|
1
|
Bongomin F, Gago S, Oladele RO and Denning
DW: Global and multi-national prevalence of fungal
diseases-estimate precision. J Fungi (Basel). 3:572017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brown GD, Denning DW, Gow NAR, Levitz SM,
Netea MG and White TC: Hidden killers: Human fungal infections. Sci
Transl Med. 4:165rv13. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Denning DW: Global incidence and mortality
of severe fungal disease. Lancet Infect Dis. 24:e428–e438. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fisher MC, Hawkins NJ, Sanglard D and Gurr
SJ: Worldwide emergence of resistance to antifungal drugs
challenges human health and food security. Science. 360:739–742.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Enoch DA, Yang H, Aliyu SH and Micallef C:
The changing epidemiology of invasive fungal infections. Methods
Mol Biol. 1508:17–65. 2017. View Article : Google Scholar
|
|
6
|
Lee Y, Puumala E, Robbins N and Cowen LE:
Antifungal drug resistance: Molecular mechanisms in Candida
albicans and beyond. Chem Rev. 121:3390–3411. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Maligie MA and Selitrennikoff CP:
Cryptococcus neoformans resistance to echinocandins:(1, 3)
β-glucan synthase activity is sensitive to echinocandins.
Antimicrob Agents Chemother. 49:2851–2856. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Berkow EL and Lockhart SR: Fluconazole
resistance in Candida species: A current perspective. Infect
Drug Resist. 10:237–245. 2017. View Article : Google Scholar
|
|
9
|
Pfaller MA, Diekema DJ, Turnidge JD,
Castanheira M and Jones RN: Twenty years of the SENTRY antifungal
surveillance program: Results for Candida species from
1997–2016. Open Forum Infect Dis. 6 (Suppl 1):S79–S94. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wuyts J, Van Dijck P and Holtappels M:
Fungal persister cells: The basis for recalcitrant infections? PLoS
Pathog. 14:e10073012018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Berman J and Krysan DJ: Drug resistance
and tolerance in fungi. Nat Rev Microbiol. 18:319–331. 2020.
View Article : Google Scholar
|
|
12
|
Rosenberg AJ, Ene IV, Bibi M, Zakin S,
Segal ES, Ziv N, Dahan AM, Colombo AL, Bennett RJ and Berman J:
Antifungal tolerance is a subpopulation effect distinct from
resistance and is associated with persistent candidemia. Nat
Commun. 9:24702018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD
and Perlin DS: Mechanisms of antifungal drug resistance. Cold
Spring Harb Perspect Med. 5:a0197522015. View Article : Google Scholar
|
|
14
|
Lee Y, Robbins N and Cowen LE: Molecular
mechanisms governing antifungal drug resistance. NPJ Antimicrob
Resist. 1:52023. View Article : Google Scholar
|
|
15
|
Revie NM, Iyer KR, Robbins N and Cowen LE:
Antifungal drug resistance: Evolution, mechanisms and impact. Curr
Opin Microbiol. 45:70–76. 2018. View Article : Google Scholar
|
|
16
|
Shapiro RS, Robbins N and Cowen LE:
Regulatory circuitry governing fungal development, drug resistance,
and disease. Microbiol Mol Biol Rev. 75:213–267. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Patra S, Raney M, Pareek A and Kaur R:
Epigenetic regulation of antifungal drug resistance. J Fungi
(Basel). 8:8752022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Perea S and Patterson TF: Antifungal
resistance in pathogenic fungi. Clin Infect Dis. 35:1073–1080.
2002. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hosseini P, Keniya MV, Sagatova AA,
Toepfer S, Müller C, Tyndall JDA, Klinger A, Fleischer E and Monk
BC: The molecular basis of the intrinsic and acquired resistance to
azole antifungals in Aspergillus fumigatus. J Fungi (Basel).
10:8202024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rosam K, Monk BC and Lackner M: Sterol
14α-Demethylase ligand-binding pocket-mediated acquired and
intrinsic azole resistance in fungal pathogens. J Fungi (Basel).
7:10.3390/jof7010001. 2021. View Article : Google Scholar
|
|
21
|
Caramalho R, Tyndall JDA, Monk BC,
Larentis T, Lass-Flörl C and Lackner M: Intrinsic short-tailed
azole resistance in mucormycetes is due to an evolutionary
conserved aminoacid substitution of the lanosterol 14α-demethylase.
Sci Rep. 7:158982017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Leonardelli F, Macedo D, Dudiuk C, Cabeza
MS, Gamarra S and Garcia-Effron G: Aspergillus fumigatus
intrinsic fluconazole resistance is due to the naturally occurring
T301I substitution in Cyp51Ap. Antimicrob Agents Chemother.
60:5420–5426. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cannon RD, Lamping E, Holmes AR, Niimi K,
Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A and Monk BC:
Efflux-mediated antifungal drug resistance. Clin Microbiol Rev.
22:291–321. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lamping E, Baret PV, Holmes AR, Monk BC,
Goffeau A and Cannon RD: Fungal PDR transporters: Phylogeny,
topology, motifs and function. Fungal Genet Biol. 47:127–142. 2010.
View Article : Google Scholar
|
|
25
|
Kovalchuk A and Driessen AJM: Phylogenetic
analysis of fungal ABC transporters. BMC Genomics. 11:1–21. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chow EWL, Song Y, Chen J, Xu X, Wang J,
Chen K, Gao J and Wang Y: The transcription factor Rpn4 activates
its own transcription and induces efflux pump expression to confer
fluconazole resistance in Candida auris. mBio.
14:e02688–e02623. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Garcia A, Huh EY and Lee SC:
Serine/Threonine phosphatase calcineurin orchestrates the intrinsic
resistance to micafungin in the human-pathogenic fungus mucor
circinelloides. Antimicrob Agents Chemother. 67:e00686–e00622.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Al-Hatmi AMS, Meis JF and de Hoog GS:
Fusarium: Molecular diversity and intrinsic drug resistance. PLoS
Pathog. 12:e10054642016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Delarze E and Sanglard D: Defining the
frontiers between antifungal resistance, tolerance and the concept
of persistence. Drug Resist Updat. 23:12–19. 2015. View Article : Google Scholar
|
|
30
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio
R, Daneshnia F, İlkit M, Boekhout T, Gabaldon T and Perlin DS: The
quiet and underappreciated rise of drug-resistant invasive fungal
pathogens. J Fungi (Basel). 6:1382020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Delarze E, Brandt L, Trachsel E, Patxot M,
Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux
ME, et al: Identification and characterization of mediators of
fluconazole tolerance in Candida albicans. Front Microbiol.
11:5911402020. View Article : Google Scholar
|
|
32
|
Koohi SR, Shankarnarayan SA, Galon CM and
Charlebois DA: Identification and elimination of antifungal
tolerance in Candida auris. Biomedicines. 11:8982023.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Delma FZ, Melchers WJG, Verweij PE and
Buil JB: Wild-type MIC distributions and epidemiological cutoff
values for 5-flucytosine and Candida species as determined by
EUCAST broth microdilution. JAC Antimicrob Resist. 6:dlae1532024.
View Article : Google Scholar
|
|
34
|
Pfaller MA, Boyken L, Hollis RJ, Kroeger
J, Messer SA, Tendolkar S, Jones RN, Turnidge J and Diekema DJ:
Wild-type MIC distributions and epidemiological cutoff values for
the echinocandins and Candida spp. J Clin Microbiol.
48:52–56. 2010. View Article : Google Scholar
|
|
35
|
Espinel-Ingroff A, Colombo AL, Cordoba S,
Dufresne PJ, Fuller J, Ghannoum M, Gonzalez GM, Guarro J, Kidd SE,
Meis JF, et al: International evaluation of MIC distributions and
epidemiological cutoff value (ECV) definitions for fusarium species
identified by molecular methods for the CLSI broth microdilution
method. Antimicrob Agents Chemother. 60:1079–1084. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Levinson T, Dahan A, Novikov A, Paran Y,
Berman J and Ben-Ami R: Impact of tolerance to fluconazole on
treatment response in Candida albicans bloodstream
infection. Mycoses. 64:78–85. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yu S, Paderu P, Lee A, Eirekat S, Healey
KR, Chen L, Perlin DS and Zhao Y: Histone acetylation regulator
Gcn5 mediates drug resistance and virulence of Candida
Glabrata. Microbiol Spectr. 10:e00963222022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Garnaud C, García-Oliver E, Wang Y, Maubon
D, Bailly S, Despinasse Q, Champleboux M, Govin J and Cornet M: The
rim pathway mediates antifungal tolerance in Candida
albicans through newly identified Rim101 transcriptional
targets, including Hsp90 and Ipt1. Antimicrob Agents Chemother.
62:e01785–e01717. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wiederhold NP: Antifungal resistance:
Current trends and future strategies to combat. Infect Drug Resist.
10:249–259. 2017. View Article : Google Scholar
|
|
40
|
Lestrade PPA, Buil JB, van Der Beek MT,
Kuijper EJ, van Dijk K, Kampinga GA, Rijnders BJA, Vonk AG, de
Greeff SC, Schoffelen AF, et al: Paradoxal trends in
azole-resistant Aspergillus fumigatus in a national
multicenter surveillance program, the Netherlands, 2013–2018. Emerg
Infect Dis. 26:1447–1455. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Edwards HM and Rhodes J: Accounting for
the biological complexity of pathogenic fungi in phylogenetic
dating. J Fungi (Basel). 7:6612021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
White TC, Marr KA and Bowden RA: Clinical,
cellular, and molecular factors that contribute to antifungal drug
resistance. Clin Microbiol Re. 11:382–402. 1998. View Article : Google Scholar
|
|
43
|
Gladyshev E: Repeat-Induced Point Mutation
and Other Genome Defense Mechanisms in Fungi. Microbiol Spectr.
5:102017. View Article : Google Scholar
|
|
44
|
Hane JK, Williams AH, Taranto AP, Solomon
PS and Oliver RP: Repeat-induced point mutation: A fungal-specific,
endogenous mutagenesis process. Genet Transform Syst Fungi.
2:55–68. 2015. View Article : Google Scholar
|
|
45
|
Xiang MJ, Liu JY, Ni PH, Wang S, Shi C,
Wei B, Ni YX and Ge HL: Erg11 mutations associated with azole
resistance in clinical isolates of Candida albicans. FEMS
Yeast Res. 13:386–393. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Biswas C, Marcelino VR, Van Hal S,
Halliday C, Martinez E, Wang Q, Kidd S, Kennedy K, Marriott D,
Morrissey CO, et al: Whole genome sequencing of Australian
Candida glabrata isolates reveals genetic diversity and
novel sequence types. Front Microbiol. 9:29462018. View Article : Google Scholar
|
|
47
|
Rocha EMF, Garcia-Effron G, Park S and
Perlin DS: A Ser678Pro substitution in Fks1p confers resistance to
echinocandin drugs in Aspergillus fumigatus. Antimicrob
Agents Chemother. 51:4174–4176. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lackner M, Tscherner M, Schaller M,
Kuchler K, Mair C, Sartori B, Istel F, Arendrup MC and Lass-Flörl
C: Positions and numbers of FKS mutations in Candida
albicans selectively influence in vitro and in vivo
susceptibilities to echinocandin treatment. Antimicrob Agents
Chemother. 58:3626–3635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Diaz-Guerra TM, Mellado E, Cuenca-Estrella
M and Rodriguez-Tudela JL: A point mutation in the 14α-Sterol
demethylase gene cyp51A contributes to itraconazole resistance in
Aspergillus fumigatus. Antimicrob Agents Chemother.
47:1120–1124. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Katiyar SK, Alastruey-Izquierdo A, Healey
KR, Johnson ME, Perlin DS and Edlind TD: Fks1 and Fks2 are
functionally redundant but differentially regulated in Candida
glabrata: Implications for echinocandin resistance. Antimicrob
Agents Chemother. 56:6304–6309. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Katiyar SK, Alastruey-Izquierdo A, Healey
KR, Johnson ME, Perlin DS and Edlind TD: Contribution of clinically
derived mutations in ERG11 to azole resistance in Candida
albicans. Antimicrob Agents Chemother. 59:450–460. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wirsching S, Moran GP, Sullivan DJ,
Coleman DC and Morschhäuser J: MDR1-mediated drug resistance in
Candida dubliniensis. Antimicrob Agents Chemother.
45:3416–3421. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Morschhäuser J, Barker KS, Liu TT,
Blaß-Warmuth J, Homayouni R and Rogers PD: The transcription factor
Mrr1p controls expression of the MDR1 efflux pump and mediates
multidrug resistance in Candida albicans. PLoS Pathog.
3:e1642007. View Article : Google Scholar
|
|
54
|
Abbes S, Mary C, Sellami H, Michel-Nguyen
A, Ayadi A and Ranque S: Interactions between copy number and
expression level of genes involved in fluconazole resistance in
Candida glabrata. Front Cell Infect Microbiol. 3:742013.
View Article : Google Scholar
|
|
55
|
Rajasingham R, Smith RM, Park BJ, Jarvis
JN, Govender NP, Chiller TM, Denning DW, Loyse A and Boulware DR:
Global burden of disease of HIV-associated cryptococcal meningitis:
An updated analysis. Lancet Infect Dis. 17:873–881. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Priest SJ, Yadav V, Roth C, Dahlmann TA,
Kück U, Magwene PM and Heitman J: Uncontrolled transposition
following RNAi loss causes hypermutation and antifungal drug
resistance in clinical isolates of Cryptococcus neoformans.
Nat Microbiol. 7:1239–1251. 2022. View Article : Google Scholar
|
|
57
|
Torres EM, Sokolsky T, Tucker CM, Chan LY,
Boselli M, Dunham MJ and Amon A: Effects of aneuploidy on cellular
physiology and cell division in haploid yeast. Science.
317:916–924. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Williams BR, Prabhu VR, Hunter KE, Glazier
CM, Whittaker CA, Housman DE and Amon A: Aneuploidy affects
proliferation and spontaneous immortalization in mammalian cells.
Science. 322:703–709. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tsai HJ and Nelliat A: A double-edged
sword: Aneuploidy is a prevalent strategy in fungal adaptation.
Genes (Basel). 10:7872019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Selmecki A, Forche A and Berman J:
Aneuploidy and isochromosome formation in drug-resistant Candida
albicans. Science. 313:367–370. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ji H, Zhang W, Zhou Y, Zhang M, Zhu J,
Song Y and Lü J: A three-dimensional model of lanosterol
14α-demethylase of Candida albicans and its interaction with
azole antifungals. J Med Chem. 43:2493–2505. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Coste AT, Karababa M, Ischer F, Bille J
and Sanglard D: TAC1, transcriptional activator of CDR genes, is a
new transcription factor involved in the regulation of Candida
albicans ABC transporters CDR1 and CDR2. Eukaryot Cell.
3:1639–1652. 2004. View Article : Google Scholar
|
|
63
|
Selmecki AM, Dulmage K, Cowen LE, Anderson
JB and Berman J: Acquisition of aneuploidy provides increased
fitness during the evolution of antifungal drug resistance. PLOS
Genet. 5:e10007052009. View Article : Google Scholar
|
|
64
|
Ford CB, Funt JM, Abbey D, Issi L,
Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, et
al: The evolution of drug resistance in clinical isolates of
Candida albicans. Elife. 4:e006622015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mackey AI, Fillinger RJ, Hendricks PS,
Thomson GJ, Cuomo CA, Bennett RJ and Anderson MZ: Aneuploidy
confers a unique transcriptional and phenotypic profile to
Candida albicans. Nat Commun. 16:32872025. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun LL, Li H, Yan TH, Fang T, Wu H, Cao
YB, Lu H, Jiang YY and Yang F: Aneuploidy mediates rapid adaptation
to a subinhibitory amount of fluconazole in Candida
albicans. Microbiol Spectr. 11:e03016–e03022. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sionov E, Lee H, Chang YC and Kwon-Chung
KJ: Cryptococcus neoformans overcomes stress of azole drugs
by formation of disomy in specific multiple chromosomes. PLoS
Pathog. 6:e10008482010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Z, Sun L, Fu B, Deng J, Jia C, Miao
M, Yang F, Cao YB and Yan TH: Aneuploidy underlies brefeldin
A-induced antifungal drug resistance in Cryptococcus
neoformans. Front Cell Infect Microbiol. 14:13977242024. View Article : Google Scholar
|
|
69
|
Hu G, Wang J, Choi J, Jung WH, Liu I,
Litvintseva AP, Bicanic T, Aurora R, Mitchell TG, Perfect JR and
Kronstad JW: Variation in chromosome copy number influences the
virulence of Cryptococcus neoformans and occurs in isolates
from AIDS patients. BMC Genomics. 12:1–19. 2011. View Article : Google Scholar
|
|
70
|
Sasse C, Dunkel N, Schäfer T, Schneider S,
Dierolf F, Ohlsen K and Morschhäuser J: The stepwise acquisition of
fluconazole resistance mutations causes a gradual loss of fitness
in andida albicans. Mol Microbiol. 86:539–556. 2012. View Article : Google Scholar
|
|
71
|
Heil CS: Loss of heterozygosity and its
importance in evolution. J Mol Evol. 91:369–377. 2023. View Article : Google Scholar
|
|
72
|
Forche A, Abbey D, Pisithkul T, Weinzierl
MA, Ringstrom T, Bruck D, Petersen K and Berman J: Stress alters
rates and types of loss of heterozygosity in Candida
albicans. mBio. 2:e00129–e00111. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bennett RJ, Forche A and Berman J: Rapid
mechanisms for generating genome diversity: Whole ploidy shifts,
aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect
Med. 4:a0196042014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
White TC: Increased mRNA levels of ERG16,
CDR, and MDR1 correlate with increases in azole resistance in
Candida albicans isolates from a patient infected with human
immunodeficiency virus. Antimicrob Agents Chemother. 41:1482–1487.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Luna-Tapia A, Willems HME, Parker JE,
Tournu H, Barker KS, Nishimoto AT, Rogers PD, Kelly SL, Peters BM
and Palmer GE: Loss of Upc2p-inducible ERG3 transcription is
sufficient to confer niche-specific azole resistance without
compromising Candida albicans pathogenicity. mBio.
9:e00225–e00218. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rustad TR, Stevens DA, Pfaller MA and
White TC: Homozygosity at the Candida albicans MTL locus
associated with azole resistance. Microbiology. 148:1061–1072.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gambhir N, Harris SD and Everhart SE:
Evolutionary significance of fungal hypermutators: Lessons learned
from clinical strains and implications for fungal plant pathogens.
mSphere. 7:e00087–e00022. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Healey KR, Ortigosa CJ, Shor E and Perlin
DS: Genetic drivers of multidrug resistance in Candida
glabrata. Front Microbiol. 7:19952016. View Article : Google Scholar
|
|
79
|
Healey KR, Zhao Y, Perez WB, Lockhart SR,
Sobel JD, Farmakiotis D, Kontoyiannis DP, Sanglard D, Taj-Aldeen
SJ, Alexander BD, et al: Prevalent mutator genotype identified in
fungal pathogen Candida glabrata promotes multi-drug
resistance. Nat Commun. 7:111282016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Helmstetter N, Chybowska AD, Delaney C, Da
Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B,
Cuomo CA, et al: Population genetics and microevolution of clinical
Candida glabrata reveals recombinant sequence types and
hyper-variation within mitochondrial genomes, virulence genes, and
drug targets. Genetics. 221:iyac0312022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vale-Silva L, Beaudoing E, Tran VDT and
Sanglard D: Comparative genomics of two sequential Candida
glabrata clinical isolates. G3 (Bethesda). 7:2413–2426. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Boyce KJ, Wang Y, Verma S, Shakya VPS, Xue
C and Idnurm A: Mismatch repair of DNA replication errors
contributes to microevolution in the pathogenic fungus
Cryptococcus neoformans. mBio. 8:e00595–e00517. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dos Reis TF, Silva LP, de Castro PA, do
Carmo RA, Marini MM, da Silveira JF, Ferreira BH, Rodrigues F, Lind
AL, Rokas A and Goldman GH: The Aspergillus fumigatus
mismatch repair MSH2 homolog is important for virulence and azole
resistance. mSphere. 4:e00416–e00419. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H,
Li H, Zhang L, Chen L, Tian X, et al: Fungicide-tolerant persister
formation during cryptococcal pulmonary infection. Cell Host
Microbe. 32:276–289. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Silva S, Rodrigues CF, Araújo D, Rodrigues
ME and Henriques M: Candida Species Biofilms' antifungal
resistance. J Fungi (Basel). 3:82017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Massey J, Zarnowski R and Andes D: Role of
the extracellular matrix in Candida biofilm antifungal
resistance. FEMS Microbiol Rev. 47:fuad0592023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hommel B, Sturny-Leclère A, Volant S,
Veluppillai N, Duchateau M, Yu CH, Hourdel V, Varet H, Matondo M,
Perfect JR, et al: Cryptococcus neoformans resists to
drastic conditions by switching to viable but non-culturable cell
phenotype. PLoS Pathog. 15:e10079452019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Alanio A, Vernel-Pauillac F,
Sturny-Leclère A and Dromer F, Alanio A, Vernel-Pauillac F and
Dromer F: Cryptococcus neoformans host adaptation: Toward
biological evidence of dormancy. mBio. 6:e02580–e02514. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hayes BME, Anderson MA, Traven A, van der
Weerden NL and Bleackley MR: Activation of stress signalling
pathways enhances tolerance of fungi to chemical fungicides and
antifungal proteins. Cell Mol life Sci. 71:2651–2666. 2014.
View Article : Google Scholar
|
|
90
|
Cruz MC, Goldstein AL, Blankenship JR, Del
Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH and Heitman
J: Calcineurin is essential for survival during membrane stress in
Candida albicans. EMBO J. 21:546–559. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
LaFleur MD, Kumamoto CA and Lewis K:
Candida albicans biofilms produce antifungal-tolerant
persister cells. Antimicrob Agents Chemother. 50:3839–3846. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fréalle E, Aliouat-Denis CM, Delhaes L,
Hot D and Dei-Cas E: Transcriptomic insights into the oxidative
response of stress-exposed Aspergillus fumigatus. Curr Pharm
Des. 19:3713–3737. 2013. View Article : Google Scholar
|
|
93
|
Chang Z, Yadav V, Lee SC and Heitman J:
Epigenetic mechanisms of drug resistance in fungi. Fungal Genet
Biol. 132:1032532019. View Article : Google Scholar
|
|
94
|
Brandao FAS, Derengowski LS, Albuquerque
P, Nicola AM, Silva-Pereira I and Poças-Fonseca MJ: Histone
deacetylases inhibitors effects on Cryptococcus neoformans
major virulence phenotypes. Virulence. 6:618–630. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Brandão F, Esher SK, Ost KS, Pianalto K,
Nichols CB, Fernandes L, Bocca AL, Poças-Fonseca MJ and Alspaugh
JA: HDAC genes play distinct and redundant roles in
Cryptococcus neoformans virulence. Sci Rep. 8:52092018.
View Article : Google Scholar
|
|
96
|
Ranjan K, Brandão F, Morais JAV, Muehlmann
LA, Silva-Pereira I, Bocca AL, Matos LF and Poças-Fonseca MJ: The
role of Cryptococcus neoformans histone deacetylase genes in
the response to antifungal drugs, epigenetic modulators and to
photodynamic therapy mediated by an aluminium phthalocyanine
chloride nanoemulsion in vitro. J Photochem Photobiol B.
216:1121312021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nobile CJ, Fox EP, Nett JE, Sorrells TR,
Mitrovich QM, Hernday AD, Tuch BB, Andes DR and Johnson AD: A
recently evolved transcriptional network controls biofilm
development in Candida albicans. Cell. 148:126–138. 2012.
View Article : Google Scholar
|
|
98
|
Uppuluri P, Pierce CG, Thomas DP, Bubeck
SS, Saville SP and Lopez-Ribot JL: The transcriptional regulator
Nrg1p controls Candida albicans biofilm formation and
dispersion. Eukaryot Cell. 9:1531–1537. 2010. View Article : Google Scholar
|
|
99
|
Li X, Cai Q, Mei H, Zhou X, Shen Y, Li D
and Liu W: The Rpd3/Hda1 family of histone deacetylases regulates
azole resistance in Candida albicans. J Antimicrob
Chemother. 70:1993–2003. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Freitag M: Histone methylation by SET
domain proteins in fungi. Annu Rev Microbiol. 71:413–439. 2017.
View Article : Google Scholar
|
|
101
|
Honda S, Bicocca VT, Gessaman JD, Rountree
MR, Yokoyama A, Yu EY, Selker JM and Selker EU: Dual chromatin
recognition by the histone deacetylase complex HCHC is required for
proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci
USA. 113:E6135–E6144. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nai YS, Huang YC, Yen MR and Chen PY:
Diversity of fungal DNA methyltransferases and their association
with DNA methylation patterns. Front Microbiol. 11:6169222021.
View Article : Google Scholar
|
|
103
|
Jeon J, Choi J, Lee GW, Park SY, Huh A,
Dean RA and Lee YH: Genome-wide profiling of DNA methylation
provides insights into epigenetic regulation of fungal development
in a plant pathogenic fungus, Magnaporthe oryzae. Sci Rep.
5:85672015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Catania S, Dumesic PA, Pimentel H, Nasif
A, Stoddard CI, Burke JE, Diedrich JK, Cook S, Shea T, Geinger E,
et al: Evolutionary persistence of DNA methylation for millions of
years after ancient loss of a de novo methyltransferase. Cell.
180:263–277. 2020. View Article : Google Scholar
|
|
105
|
Baker KM, Hoda S, Saha D, Gregor JB,
Georgescu L, Serratore ND, Zhang Y, Cheng L, Lanman NA, Briggs SD,
et al: The Set1 histone H3K4 methyltransferase contributes to azole
susceptibility in a species-specific manner by differentially
altering the expression of drug efflux pumps and the ergosterol
gene pathway. Antimicrob Agents Chemother. 66:e02250–e02221. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Khemiri I, Tebbji F, Burgain A and Sellam
A: Regulation of copper uptake by the SWI/SNF chromatin remodeling
complex in Candida albicans affects susceptibility to
antifungal and oxidative stresses under hypoxia. FEMS Yeast Res.
24:foae0182024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Salem-Bango Z, Price TK, Chan JL,
Chandrasekaran S, Garner OB and Yang S: Fungal whole-genome
sequencing for species identification: From test development to
clinical utilization. J Fungi (Basel). 9:1832023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jiang S, Chen Y, Han S, Lv L and Li L:
Next-generation sequencing applications for the study of fungal
pathogens. Microorganisms. 10:18822022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu SY, Lin JQ, Wu HL, Wang CC, Huang SJ,
Luo YF, Sun JH, Zhou JX, Yan SJ, He JG, et al: Bisulfite sequencing
reveals that Aspergillus flavus holds a hollow in DNA
methylation. PLoS One. 7:e303492012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tan K and Wong KH: RNA polymerase II
ChIP-seq-a powerful and highly affordable method for studying
fungal genomics and physiology. Biophys Rev. 11:79–82. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Roemer T and Krysan DJ: Antifungal drug
development: Challenges, unmet clinical needs, and new approaches.
Cold Spring Harb Perspect Med. 4:a0197032014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fisher MC, Alastruey-Izquierdo A, Berman
J, Bicanic T, Bignell E, Bowyer P, Bromley M, Brüggemann R, Garber
G, Cornely OA, et al: Tackling the emerging threat of antifungal
resistance to human health. Nat Rev Microbiol. 20:557–571. 2022.
View Article : Google Scholar
|
|
113
|
Grand View Research, . Antifungal drugs
market size, share & growth report 2030 [Internet].
2025.Available from:. https://www.grandviewresearch.com/industry-analysis/antifungal-drugs-market
|
|
114
|
Pyrpasopoulou A, Iosifidis E,
Antachopoulos C and Roilides E: Antifungal drug dosing adjustment
in critical patients with invasive fungal infections. J Emerg Crit
Care Med. 3:10.21037/jeccm.2019.08.01. 2019. View Article : Google Scholar
|
|
115
|
Baracaldo-Santamaría D, Cala-Garcia JD,
Medina-Rincón GJ, Rojas-Rodriguez LC and Calderon-Ospina CA:
Therapeutic drug monitoring of antifungal agents in critically ill
patients: Is there a need for dose optimisation? Antibiotics
(Basel). 11:6452022. View Article : Google Scholar
|
|
116
|
Glampedakis E, Coste AT, Aruanno M,
Bachmann D, Delarze E, Erard V and Lamoth F: Efficacy of antifungal
monotherapies and combinations against Aspergillus
calidoustus. Antimicrob Agents Chemother. 62:e01137–e01118.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Rieger CT, Ostermann H, Kolb HJ, Fiegl M,
Huppmann S, Morgenstern N and Tischer J: A clinical cohort trial of
antifungal combination therapy: Efficacy and toxicity in
haematological cancer patients. Ann Hematol. 87:915–922. 2008.
View Article : Google Scholar
|
|
118
|
Candoni A, Caira M, Cesaro S, Busca A,
Giacchino M, Fanci R, Delia M, Nosari A, Bonini A, Cattaneo C, et
al: Multicentre surveillance study on feasibility, safety and
efficacy of antifungal combination therapy for proven or probable
invasive fungal diseases in haematological patients: the SEIFEM
real-life combo study. Mycoses. 57:342–350. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tu B, Yin G and Li H: Synergistic effects
of vorinostat (SAHA) and azoles against Aspergillus species
and their biofilms. BMC Microbiol. 20:1–7. 2020. View Article : Google Scholar
|
|
120
|
Rodrigues CF, Alves DF and Henriques M:
Combination of Posaconazole and Amphotericin B in the treatment of
Candida glabrata biofilms. Microorganisms. 6:1232018.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Vitale RG: Role of antifungal combinations
in difficult to treat Candida infections. J Fungi (Basel).
7:7312021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fernandes CM, Dasilva D, Haranahalli K,
McCarthy JB, Mallamo J, Ojima I and Del Poeta M: The future of
antifungal drug therapy: Novel compounds and targets. Antimicrob
Agents Chemother. 65:e01719–e01720. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Hodges MR, Tawadrous M, Cornely OA,
Thompson GR III, Slavin MA, Maertens JA, Dadwal SS, Rahav G, Hazel
S, Almas M, et al: Fosmanogepix for the treatment of invasive mold
diseases caused by Aspergillus species and rare molds: A
phase 2, open-label study (AEGIS). Clin Infect Dis. 9:ciaf1852025.
View Article : Google Scholar
|
|
124
|
Oliver JD, Sibley GEM, Beckmann N, Dobb
KS, Slater MJ, McEntee L, du Pré S, Livermore J, Bromley MJ,
Wiederhold NP, et al: F901318 represents a novel class of
antifungal drug that inhibits dihydroorotate dehydrogenase. Proc
Natl Acad Sci USA. 113:12809–12814. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tawfik DM, Dereux C, Tremblay JA, Boibieux
A, Braye F, Cazauran JB, Rabodonirina M, Cerrato E, Guichard A,
Venet F, et al: Interferon gamma as an immune modulating adjunct
therapy for invasive mucormycosis after severe burn-A case report.
Front Immunol. 13:8836382022. View Article : Google Scholar
|
|
126
|
Albahar F, Alhamad H, Assab MA, Abu-Farha
R, Alawi L and Khaleel S: The impact of antifungal stewardship on
clinical and performance measures: A global systematic review. Trop
Med Infect Dis. 9:82023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Kühbacher A, Birch M, Oliver JD and
Gsaller F: Anti-Aspergillus activities of olorofim at
sub-MIC levels during early-stage growth. Microbiol Spectr.
12:e03304–e03323. 2024. View Article : Google Scholar
|
|
128
|
Rhein J, Hullsiek KH, Tugume L, Nuwagira
E, Mpoza E, Evans EE, Kiggundu R, Pastick KA, Ssebambulidde K,
Akampurira A, et al: Adjunctive sertraline for HIV-associated
cryptococcal meningitis: A randomised, placebo-controlled,
double-blind phase 3 trial. Lancet Infect Dis. 19:843–851. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu Q, Guo X, Jiang G, Wu G, Miao H, Liu
K, Chen S, Sakamoto N, Kuno T, Yao F and Fang Y: NADPH-cytochrome
P450 reductase Ccr1 is a target of tamoxifen and participates in
its antifungal activity via regulating cell wall integrity in
fission yeast. Antimicrob Agents Chemother. 64:e00079–e00072. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Dai X, Liu X, Li J, Chen H, Yan C, Li Y,
Liu H, Deng D and Wang X: Structural insights into the inhibition
mechanism of fungal GWT1 by manogepix. Nat Commun. 15:91942024.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Schwebke JR, Sobel R, Gersten JK, Sussman
SA, Lederman SN, Jacobs MA, Chappell BT, Weinstein DL, Moffett AH,
Azie NE, et al: Ibrexafungerp versus placebo for vulvovaginal
candidiasis treatment: A phase 3, randomized, controlled
superiority trial (VANISH 303). Clin Infect Dis. 74:1979–1985.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
(FDA) USF and DA, . Drug trials snapshots:
brexafemme [Internet]. FDA; 2023, Available from:. https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-brexafemme
|
|
133
|
Firooz A, Nafisi S and Maibach HI: Novel
drug delivery strategies for improving econazole antifungal action.
Int J Pharm. 495:599–607. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Nami S, Aghebati-Maleki A and
Aghebati-Maleki L: Current applications and prospects of
nanoparticles for antifungal drug delivery. EXCLI J. 20:562–584.
2021.PubMed/NCBI
|
|
135
|
Stone NRH, Bicanic T, Salim R and Hope W:
Liposomal amphotericin B (AmBisome®): A review of the
pharmacokinetics, pharmacodynamics, clinical experience and future
directions. Drugs. 76:485–500. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Jarvis JN, Lawrence DS, Meya DB, Kagimu E,
Kasibante J, Mpoza E, Rutakingirwa MK, Ssebambulidde K, Tugume L,
Rhein J, et al: Single-dose liposomal amphotericin B treatment for
cryptococcal meningitis. N Engl J Med. 386:1109–1120. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Empitu MA, Kadariswantiningsih IN and
Shakri NM: Pharmacological strategies for targeting biofilms in
otorhinolaryngologic infections and overcoming antimicrobial
resistance. Biomed Rep. 22:952025. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Vera-González N, Bailey-Hytholt CM,
Langlois L, de Camargo Ribeiro F, de Souza Santos EL, Junqueira JC
and Shukla A: Anidulafungin liposome nanoparticles exhibit
antifungal activity against planktonic and biofilm Candida
albicans. J Biomed Mater Res Part A. 108:2263–2276. 2020.
View Article : Google Scholar
|
|
139
|
El-Housiny S, Eldeen MA, El-Attar YA,
Salem HA, Attia D, Bendas ER and El-Nabarawi MA: Fluconazole-loaded
solid lipid nanoparticles topical gel for treatment of pityriasis
versicolor: Formulation and clinical study. Drug Deliv. 25:78–90.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Raad I, Mohamed JA, Reitzel RA, Jiang Y,
Raad S, Al Shuaibi M, Chaftari AM and Hachem RY: Improved
antibiotic-impregnated catheters with extended-spectrum activity
against resistant bacteria and fungi. Antimicrob Agents Chemother.
56:935–941. 2012. View Article : Google Scholar : PubMed/NCBI
|