & Alimu, Y. (2025). Antifungal resistance: Emerging mechanisms and implications (Review). Molecular Medicine Reports, 32, 247. https://doi.org/10.3892/mmr.2025.13612
MLA
Kadariswantiningsih, I. N., Empitu, M. A., Santosa, T. I., Alimu, Y."Antifungal resistance: Emerging mechanisms and implications (Review)". Molecular Medicine Reports 32.3 (2025): 247.
Chicago
Kadariswantiningsih, I. N., Empitu, M. A., Santosa, T. I., Alimu, Y."Antifungal resistance: Emerging mechanisms and implications (Review)". Molecular Medicine Reports 32, no. 3 (2025): 247. https://doi.org/10.3892/mmr.2025.13612
Copy and paste a formatted citation
x
Spandidos Publications style
Kadariswantiningsih IN, Empitu MA, Santosa TI and Alimu Y: Antifungal resistance: Emerging mechanisms and implications (Review). Mol Med Rep 32: 247, 2025.
APA
Kadariswantiningsih, I.N., Empitu, M.A., Santosa, T.I., & Alimu, Y. (2025). Antifungal resistance: Emerging mechanisms and implications (Review). Molecular Medicine Reports, 32, 247. https://doi.org/10.3892/mmr.2025.13612
MLA
Kadariswantiningsih, I. N., Empitu, M. A., Santosa, T. I., Alimu, Y."Antifungal resistance: Emerging mechanisms and implications (Review)". Molecular Medicine Reports 32.3 (2025): 247.
Chicago
Kadariswantiningsih, I. N., Empitu, M. A., Santosa, T. I., Alimu, Y."Antifungal resistance: Emerging mechanisms and implications (Review)". Molecular Medicine Reports 32, no. 3 (2025): 247. https://doi.org/10.3892/mmr.2025.13612
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team