|
1
|
Kim T and Croce CM: MicroRNA: Trends in
clinical trials of cancer diagnosis and therapy strategies. Exp Mol
Med. 55:1314–1321. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Diener C, Keller A and Meese E: Emerging
concepts of miRNA therapeutics: From cells to clinic. Trends Genet.
38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bautista-Sánchez D, Arriaga-Canon C,
Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R,
Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C,
Fragoso-Ontiveros V, Álvarez-Gómez RM and Herrera LA: The promising
role of miR-21 as a cancer biomarker and its importance in
RNA-based therapeutics. Mol Ther Nucleic Acids. 20:409–420. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chawra HS, Agarwal M, Mishra A, Chandel
SS, Singh RP, Dubey G, Kukreti N and Singh M: MicroRNA-21′s role in
PTEN suppression and PI3K/AKT activation: Implications for cancer
biology. Pathol Res Pract. 254:1550912024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fu J, Imani S, Wu MY and Wu RC:
MicroRNA-34 family in cancers: Role, mechanism, and therapeutic
potential. Cancers (Basel). 15:47232023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jame-Chenarboo F, Ng HH, Macdonald D and
Mahal LK: High-throughput analysis reveals miRNA upregulating
α-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Cent
Sci. 8:1527–1536. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Laitinen P, Väänänen MA, Kolari IL,
Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm
T, Ylä-Herttuala S, et al: Nuclear microRNA-466c regulates Vegfa
expression in response to hypoxia. PLoS One. 17:e02659482022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang J, Cheng C, Yuan X, He JT, Pan QH
and Sun FY: microRNA-155 acts as an oncogene by targeting the tumor
protein 53-induced nuclear protein 1 in esophageal squamous cell
carcinoma. Int J Clin Exp Pathol. 7:602–610. 2014.PubMed/NCBI
|
|
10
|
Fornari F, Gramantieri L, Ferracin M,
Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM,
Bolondi L and Negrini M: MiR-221 controls CDKN1C/p57 and CDKN1B/p27
expression in human hepatocellular carcinoma. Oncogene.
27:5651–5661. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Aqeilan RI, Calin GA and Croce CM: miR-15a
and miR-16-1 in cancer: Discovery, function and future
perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Poli V, Secli L and Avalle L: The
microrna-143/145 cluster in tumors: A matter of where and when.
Cancers (Basel). 17:7082020. View Article : Google Scholar
|
|
13
|
Lacombe J and Zenhausern F: Emergence of
miR-34a in radiation therapy. Crit Rev Oncol Hematol. 109:69–78.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hussen BM, Hidayat HJ, Salihi A, Sabir DK,
Taheri M and Ghafouri-Fard S: MicroRNA: A signature for cancer
progression. Biomed Pharmacother. 138:1115282021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Condrat CE, Thompson DC, Barbu MG, Bugnar
OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs
as biomarkers in disease: Latest findings regarding their role in
diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lagos-Quintana M, Rauhut R, Yalcin A,
Meyer J, Lendeckel W and Tuschl T: Identification of
tissue-specific microRNAs from mouse. Current Biol. 12:735–739.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Petrou L and Ladame S: On-chip miRNA
extraction platforms: Recent technological advances and
implications for next generation point-of-care nucleic acid tests.
Lab Chip. 22:463–475. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C,
Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast
cancer proliferation and metastasis by targeting LZTFL1. BMC
Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lawrie CH, Gal S, Dunlop HM, Pushkaran B,
Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J,
Wainscoat JS, et al: Detection of elevated levels of
tumour-associated microRNAs in serum of patients with diffuse large
B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ojha R, Nandani R, Pandey RK, Mishra A and
Prajapati VK: Emerging role of circulating microRNA in the
diagnosis of human infectious diseases. J Cell Physiol.
234:1030–1043. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Oses M, Margareto Sanchez J, Portillo MP,
Aguilera CM and Labayen I: Circulating miRNAs as biomarkers of
obesity and obesity-associated comorbidities in children and
adolescents: A systematic review. Nutrients. 11:28902019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang L and Zhang L: Circulating exosomal
miRNA as diagnostic biomarkers of neurodegenerative diseases. Front
Mol Neurosci. 13:532020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Port M, Hérodin F, Valente M, Drouet M,
Ostheim P, Majewski M and Abend M: Persistent mRNA and miRNA
expression changes in irradiated baboons. Sci Rep. 8:153532018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Port M, Herodin F, Valente M, Drouet M,
Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M and Abend M:
MicroRNA expression for early prediction of late occurring
hematologic acute radiation syndrome in baboons. PLoS One.
11:e01653072016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Halimi M, Shahabi A, Moslemi D, Parsian H,
Asghari SM, Sariri R, Yeganeh F and Zabihi E: Human serum miR-34a
as an indicator of exposure to ionizing radiation. Radiat Environ
Biophys. 55:423–429. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dinh TK, Fendler W, Chałubińska-Fendler J,
Acharya SS, O'Leary C, Deraska PV, D'Andrea AD, Chowdhury D and
Kozono D: Circulating miR-29a and miR-150 correlate with delivered
dose during thoracic radiation therapy for non-small cell lung
cancer. Radiat Oncol. 11:612016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rezaeian AH, Khanbabaei H and Calin GA:
Therapeutic potential of the miRNA-ATM axis in the management of
tumor radioresistance. Cancer Res. 80:139–150. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mao A, Liu Y, Zhang H, Di C and Sun C:
microRNA expression and biogenesis in cellular response to ionizing
radiation. DNA Cell Biol. 33:667–679. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wan G, Mathur R, Hu X, Zhang X and Lu X:
miRNA response to DNA damage. Trends Biochem Sci. 36:478–484. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu ZL, Wang H, Liu J and Wang ZX:
MicroRNA-21 (miR-21) expression promotes growth, metastasis, and
chemo- or radioresistance in non-small cell lung cancer cells by
targeting PTEN. Mol Cell Biochem. 372:35–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang X, Wan G, Berger FG, He X and Lu X:
The ATM kinase induces microRNA biogenesis in the DNA damage
response. Mol Cell. 41:371–383. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Moertl S, Mutschelknaus L, Heider T and
Atkinson MJ: MicroRNAs as novel elements in personalized
radiotherapy. Transl Cancer Res. 5 (Suppl 6):S1262–S1269. 2016.
View Article : Google Scholar
|
|
34
|
Zhao L, Bode AM, Cao Y and Dong Z:
Regulatory mechanisms and clinical perspectives of miRNA in tumor
radiosensitivity. Carcinogenesis. 33:2220–2227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hu H, Du L, Nagabayashi G, Seeger RC and
Gatti RA: ATM is down-regulated by N-Myc-regulated microRNA-421.
Proc Natl Acad Sci USA. 107:1506–1511. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lal A, Pan Y, Navarro F, Dykxhoorn DM,
Moreau L, Meire E, Bentwich Z, Lieberman J and Chowdhury D:
miR-24-mediated downregulation of H2AX suppresses DNA repair in
terminally differentiated blood cells. Nat Struct Mol Biol.
16:492–498. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo
YY, Mao H, Hao C, Olson JJ, Curran WJ and Wang Y: Targeting
DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS
One. 5:e113972010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Crosby ME, Kulshreshtha R, Ivan M and
Glazer PM: MicroRNA regulation of DNA repair gene expression in
hypoxic stress. Cancer Res. 69:1221–1229. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F,
Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z and Chun-Sheng
K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell
proliferation and radioresistance by targeting PTEN. BMC Cancer.
10:3672010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Stephen YC and Joseph L: MicroRNA-210: A
unique and pleiotropic hypoxamir. Cell Cycle. 9:1072–1083. 2010.
View Article : Google Scholar
|
|
41
|
Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang
Z, Qiu L and Jia X: MicroRNA-144 affects radiotherapy sensitivity
by promoting proliferation, migration and invasion of breast cancer
cells. Oncol Rep. 34:1845–1852. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Buffa FM, Camps C, Winchester L, Snell CE,
Gee HE, Sheldon H, Taylor M, Harris AL and Ragoussis J:
microRNA-associated progression pathways and potential therapeutic
targets identified by integrated mRNA and microRNA expression
profiling in breast cancer. Cancer Res. 71:5635–5645. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lin J, Liu C, Gao F, Mitchel RE, Zhao L,
Yang Y, Lei J and Cai J: miR-200c enhances radiosensitivity of
human breast cancer cells. J Cell Biochem. 114:606–615. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye
F and Xie X, Chen J, Tang H and Xie X: miR-200c inhibits breast
cancer proliferation by targeting KRAS. Oncotarget. 6:34968–34978.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
De Santis C and Götte M: The role of
microRNA Let-7d in female malignancies and diseases of the female
reproductive tract. Int J Mol Sci. 22:73592021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sun H, Ding C, Zhang H and Gao J: Let-7
miRNAs sensitize breast cancer stem cells to radiation-induced
repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling
pathway. Mol Med Rep. 14:3285–3292. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pajic M, Froio D, Daly S, Doculara L,
Millar E, Graham PH, Drury A, Steinmann A, de Bock CE,
Boulghourjian A, et al: miR-139-5p modulates radiotherapy
resistance in breast cancer by repressing multiple gene networks of
DNA repair and ROS defense. Cancer Res. 78:501–515. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Numakura K, Kobayashi M, Muto Y, Sato H,
Sekine Y, Sobu R, Aoyama Y, Takahashi Y, Okada S, Sasagawa H, et
al: The current trend of radiation therapy for patients with
localized prostate cancer. Curr Oncol. 30:8092–8110. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D,
Li X and Hu B: A feedback regulation between miR-145 and DNA
methyltransferase 3b in prostate cancer cell and their responses to
irradiation. Cancer Lett. 361:121–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang X, Taeb S, Jahangiri S, Emmenegger
U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al:
miRNA-95 mediates radioresistance in tumors by targeting the
sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xi M, Cheng L, Hua W, Zhou YL, Gao QL,
Yang JX and Qi SY: MicroRNA-95-3p promoted the development of
prostatic cancer via regulating DKK3 and activating Wnt/β-catenin
pathway. Eur Rev Med Pharmacol Sci. 23:1002–1011. 2019.PubMed/NCBI
|
|
52
|
Ni J, Bucci J, Chang L, Malouf D, Graham P
and Li Y: Targeting MicroRNAs in prostate cancer radiotherapy.
Theranostics. 7:3243–3259. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sang Z, Jiang X, Guo L and Yin G:
MicroRNA-9 suppresses human prostate cancer cell viability,
invasion and migration via modulation of mitogen-activated protein
kinase kinase kinase 3 expression. Mol Med Rep. 19:4407–4418.
2019.PubMed/NCBI
|
|
54
|
Xu CG, Yang MF, Fan JX and Wang W: MiR-30a
and miR-205 are downregulated in hypoxia and modulate
radiosensitivity of prostate cancer cells by inhibiting autophagy
via TP53INP1. Eur Rev Med Pharmacol Sci. 20:1501–1508.
2016.PubMed/NCBI
|
|
55
|
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao
X, Miao P, Tang T, Wang L, Liu W, et al: miR-22 inhibits tumor
growth and metastasis by targeting ATP citrate lyase: Evidence in
osteosarcoma, prostate cancer, cervical cancer and lung cancer.
Oncotarget. 7:44252–44265. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li B, Shi XB, Nori D, Chao CK, Chen AM,
Valicenti R and White Rde V: Down-regulation of microRNA 106b is
involved in p21-mediated cell cycle arrest in response to radiation
in prostate cancer cells. Prostate. 71:567–574. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mao A, Zhao Q, Zhou X, Sun C, Si J, Zhou
R, Gan L and Zhang H: MicroRNA-449a enhances radiosensitivity by
downregulation of c-Myc in prostate cancer cells. Sci Rep.
6:273462016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wagner S, Ngezahayo A, Murua Escobar H and
Nolte I: Role of miRNA let-7 and its major targets in prostate
cancer. Biomed Res Int. 2014:3763262014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li WJ, Liu X, Dougherty EM and Tang DG:
MicroRNA-34a, prostate cancer stem cells, and therapeutic
development. Cancers (Basel). 14:45382022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Abdelaal AM, Sohal IS, Iyer SG, Sudarshan
K, Orellana EA, Ozcan KE, Dos Santos AP, Low PS and Kasinski AL:
Selective targeting of chemically modified miR-34a to prostate
cancer using a small molecule ligand and an endosomal escape agent.
Mol Ther Nucleic Acids. 35:1021932024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guan H, You Z, Wang C, Fang F, Peng R, Mao
L, Xu B and Chen M: MicroRNA-200a suppresses prostate cancer
progression through BRD4/AR signaling pathway. Cancer Med.
8:1474–1485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kozak J, Jonak K and Maciejewski R: The
function of miR-200 family in oxidative stress response evoked in
cancer chemotherapy and radiotherapy. Biomed Pharmacother.
125:1100372020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Konoshenko MY, Bryzgunova OE and Laktionov
PP: miRNAs and radiotherapy response in prostate cancer. Andrology.
9:529–545. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hua Y, Liang C, Miao C, Wang S, Su S, Shao
P, Liu B, Bao M, Zhu J, Xu A, et al: MicroRNA-126 inhibits
proliferation and metastasis in prostate cancer via regulation of
ADAM9. Oncol Lett. 15:9051–9060. 2018.PubMed/NCBI
|
|
65
|
Saini S, Majid S, Yamamura S, Tabatabai L,
Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y and Dahiya R:
Regulatory role of mir-203 in prostate cancer progression and
metastasis. Clin Cancer Res. 17:5287–5298. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY,
Zhang H, Li DG, Wang YY, Wu HY, She Y, et al: Expression and
function of miRNA in postoperative radiotherapy sensitive and
resistant patients of non-small cell lung cancer. Lung Cancer.
72:92–99. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tian F, Han Y, Yan X, Zhong D, Yang G, Lei
J, Li X and Wang X: Upregulation of microrna-451 increases the
sensitivity of A549 cells to radiotherapy through enhancement of
apoptosis. Thorac Cancer. 7:226–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li L and Wang D: MicroRNA-128-b regulates
epidermal growth factor receptor expression in non-small cell lung
cancer. Mol Med Rep. 20:4803–4810. 2019.PubMed/NCBI
|
|
69
|
Liu JK, Liu HF, Ding Y and Gao GD:
Predictive value of microRNA let-7a expression for efficacy and
prognosis of radiotherapy in patients with lung cancer brain
metastasis: A case-control study. Medicine (Baltimore).
97:e128472018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li
YJ, Xie N, Liu LY, Wang PY, Zhang C and Xie SY: Induction of
microRNA-let-7a inhibits lung adenocarcinoma cell growth by
regulating cyclin D1. Oncol Rep. 40:1843–1854. 2018.PubMed/NCBI
|
|
71
|
Fu J, Jiang M, Zhang M, Zhang J, Wang Y,
Xiang S, Xu X, Ye Q and Song H: MiR-495 functions as an adjuvant to
radiation therapy by reducing the radiation-induced bystander
effect. Acta Biochim Biophys Sin (Shanghai). 48:1026–1033. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zheng HE, Wang G, Song J, Liu Y, Li YM and
Du WP: MicroRNA-495 inhibits the progression of non-small-cell lung
cancer by targeting TCF4 and inactivating Wnt/β-catenin pathway.
Eur Rev Med Pharmacol Sci. 22:7750–7759. 2018.PubMed/NCBI
|
|
73
|
Tang H, Cai L, He X, Niu Z and Huang H, Hu
W, Bian H and Huang H: Radiation-induced bystander effect and its
clinical implications. Front Oncol. 13:11244122023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang H, Zhan Y, Jin J, Zhang C and Li W:
MicroRNA-15b promotes proliferation and invasion of non-small cell
lung carcinoma cells by directly targeting TIMP2. Oncol Rep.
37:3305–3312. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rahman M, Lovat F, Romano G, Calore F,
Acunzo M, Bell EH and Nana-Sinkam P: miR-15b/16-2 regulates factors
that promote p53 phosphorylation and augments the DNA damage
response following radiation in the lung. J Biol Chem.
289:26406–26416. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gu Y, Pais G, Becker V, Körbel C, Ampofo
E, Ebert E, Hohneck J, Ludwig N, Meese E, Bohle RM, et al:
Suppression of endothelial miR-22 mediates non-small cell lung
cancer cell-induced angiogenesis. Mol Ther Nucleic Acids.
26:849–864. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jiang W, Han X, Wang J, Wang L, Xu Z, Wei
Q, Zhang W and Wang H: miR-22 enhances the radiosensitivity of
small-cell lung cancer by targeting the WRNIP1. J Cell Biochem.
120:17650–17661. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sagar SK: miR-106b as an emerging
therapeutic target in cancer. Genes Dis. 9:889–899. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yin W, Chen J, Wang G and Zhang D:
MicroRNA-106b functions as an oncogene and regulates tumor
viability and metastasis by targeting LARP4B in prostate cancer.
Mol Med Rep. 20:951–958. 2019.PubMed/NCBI
|
|
80
|
Baumgartner U, Berger F, Hashemi Gheinani
A, Burgener SS, Monastyrskaya K and Vassella E: miR-19b enhances
proliferation and apoptosis resistance via the EGFR signaling
pathway by targeting PP2A and BIM in non-small cell lung cancer.
Mol Cancer. 17:442018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zaporozhchenko IA, Morozkin ES, Skvortsova
TE, Ponomaryova AA, Rykova EY, Cherdyntseva NV, Polovnikov ES,
Pashkovskaya OA, Pokushalov EA, Vlassov VV and Laktionov PP: Plasma
miR-19b and miR-183 as potential biomarkers of lung cancer. PLoS
One. 11:e01652612016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ma Y, Xia H, Liu Y and Li M: Silencing
miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing
radiation through inhibition of PI3K/Akt. Biomed Res Int.
2014:6178682014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang W, Li X, Liu C, Zhang X, Wu Y, Diao
M, Tan S, Huang S, Cheng Y and You T: MicroRNA-21 as a diagnostic
and prognostic biomarker of lung cancer: A systematic review and
meta-analysis. Biosci Rep. 42:BSR202116532022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li Y, Liang M, Zhang Y, Yuan B, Gao W, Shi
Z and Bai J: miR-93, miR-373, and miR-17-5p negatively regulate the
expression of TBP2 in lung cancer. Front Oncol. 10:5262020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lv J, An J, Zhang YD, Li ZX, Zhao GL, Gao
J, Hu WW, Chen HM, Li AM and Jiang QS: A three serum miRNA panel as
diagnostic biomarkers of radiotherapy-related metastasis in
non-small cell lung cancer. Oncol Lett. 20:2362020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wei MC, Wang YM and Wang DW:
miR-130a-mediated KLF3 can inhibit the growth of lung cancer cells.
Cancer Manag Res. 13:2995–3004. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yuan Y, Liao H, Pu Q, Ke X, Hu X, Ma Y,
Luo X, Jiang Q, Gong Y, Wu M, et al: miR-410 induces both
epithelial-mesenchymal transition and radioresistance through
activation of the PI3K/mTOR pathway in non-small cell lung cancer.
Signal Transduct Target Ther. 5:852020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y,
Rao S, Tan S, Xia L, Lin J, et al: MiRNAs in radiotherapy
resistance of nasopharyngeal carcinoma. J Cancer. 11:3976–3985.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Qu JQ, Yi HM, Ye X, Zhu JF, Yi H, Li LN,
Xiao T, Yuan L, Li JY, Wang YY, et al: MiRNA-203 reduces
nasopharyngeal carcinoma radioresistance by targeting IL8/AKT
signaling. Mol Cancer Ther. 14:2653–2664. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wu W, Chen X, Yu S, Wang R, Zhao R and Du
C: microRNA-222 promotes tumor growth and confers radioresistance
in nasopharyngeal carcinoma by targeting PTEN. Mol Med Rep.
17:1305–1310. 2018.PubMed/NCBI
|
|
91
|
Zheng CP, Han L, Hou WJ, Tang J, Wen YH,
Fu R, Wang YJ and Wen WP: MicroRNA-9 suppresses the sensitivity of
CNE2 cells to ultraviolet radiation. Mol Med Rep. 12:2367–2373.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang Y, Zheng L, Lin S, Liu Y, Wang Y and
Gao F: MiR-124 enhances cell radiosensitivity by targeting PDCD6 in
nasopharyngeal carcinoma. Int J Clin Exp Pathol. 10:11461–11470.
2017.PubMed/NCBI
|
|
93
|
Angelicone I, de Giacomo F, Priore A,
Rotondi M, Facondo G and Osti MF: Radiotherapy in gastric cancer:
Does it still play a significant role? Dig Med Res. 6:252023.
View Article : Google Scholar
|
|
94
|
Manoel-Caetano FS, Rossi AFT, Calvet de
Morais G, Severino FE and Silva AE: Upregulation of the APE1 and
H2AX genes and miRNAs involved in DNA damage response and repair in
gastric cancer. Genes Dis. 6:176–184. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Deng S, Zhang X, Qin Y, Chen W, Fan H,
Feng X, Wang J, Yan R, Zhao Y, Cheng Y, et al: miRNA-192 and −215
activate Wnt/β-catenin signaling pathway in gastric cancer via APC.
J Cell Physiol. 235:6218–6229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ge Y, Wang B, Xiao J, Wu H and Shao Q:
NUSAP1 promotes gastric cancer radioresistance by inhibiting
ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer
Res Clin Oncol. 150:4062024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu J, Yan S, Hu J, Ding D and Liu Y, Li
X, Pan HS, Liu G, Wu B and Liu Y: MiRNA-4537 functions as a tumor
suppressor in gastric cancer and increases the radiosensitivity of
gastric cancer cells. Bioengineered. 12:8457–8467. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wei Y, Wang Y, Zang A, Wang Z, Fang G and
Hong D: MiR-4766-5p inhibits the development and progression of
gastric cancer by targeting NKAP. Onco Targets Ther. 12:8525–8536.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
He J, Hua J, Ding N, Xu S, Sun R, Zhou G,
Xie X and Wang J: Modulation of microRNAs by ionizing radiation in
human gastric cancer. Oncol Rep. 32:787–793. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li Z, Yang H, Ye L, Quan R and Chen M:
Role of exosomal miRNAs in brain metastasis affected by
radiotherapy. Transl Neurosci. 12:127–137. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang J, Yu D, Liu X, Changyong E and Yu S:
LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma.
Cancer Biol Ther. 21:758–766. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Devara D, Choudhary Y and Kumar S: Role of
MicroRNA-502-3p in human diseases. Pharmaceuticals (Basel).
16:5322023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Pedroza-Torres A, López-Urrutia E,
García-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza
O, López-Camarillo C, De Leon DC, Fernández-Retana J, Cerna-Cortés
JF and Pérez-Plasencia C: MicroRNAs in cervical cancer: Evidences
for a miRNA profile deregulated by HPV and its impact on
radio-resistance. Molecules. 19:6263–6281. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wei YQ, Jiao XL, Zhang SY, Xu Y and Kong
BH: MiR-9-5p could promote angiogenesis and radiosensitivity in
cervical cancer by targeting SOCS5. Eur Rev Med Pharmacol Sci.
23:7314–7326. 2019.PubMed/NCBI
|
|
105
|
Aguilar-Martinez SY, Campos-Viguri GE,
Medina-Garcia SE, García-Flores RJ, Deas J, Gómez-Cerón C,
Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G,
Rodríguez-Dorantes M, et al: MiR-21 regulates growth and migration
of cervical cancer cells by RECK signaling pathway. Int J Mol Sci.
25:40862024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Masadah R, Rauf S, Pratama MY, Tiribelli C
and Pascut D: The role of microRNAs in the cisplatin- and
radio-resistance of cervical cancer. Cancers (Basel). 13:11682021.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nilsen A, Hillestad T, Skingen VE, Aarnes
EK, Fjeldbo CS, Hompland T, Evensen TS, Stokke T, Kristensen GB,
Grallert B and Lyng H: miR-200a/b/-429 downregulation is a
candidate biomarker of tumor radioresistance and independent of
hypoxia in locally advanced cervical cancer. Mol Oncol.
16:1402–1419. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yuan W, Xiaoyun H, Haifeng Q, Jing L,
Weixu H, Ruofan D, Jinjin Y and Zongji S: MicroRNA-218 enhances the
radiosensitivity of human cervical cancer via promoting radiation
induced apoptosis. Int J Med Sci. 11:691–696. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang P, Zhai G and Bai Y: Values of
miR-34a and miR-218 expression in the diagnosis of cervical cancer
and the prediction of prognosis. Oncol Lett. 15:3580–3585.
2018.PubMed/NCBI
|
|
110
|
Wang W, Li Y, Liu N, Gao Y and Li L:
MiR-23b controls ALDH1A1 expression in cervical cancer stem cells.
BMC Cancer. 17:2922017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li YM, Li XJ, Yang HL, Zhang YB and Li JC:
MicroRNA-23b suppresses cervical cancer biological progression by
directly targeting six1 and affecting epithelial-to-mesenchymal
transition and AKT/mTOR signaling pathway. Eur Rev Med Pharmacol
Sci. 23:4688–4697. 2019.PubMed/NCBI
|
|
112
|
Zhao S, Yan L, Zhao Z and Rong F:
Up-regulation of miR-203 inhibits the growth of cervical cancer
cells by inducing cell cycle arrest and apoptosis. Eur J Gynaecol
Oncol. 40:791–795. 2019.
|
|
113
|
Mansour WY, Bogdanova NV, Kasten-Pisula U,
Rieckmann T, Köcher S, Borgmann K, Baumann M, Krause M, Petersen C,
Hu H, et al: Aberrant overexpression of miR-421 downregulates ATM
and leads to a pronounced DSB repair defect and clinical
hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol.
106:147–154. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Gao Q, Ren Z, Jiao S, Guo J, Miao X, Wang
J and Liu J: HIF-3α-induced miR-630 expression promotes cancer
hallmarks in cervical cancer cells by forming a positive feedback
loop. J Immunol Res. 2022:52629632022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM,
Taheri M and Samadian M: A review on the role of miR-1246 in the
pathoetiology of different cancers. Front Mol Biosci. 8:7718352021.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Guz M, Jeleniewicz W and Cybulski M: An
insight into miR-1290: An oncogenic miRNA with diagnostic
potential. Int J Mol Sci. 23:12342022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hanna J, Hossain GS and Kocerha J: The
potential for microRNA therapeutics and clinical research. Front
Genet. 10:4782019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Dasgupta I and Chatterjee A: recent
advances in miRNA delivery systems. Methods Protoc. 4:102021.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Reda El Sayed S, Cristante J, Guyon L,
Denis J, Chabre O and Cherradi N: MicroRNA therapeutics in cancer:
Current advances and challenges. Cancers (Basel). 13:26802021.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Babar IA, Czochor J, Steinmetz A, Weidhaas
JB, Glazer PM and Slack FJ: Inhibition of hypoxia-induced miR-155
radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther.
12:908–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Robertson ED, Wasylyk C, Ye T, Jung AC and
Wasylyk B: The oncogenic MicroRNA Hsa-miR-155-5p targets the
transcription factor ELK3 and links it to the hypoxia response.
PLoS One. 9:e1130502014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wu F, Yang Z and Li G: Role of specific
microRNAs for endothelial function and angiogenesis. Biochem
Biophys Res Commun. 386:549–553. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Fasanaro P, Greco S, Lorenzi M, Pescatori
M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Calin GA, Ivan M,
et al: An integrated approach for experimental target
identification of hypoxia-induced miR-210. J Biol Chem.
284:35134–35143. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
van Beijnum JR, Giovannetti E, Poel D,
Nowak-Sliwinska P and Griffioen AW: miRNAs: Micro-managers of
anticancer combination therapies. Angiogenesis. 20:269–285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Pan Y, Zhang Y, Jia T, Zhang K, Li J and
Wang L: Development of a microRNA delivery system based on
bacteriophage MS2 virus-like particles. FEBS J. 279:1198–1208.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Campani V, De Rosa G, Misso G, Zarone MR
and Grimaldi A: Lipid nanoparticles to deliver miRNA in cancer.
Curr Pharm Biotechnol. 17:741–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chapoy-Villanueva H, Martinez-Carlin I,
Lopez-Berestein G and Chavez-Reyes A: Therapeutic silencing of HPV
16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome
in a murine cervical cancer model with obesity. J BUON.
20:1471–1479. 2015.PubMed/NCBI
|
|
129
|
Alanazi JS, Alqahtani FY, Aleanizy FS,
Radwan AA, Bari A, Alqahtani QH, Abdelhady HG and Alsarra I:
MicroRNA-539-5p-loaded PLGA nanoparticles grafted with iRGD as a
targeting treatment for choroidal neovascularization.
Pharmaceutics. 14:2432022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Javanmardi S, Abolmaali SS, Mehrabanpour
MJ, Aghamaali MR and Tamaddon AM: PEGylated nanohydrogels
delivering anti-MicroRNA-21 suppress ovarian tumor-associated
angiogenesis in matrigel and chicken chorioallantoic membrane
models. Bioimpacts. 12:449–461. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang F, Zhang B, Zhou L, Shi Y, Li Z, Xia
Y and Tian J: Imaging dendrimer-grafted graphene oxide mediated
anti-miR-21 delivery with an activatable luciferase reporter. ACS
Appl Mater Interfaces. 8:9014–9021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Genedy HH, Delair T and Montembault A:
Chitosan based MicroRNA nanocarriers. Pharmaceuticals (Basel).
15:10362022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Reid G, Kao SC, Pavlakis N, Brahmbhatt H,
MacDiarmid J, Clarke S, Boyer M and van Zandwijk N: Clinical
development of TargomiRs, a miRNA mimic-based treatment for
patients with recurrent thoracic cancer. Epigenomics. 8:1079–1085.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Moncal KK, Aydin RST, Abu-Laban M, Heo DN,
Rizk E, Tucker SM, Lewis GS, Hayes D and Ozbolat IT:
Collagen-infilled 3D printed scaffolds loaded with
miR-148b-transfected bone marrow stem cells improve calvarial bone
regeneration in rats. Mater Sci Eng C Mater Biol Appl.
105:1101282019. View Article : Google Scholar : PubMed/NCBI
|