|
1
|
Feigin VL and Owolabi MO; World Stroke
Organization-Lancet Neurology Commission Stroke Collaboration
Group, : Pragmatic solutions to reduce the global burden of stroke:
A world stroke organization-lancet neurology commission. Lancet
Neurol. 22:1160–1206. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Claassen J and Park S: Spontaneous
subarachnoid haemorrhage. Lancet. 400:846–862. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Etminan N, Chang HS, Hackenberg K, de
Rooij NK, Vergouwen MDI, Rinkel GJE and Algra A: Worldwide
Incidence of Aneurysmal Subarachnoid Hemorrhage According to
Region, Time period, blood pressure, and smoking prevalence in the
population: A systematic review and meta-analysis. JAMA Neurol.
76:588–597. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Springer MV, Schmidt JM, Wartenberg KE,
Frontera JA, Badjatia N and Mayer SA: Predictors of global
cognitive impairment 1 year after subarachnoid hemorrhage.
Neurosurgery. 65:1043–1051. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chai CZ, Ho UC and Kuo LT: Systemic
inflammation after aneurysmal subarachnoid hemorrhage. Int J Mol
Sci. 24:109432023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Neifert SN, Chapman EK, Martini ML, Shuman
WH, Schupper AJ, Oermann EK, Mocco J and Macdonald RL: Aneurysmal
subarachnoid hemorrhage: The last decade. Transl Stroke Res.
12:428–446. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kuo LT and Huang AP: The pathogenesis of
hydrocephalus following aneurysmal subarachnoid hemorrhage. Int J
Mol Sci. 22:50502021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Huang H and Lai LT: Incidence and
case-fatality of aneurysmal subarachnoid hemorrhage in Australia,
2008–2018. World Neurosurg. 144:e438–e446. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fischer T, Johnsen SP, Pedersen L, Gaist
D, Sørensen HT and Rothman KJ: Seasonal variation in
hospitalization and case fatality of subarachnoid hemorrhage-a
nationwide danish study on 9,367 patients. Neuroepidemiology.
24:32–37. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Biotti D, Jacquin A, Boutarbouch M,
Bousquet O, Durier J, Ben Salem D, Ricolfi F, Beaurain J, Osseby
GV, Moreau T, et al: Trends in case-fatality rates in hospitalized
nontraumatic subarachnoid hemorrhage: Results of a population-based
study in Dijon, France, From 1985 to 2006. Neurosurgery.
66:1039–1043. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vadikolias K, Tsivgoulis G, Heliopoulos I,
Papaioakim M, Aggelopoulou C, Serdari A, Birbilis T and Piperidou
C: Incidence and case fatality of subarachnoid haemorrhage in
Northern Greece: The evros registry of subarachnoid haemorrhage.
Int J Stroke. 4:322–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pan P, Xu L, Zhang H, Liu Y, Lu X, Chen G,
Tang H and Wu J: A review of hematoma components clearance
mechanism after subarachnoid hemorrhage. Front Neurosci.
14:6852020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bian LH, Liu YF, Nichols LT, Wang CX, Wang
YL, Liu GF, Wang WJ and Zhao XQ: Epidemiology of subarachnoid
hemorrhage, patterns of management, and outcomes in China: A
hospital-based multicenter prospective study. CNS Neurosci Ther.
18:895–902. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Macdonald RL and Schweizer TA: Spontaneous
subarachnoid haemorrhage. Lancet. 389:655–666. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
van Lieshout JH, Dibué-Adjei M, Cornelius
JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ,
Petridis AK and Kamp MA: An introduction to the pathophysiology of
aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 41:917–930.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Foreman B: The pathophysiology of delayed
cerebral ischemia. J Clin Neurophysiol. 33:174–182. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D,
Vellimana AK, Osbun JW, Chatterjee AR, Athiraman U, Dhar R and
Zipfel GJ: Early brain injury after subarachnoid hemorrhage:
Incidence and mechanisms. Stroke. 54:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Weiland J, Beez A, Westermaier T, Kunze E,
Sirén AL and Lilla N: Neuroprotective strategies in aneurysmal
subarachnoid hemorrhage (aSAH). Int J Mol Sci. 22:54422021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo Y, Liu X, Liu D, Li K, Wang C, Liu Y,
He B and Shi P: Inhibition of BECN1 suppresses lipid peroxidation
by increasing system Xc− activity in early
brain injury after subarachnoid hemorrhage. J Mol Neurosci.
67:622–631. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chang S, Li X, Zheng Y, Shi H, Zhang D,
Jing B, Chen Z, Qian G and Zhao G: Kaempferol exerts a
neuroprotective effect to reduce neuropathic pain through
TLR4/NF-ĸB signaling pathway. Phytother Res. 36:1678–1691. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen Y, Li Q, Tang J, Feng H and Zhang JH:
The evolving roles of pericyte in early brain injury after
subarachnoid hemorrhage. Brain Res. 1623:110–122. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shao AW, Wu HJ, Chen S, Ammar AB, Zhang JM
and Hong Y: Resveratrol attenuates early brain injury after
subarachnoid hemorrhage through inhibition of NF-κB-dependent
inflammatory/MMP-9 pathway. CNS Neurosci Ther. 20:182–185. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fang X and Xu RS: Protective effect of
simvastatin on impaired intestine tight junction protein ZO-1 in a
mouse model of Parkinson's disease. J Huazhong Univ Sci Technolog
Med Sci. 35:880–884. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R,
Zhang X, Shi X, Li R, Wu J, et al: TREM-1 exacerbates
neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis
in experimental subarachnoid hemorrhage. Transl Stroke Res.
12:643–659. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Stanzione R, Forte M, Cotugno M, Bianchi
F, Marchitti S and Rubattu S: Role of DAMPs and of leukocytes
infiltration in ischemic stroke: Insights from animal models and
translation to the human disease. Cell Mol Neurobiol. 42:545–556.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pradilla G, Chaichana KL, Hoang S, Huang J
and Tamargo RJ: Inflammation and cerebral vasospasm after
subarachnoid hemorrhage. Neurosurg Clin N Am. 21:365–379. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kwon MS, Woo SK, Kurland DB, Yoon SH,
Palmer AF, Banerjee U, Iqbal S, Ivanova S, Gerzanich V and Simard
JM: Methemoglobin is an endogenous toll-like receptor 4
ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci.
16:5028–5046. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Babadjouni RM, Radwanski RE, Walcott BP,
Patel A, Durazo R, Hodis DM, Emanuel BA and Mack WJ:
Neuroprotective strategies following intraparenchymal hemorrhage. J
Neurointerv Surg. 9:1202–1207. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhu F, Zi L, Yang P, Wei Y, Zhong R, Wang
Y, You C, Li Y, Tian M and Gu Z: Efficient iron and ROS
nanoscavengers for brain protection after intracerebral hemorrhage.
ACS Appl Mater Interfaces. 13:9729–9738. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yue T, Li X, Chen X, Zhu T, Li W, Wang B
and Hang C: Hemoglobin derived from subarachnoid hemorrhage-induced
pyroptosis of neural stem cells via ROS/NLRP3/GSDMD pathway. Oxid
Med Cell Longev. 2023:43833322023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Thilak S, Brown P, Whitehouse T, Gautam N,
Lawrence E, Ahmed Z and Veenith T: Diagnosis and management of
subarachnoid haemorrhage. Nat Commun. 15:18502024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu L, Zhang J, Lu K, Zhang Y, Xu X, Deng
J, Zhang X, Zhang H, Zhao Y and Wang X: ChemR23 signaling
ameliorates brain injury via inhibiting NLRP3 inflammasome-mediated
neuronal pyroptosis in ischemic stroke. J Transl Med. 22:232024.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fumoto T, Naraoka M, Katagai T, Li Y,
Shimamura N and Ohkuma H: The role of oxidative stress in
microvascular disturbances after experimental subarachnoid
hemorrhage. Transl Stroke Res. 10:684–694. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ghonim HT, Shah SS, Thompson JW, Ambekar
S, Peterson EC and Elhammady MS: Stem cells as a potential
adjunctive therapy in aneurysmal subarachnoid hemorrhage. J Vasc
Interv Neurol. 8:30–37. 2016.PubMed/NCBI
|
|
35
|
Lee WD, Wang KC, Tsai YF, Chou PC, Tsai LK
and Chien CL: Subarachnoid hemorrhage promotes proliferation,
differentiation, and migration of neural stem cells via BDNF
upregulation. PLoS One. 11:e01654602016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chang H, Lin C, Li Z, Shen Y, Zhang G, Mao
L, Ma C, Liu N and Lu H: T3 alleviates neuroinflammation and
reduces early brain injury after subarachnoid haemorrhage by
promoting mitophagy via PINK 1-parkin pathway. Exp Neurol.
357:1141752022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xia DY, Yuan JL, Jiang XC, Qi M, Lai NS,
Wu LY and Zhang XS: SIRT1 promotes M2 microglia polarization via
reducing ROS-mediated NLRP3 inflammasome signaling after
subarachnoid hemorrhage. Front Immunol. 12:7707442021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mitsui K, Ikedo T, Kamio Y, Furukawa H,
Lawton MT and Hashimoto T: TLR4 (toll-like receptor 4) mediates the
development of intracranial aneurysm rupture. Hypertension.
75:468–476. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Suzuki H, Fujimoto M, Kawakita F, Liu L,
Nakano F, Nishikawa H, Okada T, Imanaka-Yoshida K, Yoshida T and
Shiba M: Toll-like receptor 4 and tenascin-C signaling in cerebral
vasospasm and brain injuries after subarachnoid hemorrhage. Acta
Neurochir Suppl. 127:91–96. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ma C, Zhou W, Yan Z, Qu M and Bu X:
Toll-like receptor 4 (TLR4) is associated with cerebral vasospasm
and delayed cerebral ischemia in aneurysmal subarachnoid
hemorrhage. Neurol Med Chir (Tokyo). 55:878–884. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee SJ and Lee S: Toll-like receptors and
inflammation in the CNS. Curr Drug Targets Inflamm Allergy.
1:181–191. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Karimy JK, Reeves BC and Kahle KT:
Targeting TLR4-dependent inflammation in post-hemorrhagic brain
injury. Expert Opin Ther Targets. 24:525–533. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Q, Luo Q, Zhao YH and Chen X:
Toll-like receptor-4 pathway as a possible molecular mechanism for
brain injuries after subarachnoid hemorrhage. Int J Neurosci.
130:953–964. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yamamoto M, Okamoto T, Takeda K, Sato S,
Sanjo H, Uematsu S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, et
al: Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in
immune receptor signaling. Nat Immunol. 7:962–970. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang YC, Zhou Y, Fang H, Lin S, Wang PF,
Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL and Yang QW: Toll-like
receptor 2/4 heterodimer mediates inflammatory injury in
intracerebral hemorrhage. Ann Neurol. 75:876–889. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J
and Jiang E: Progress in research on TLR4-mediated inflammatory
response mechanisms in brain injury after subarachnoid hemorrhage.
Cells. 11:37812022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Okada T, Kawakita F, Nishikawa H, Nakano
F, Liu L and Suzuki H: Selective toll-like receptor 4 antagonists
prevent acute blood-brain barrier disruption after subarachnoid
hemorrhage in mice. Mol Neurobiol. 56:976–985. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki
H, Jadhav V, Nishizawa S and Zhang JH: Immunological response in
early brain injury after SAH. Acta Neurochir Suppl. 110:57–61.
2011.PubMed/NCBI
|
|
49
|
Khan D, Cornelius JF and Muhammad S: The
role of NF-κB in intracranial aneurysm pathogenesis: A systematic
review. Int J Mol Sci. 24:142182023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hu J, Chen R, An J, Wang Y, Liang M and
Huang K: Dauricine attenuates vascular endothelial inflammation
through inhibiting NF-κB pathway. Front Pharmacol. 12:7589622021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tang P, Wang Y, Yang X, Wu Z, Chen W, Ye
Y, Jiang Y, Lin L and Lin B and Lin B: Protective role of
endothelial SIRT1 in deep vein thrombosis and hypoxia-induced
endothelial dysfunction mediated by NF-κB deacetylation.
Inflammation. 46:1887–1900. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kirsebom FCM, Kausar F, Nuriev R, Makris S
and Johansson C: Neutrophil recruitment and activation are
differentially dependent on MyD88/TRIF and MAVS signaling during
RSV infection. Mucosal Immunol. 12:1244–1255. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ahmed H, Khan MA, Kahlert UD, Niemelä M,
Hänggi D, Chaudhry SR and Muhammad S: Role of adaptor protein
myeloid differentiation 88 (MyD88) in post-subarachnoid hemorrhage
inflammation: A systematic review. Int J Mol Sci. 22:41852021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Klepinowski T, Skonieczna-Żydecka K, Pala
B, Stachowska E and Sagan L: Gut microbiome in intracranial
aneurysm growth, subarachnoid hemorrhage, and cerebral vasospasm: A
systematic review with a narrative synthesis. Front Neurosci.
17:12471512023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu GJ, Zhang QR, Gao X, Wang H, Tao T,
Gao YY, Zhou Y, Chen XX, Li W and Hang CH: MiR-146a ameliorates
hemoglobin-induced microglial inflammatory response via
TLR4/IRAK1/TRAF6 associated pathways. Front Neurosci. 14:3112020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang YH, Gao X, Tang YR, Yu Y, Sun MJ,
Chen FQ and Li Y: The role of NF-κB/NLRP3 inflammasome signaling
pathway in attenuating pyroptosis by melatonin upon spinal nerve
ligation models. Neurochem Res. 47:335–346. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang X, Zhang Y, Li R, Zhu L, Fu B and
Yan T: Salidroside ameliorates Parkinson's disease by inhibiting
NLRP3-dependent pyroptosis. Aging (Albany NY). 12:9405–9426. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Man SM, Karki R and Kanneganti TD:
Molecular mechanisms and functions of pyroptosis, inflammatory
caspases and inflammasomes in infectious diseases. Immunol Rev.
277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shao BZ, Cao Q and Liu C: Targeting NLRP3
inflammasome in the treatment of CNS diseases. Front Mol Neurosci.
11:3202018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang K, Qin Z, Chen J, Guo G, Jiang X,
Wang F, Zhuang J and Zhang Z: TRPV1 modulated NLRP3 inflammasome
activation via calcium in experimental subarachnoid hemorrhage.
Aging (Albany NY). 16:1096–1110. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Almeida-da-Silva CLC, Savio LEB,
Coutinho-Silva R and Ojcius DM: The role of NOD-like receptors in
innate immunity. Front Immunol. 14:11225862023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nagar A, Bharadwaj R, Shaikh MOF and Roy
A: What are NLRP3-ASC specks? An experimental progress of 22 years
of inflammasome research. Front Immunol. 14:11888642023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Martín-Sánchez F, Compan V, Peñín-Franch
A, Tapia-Abellán A, Gómez AI, Baños-Gregori MC, Schmidt FI and
Pelegrin P: ASC oligomer favors caspase-1CARD domain recruitment
after intracellular potassium efflux. J Cell Biol.
222:e2020030532023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu Y, Zhai H, Alemayehu H, Boulanger J,
Hopkins LJ, Borgeaud AC, Heroven C, Howe JD, Leigh KE, Bryant CE
and Modis Y: Cryo-electron tomography of NLRP3-activated ASC
complexes reveals organelle co-localization. Nat Commun.
14:72462023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pétrilli V, Dostert C, Muruve DA and
Tschopp J: The inflammasome: A danger sensing complex triggering
innate immunity. Curr Opin Immunol. 19:615–622. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Devant P and Kagan JC: Molecular
mechanisms of gasdermin D pore-forming activity. Nat Immunol.
24:1064–1075. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang Y, Chen S and Zhang JM: The updated
role of oxidative stress in subarachnoid hemorrhage. Curr Drug
Deliv. 14:832–842. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chen J, Zhang C, Yan T, Yang L, Wang Y,
Shi Z, Li M and Chen Q: Atorvastatin ameliorates early brain injury
after subarachnoid hemorrhage via inhibition of pyroptosis and
neuroinflammation. J Cell Physiol. 236:6920–6931. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Akar A, Öztopuz RÖ, Büyük B, Ovali MA,
Aykora D and Malçok ÜA: Neuroprotective effects of piceatannol on
olfactory bulb injury after subarachnoid hemorrhage. Mol Neurobiol.
60:3695–3706. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Elliott EI and Sutterwala FS: Initiation
and perpetuation of NLRP3 inflammasome activation and assembly.
Immunol Rev. 265:35–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zheng D, Liwinski T and Elinav E:
Inflammasome activation and regulation: Toward a better
understanding of complex mechanisms. Cell Discov. 6:362020.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
He WT, Wan H, Hu L, Chen P, Wang X, Huang
Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of
pyroptosis and required for interleukin-1β secretion. Cell Res.
25:1285–1298. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ji XY, Tan BK and Zhu YZ: Salvia
miltiorrhiza and ischemic diseases. Acta Pharmacol Sin.
21:1089–1094. 2000.PubMed/NCBI
|
|
76
|
Zhang H and Chen X: Effects of salvianolic
acid B on osteogenic differentiation and oxidative stress of
periodontal ligament stem cells. Genomics Appl Biol. 39:3232–3240.
2020.
|
|
77
|
Guarente L: Sirtuins as potential targets
for metabolic syndrome. Nature. 444:868–874. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X,
Lv S, Chen X, Zhang X, Hang C and Wang J: Cerebroprotection by
salvianolic acid B after experimental subarachnoid hemorrhage
occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med.
124:504–516. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang J, Xie X, Tang M, Zhang J, Zhang B,
Zhao Q, Han Y, Yan W, Peng C and You Z: Salvianolic acid B promotes
microglial M2-polarization and rescues neurogenesis in
stress-exposed mice. Brain Behav Immun. 66:111–124. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shu T, Pang M, Rong L, Liu C, Wang J, Zhou
W, Wang X and Liu B: Protective effects and mechanisms of
salvianolic acid B against H2O2-induced
injury in induced pluripotent stem cell-derived neural stem cells.
Neurochem Res. 40:1133–1143. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu H, Zhao L, Yue L, Wang B, Li X, Guo H,
Ma Y, Yao C, Gao L, Deng J, et al: Pterostilbene attenuates early
brain injury following subarachnoid hemorrhage via inhibition of
the NLRP3 inflammasome and Nox2-related oxidative stress. Mol
Neurobiol. 54:5928–5940. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang X, Xu P, Liu Y, Wang Z, Lenahan C,
Fang Y, Lu J, Zheng J, Wang K, Wang W, et al: New insights of early
brain injury after subarachnoid hemorrhage: A focus on the caspase
family. Curr Neuropharmacol. 21:392–408. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Duckett CS, Nava VE, Gedrich RW, Clem RJ,
Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM and Thompson CB:
A conserved family of cellular genes related to the baculovirus iap
gene and encoding apoptosis inhibitors. EMBO J. 15:2685–2694. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Iseda K, Ono S, Onoda K, Satoh M, Manabe
H, Nishiguchi M, Takahashi K, Tokunaga K, Sugiu K and Date I:
Antivasospastic and antiinflammatory effects of caspase inhibitor
in experimental subarachnoid hemorrhage. J Neurosurg. 107:128–135.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fang Y, Wang X, Lu J, Shi H, Huang L, Shao
A, Zhang A, Liu Y, Ren R, Lenahan C, et al: Inhibition of
caspase-1-mediated inflammasome activation reduced blood
coagulation in cerebrospinal fluid after subarachnoid haemorrhage.
EbioMedicine. 76:1038432022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wu Y, Liu Y, Zhou C, Wu Y, Sun J, Gao X
and Huang Y: Biological effects and mechanisms of caspases in early
brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev.
2022:33456372022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Delgado A, Cholevas C and Theoharides TC:
Neuroinflammation in Alzheimer's disease and beneficial action of
luteolin. Biofactors. 47:207–217. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Theoharides TC, Conti P and Economu M:
Brain inflammation, neuropsychiatric disorders, and immunoendocrine
effects of luteolin. J Clin Psychopharmacol. 34:187–189. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang ZH, Liu JQ, Hu CD, Zhao XT, Qin FY,
Zhuang Z and Zhang XS: Luteolin confers cerebroprotection after
subarachnoid hemorrhage by suppression of NLPR3 inflammasome
activation through Nrf2-dependent pathway. Oxid Med Cell Longev.
2021:58381012021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhou W, Hu M, Hu J, Du Z, Su Q and Xiang
Z: Luteolin suppresses microglia neuroinflammatory responses and
relieves inflammation-induced cognitive impairments. Neurotox Res.
39:1800–1811. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu FY, Cai J, Wang C, Ruan W, Guan GP,
Pan HZ, Li JR, Qian C, Chen JS, Wang L and Chen G: Fluoxetine
attenuates neuroinflammation in early brain injury after
subarachnoid hemorrhage: A possible role for the regulation of
TLR4/MyD88/NF-κB signaling pathway. J Neuroinflammation.
15:3472018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hu HM, Li B, Wang XD, Guo YS, Hui H, Zhang
HP, Wang B, Huang DG and Hao DJ: Fluoxetine is neuroprotective in
early brain injury via its anti-inflammatory and anti-apoptotic
effects in a rat experimental subarachnoid hemorrhage model.
Neurosci Bull. 34:951–962. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhou K, Shi L, Wang Z, Zhou J, Manaenko A,
Reis C, Chen S and Zhang J: RIP1-RIP3-DRP1 pathway regulates NLRP3
inflammasome activation following subarachnoid hemorrhage. Exp
Neurol. 295:116–124. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Endo Y, Winarski KL, Sajib MS, Ju A and Wu
WJ: Atezolizumab induces necroptosis and contributes to
hepatotoxicity of human hepatocytes. Int J Mol Sci. 24:116942023.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen J, Jin H, Xu H, Peng Y, Jie L, Xu D,
Chen L, Li T, Fan L, He P, et al: The neuroprotective effects of
necrostatin-1 on subarachnoid hemorrhage in rats are possibly
mediated by preventing blood-brain barrier disruption and
RIP3-mediated necroptosis. Cell Transplant. 28:1358–1372. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yang C, Liu J, Wang J, Yin A, Jiang Z, Ye
S, Liu X, Zhang X, Wang F and Xiong L: Activation of astroglial
CB1R mediates cerebral ischemic tolerance induced by
electroacupuncture. J Cereb Blood Flow Metab. 41:2295–2310. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ulloa L: Electroacupuncture activates
neurons to switch off inflammation. Nature. 598:573–574. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang Y, Yang X, Cao Y, Li X, Xu R, Yan J,
Guo Z, Sun S, Sun X and Wu Y: Electroacupuncture alleviates early
brain injury via modulating microglia polarization and suppressing
neuroinflammation in a rat model of subarachnoid hemorrhage.
Heliyon. 9:e144752023. View Article : Google Scholar : PubMed/NCBI
|