Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2025 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research advances in current drugs targeting hyperlipidemia (Review)

  • Authors:
    • Hanwei Zhao
    • Yao Wang
    • Yaqing Li
    • Ran Cheng
    • Wenge Chen
  • View Affiliations / Copyright

    Affiliations: Peripheral Vascular Disease Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, Medical Laboratory, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 258
    |
    Published online on: July 17, 2025
       https://doi.org/10.3892/mmr.2025.13623
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hyperlipidemia is a disorder of lipid metabolism. With rapid economic development, unhealthy diets and lack of exercise, the incidence of hyperlipidemia has been increasing year by year. In adults, hyperlipidemia is a major risk factor for cardiovascular diseases, especially atherosclerotic cardiovascular disease (ASCVD), and the current goal of treating hyperlipidemia is to prevent and manage ASCVD. In terms of etiology, hyperlipidemia is divided into primary and secondary types. Common primary hyperlipidemias include familial hypercholesterolemia, mixed familial hyperlipidemia, type III hyperlipoproteinemia and familial chylomicronemia syndrome. In addition to statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors, a number of new and emerging drugs for lowering cholesterol and triglycerides are being developed to regulate lipid levels and prevent cardiovascular diseases. The present review summarized the classification and composition of lipoproteins, the pathogenesis of common primary hyperlipidemias, secondary factors affecting dyslipidemia, modern common lipid‑lowering drugs and the latest clinical progress in emerging lipid‑lowering therapies.
View Figures

Figure 1

Mechanism of action of lipid-lowering
therapy. Mipomersen targets ApoB100 mRNA. Apo(a)is inhibit Lp (a)
synthesis by blocking Apo(a). Inclisiran targets PCSK9 mRNA. PCSK9i
mAb blocks PCSK9 binding to the LDLR. Lomitapide inhibits the
assembly of VLDL and chylomicrons by inhibiting MTP in the liver
and small intestine. Bempedoic acid blocks cholesterol synthesis by
inhibiting ACL. Statins inhibit cholesterol synthesis by blocking
HMGCR. ANGPTL3i and ApoC3i enhance the function of LPL. Bile acid
sequestrants bind bile acids in the small intestine. Ezetimibe and
hyzetimibe inhibit NPC1L1 to inhibit cholesterol absorption in the
intestine. CETPi primarily block the net mass transfer of
cholesterol from high-density lipoprotein to very low-density
lipoprotein and low-density lipoprotein. Apo, apolipoprotein;
Apo(a)i, apolipoprotein (a) inhibitors; PCSK9, proprotein
convertase subtilisin-kexin type 9; PCSK9i mAb, PCSK9 inhibitor
monoclonal antibody; LDLR; low-density lipoprotein receptor; VLDL,
very low-density lipoprotein; MTP, microsomal triglyceride transfer
protein; ACL, ATP citrate lyase; HMGCR,
3-hydroxy-3-methylglutarylcoenzymereductase; ANGPTL3i,
angiopoietin-like 3 protein inhibitors; ApoC3i, apolipoprotein C3
inhibitors; LPL, lipoprotein lipase; NPC1L1, Niemann-Pick C1-like
protein 1; CETPi, cholesteryl ester transfer protein inhibitors;
IDL, intermediate density lipoprotein; TG, triglycerides.
View References

1 

Pirillo A, Casula M, Olmastroni E, Norata GD and Catapano AL: Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 18:689–700. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Repositioning of the global epicentre of non-optimal cholesterol. Nature. 582:73–77. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Liu T, Zhao D and Qi Y: Global trends in the epidemiology and management of dyslipidemia. J Clin Med. 11:63772022. View Article : Google Scholar : PubMed/NCBI

4 

Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, Wong VW, Cai J, Shapiro MD, Eslam M, et al: An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 17:773–791. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Yang L, Li Z, Song Y, Liu Y, Zhao H, Liu Y, Zhang T, Yuan Y, Cai X, Wang S, et al: Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin Chim Acta. 495:365–373. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Corvilain B: Lipoprotein metabolism. Rev Med Brux. 18:3–9. 1997.(In French). PubMed/NCBI

7 

Errico TL, Chen X, Martin Campos JM, Julve J, Escolà-Gil JC and Blanco-Vaca F: Basic mechanisms: Structure, function and metabolism of plasma lipoproteins. Clin Investig Arterioscler. 25:98–103. 2013.PubMed/NCBI

8 

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, et al: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J. 41:111–188. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, et al: Triglyceride-rich lipoproteins and High-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur Heart J. 32:1345–1361. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ and Bornfeldt KE: Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 69:508–516. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, Hovingh GK, Kastelein JJ, Melamed S, Barter P, Waters DD and Ray KK: Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation. 138:770–781. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Raposeiras-Roubin S, Rosselló X, Oliva B, Fernández-Friera L, Mendiguren JM, Andrés V, Bueno H, Sanz J, Martínez de Vega V, Abu-Assi E, et al: Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 77:3031–3041. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, et al: Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 41:2313–2330. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Gotto AM Jr and Brinton EA: Assessing low levels of High-density lipoprotein cholesterol as a risk factor in coronary heart disease: A working group report and update. J Am Coll Cardiol. 43:717–724. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Li JJ, Ma CS, Zhao D and Yan XW: Lipoprotein(a) and cardiovascular disease in Chinese population: A beijing heart society expert scientific statement. JACC Asia. 2:653–665. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Mehta A, Vasquez N, Ayers CR, Patel J, Hooda A, Khera A, Blumenthal RS, Shapiro MD, Rodriguez CJ, Tsai MY, et al: Independent association of lipoprotein(a) and coronary artery calcification with atherosclerotic cardiovascular risk. J Am Coll Cardiol. 79:757–768. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Ong KL, McClelland RL, Allison MA, Cushman M, Garg PK, Tsai MY, Rye KA and Tabet F: Lipoprotein (a) and coronary artery calcification: Prospective study assessing interactions with other risk factors. Metabolism. 116:1547062021. View Article : Google Scholar : PubMed/NCBI

18 

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Unwin N and Alberti KG: Chronic non-communicable diseases. Annals of tropical medicine and parasitology. 100:455–464. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Lyu Y, Jiang X and Dai W: The roles of a novel inflammatory neopterin in subjects with coronary atherosclerotic heart disease. Int Immunopharmacol. 24:169–172. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI

22 

NCD Risk Factor Collaboration (NCD-RisC), . Repositioning of the global epicentre of Non-optimal cholesterol. Nature. 582:73–77. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Song PK, Man QQ, Li H, Pang SJ, Jia SS, Li YQ, He L, Zhao WH and Zhang J: Trends in lipids level and dyslipidemia among chinese adults, 2002–2015. Biomed Environ Sci. 32:559–570. 2019.PubMed/NCBI

24 

Pan L, Yang Z, Wu Y, Yin RX, Liao Y, Wang J, Gao B and Zhang L; China National Survey of Chronic Kidney Disease Working Group, : The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis. 248:2–9. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Li JJ: Chinese guideline for lipid management (2023): A new guideline rich in domestic elements for controlling dyslipidemia. J Geriatr Cardiol. 20:618–620. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Xia Q, Chen Y, Yu Z, Huang Z, Yang Y, Mao A and Qiu W: Prevalence, awareness, treatment, and control of dyslipidemia in Chinese adults: A systematic review and meta-analysis. Front Cardiovasc Med. 10:11863302023. View Article : Google Scholar : PubMed/NCBI

27 

Li S, Liu HH, Guo YL, Zhu CG, Wu NQ, Xu RX, Dong Q and Li JJ: Improvement of evaluation in Chinese patients with atherosclerotic cardiovascular disease using the Very-high-risk refinement: A population-based study. Lancet Reg Health West Pac. 17:1002862021.PubMed/NCBI

28 

Rygiel K: Hypertriglyceridemia-common causes, prevention and treatment strategies. Curr Cardiol Rev. 14:67–76. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Mc Namara K, Alzubaidi H and Jackson JK: Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integr Pharm Res Pract. 8:1–11. 2019.PubMed/NCBI

30 

Vaezi Z and Amini A: Familial Hypercholesterolemia. StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC; Treasure Island (FL): ineligible companies. Disclosure: Afshin Amini declares no relevant financial relationships with ineligible companies. 2025

31 

Benn M, Watts GF, Tybjaerg-Hansen A and Nordestgaard BG: Mutations causative of familial hypercholesterolaemia: Screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur Heart J. 37:1384–1394. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, et al: Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European atherosclerosis society. Eur Heart J. 34:3478–3490a. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Vrablik M, Tichy L, Freiberger T, Blaha V, Satny M and Hubacek JA: Genetics of familial hypercholesterolemia: New insights. Front Genet. 11:5744742020. View Article : Google Scholar : PubMed/NCBI

34 

Sun D, Zhou BY, Li S, Sun NL, Hua Q, Wu SL, Cao YS, Guo YL, Wu NQ, Zhu CG, et al: Genetic basis of index patients with familial hypercholesterolemia in Chinese population: Mutation spectrum and Genotype-phenotype correlation. Lipids Health Dis. 17:2522018. View Article : Google Scholar : PubMed/NCBI

35 

Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H and Martin C: Familial Hypercholesterolemia: The most frequent cholesterol metabolism disorder caused disease. Int J Mol Sci. 19:34262018. View Article : Google Scholar : PubMed/NCBI

36 

Sawhney JPS and Madan K: Familial hypercholesterolemia. Indian Heart J. 76 (Suppl 1):S108–S112. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Hopkins PN, Toth PP, Ballantyne CM and Rader DJ; National Lipid Association Expert Panel on Familial Hypercholesterolemia, : Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 5 (3 Suppl):S9–S17. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Singh S and Bittner V: Familial hypercholesterolemia-epidemiology, diagnosis, and screening. Curr Atheroscler Rep. 17:4822015. View Article : Google Scholar : PubMed/NCBI

39 

Choi D, Malick WA, Koenig W, Rader DJ and Rosenson RS: Familial Hypercholesterolemia: Challenges for a High-Risk Population: JACC Focus Seminar 1/3. J Am Coll Cardiol. 81:1621–1632. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Garg A and Radhakrishnan S: Pediatric hyperlipidemia. Indian Heart J. 76 (Suppl 1):S104–S107. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Hegele RA, Boren J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, et al: Rare dyslipidaemias, from phenotype to genotype to management: A European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 8:50–67. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Cao YX, Sun D, Liu HH, Jin JL, Li S, Guo YL, Wu NQ, Zhu CG, Liu G, Dong Q, et al: Improvement of definite diagnosis of familial hypercholesterolemia using an expanding genetic analysis. JACC Asia. 1:82–89. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Gill PK and Hegele RA: Familial combined hyperlipidemia is a polygenic trait. Curr Opin Lipidol. 33:126–132. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Nawawi HM, Chua YA and Watts GF: The brave new world of genetic testing in the management of the dyslipidaemias. Curr Opin Cardiol. 35:226–233. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Taghizadeh E, Farahani N, Mardani R, Taheri F, Taghizadeh H and Gheibihayat SM: Genetics of familial combined hyperlipidemia (FCHL) disorder: An update. Biochem Genet. 60:453–481. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Trinder M, Vikulova D, Pimstone S, Mancini GBJ and Brunham LR: Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis. 340:35–43. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Wierzbicki AS, Kim EJ, Esan O and Ramachandran R: Hypertriglyceridaemia: An update. J Clin Pathol. 75:798–806. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, et al: Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 478:110–113. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Horswell SD, Fryer LG, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, et al: CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res. 54:3491–3505. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Naukkarinen J, Ehnholm C and Peltonen L: Genetics of familial combined hyperlipidemia. Curr Opin Lipidol. 17:285–290. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Heidemann BE, Koopal C, Baass A, Defesche JC, Zuurbier L, Mulder MT, Roeters van Lennep JE, Riksen NP, Boot C, Marais AD and Visseren FLJ: Establishing the relationship between familial dysbetalipoproteinemia and genetic variants in the APOE gene. Clin Genet. 102:253–261. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Koopal C, Marais AD and Visseren FL: Familial dysbetalipoproteinemia: An underdiagnosed lipid disorder. Curr Opin Endocrinol Diabetes Obes. 24:133–139. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Krauss RM, Lu JT, Higgins JJ, Clary CM and Tabibiazar R: VLDL receptor gene therapy for reducing atherogenic lipoproteins. Mol Metab. 69:1016852023. View Article : Google Scholar : PubMed/NCBI

54 

Packard CJ and Shepherd J: Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol. 17:3542–3556. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG and Frikke-Schmidt R: Plasma levels of apolipoprotein E, APOE genotype, and All-cause and cause-specific mortality in 105 949 individuals from a white general population cohort. Eur Heart J. 40:2813–2824. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U and Danesh J: Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 298:1300–1311. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Khan TA, Shah T, Prieto D, Zhang W, Price J, Fowkes GR, Cooper J, Talmud PJ, Humphries SE, Sundstrom J, et al: Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol. 42:475–492. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Koopal C, Geerlings MI, Muller M, de Borst GJ, Algra A, van der Graaf Y and Visseren FL; SMART Study Group, : The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease. Atherosclerosis. 246:187–192. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Mahley RW, Weisgraber KH and Huang Y: Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA. 103:5644–5651. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Goldberg RB and Chait A: A comprehensive update on the chylomicronemia syndrome. Front Endocrinol (Lausanne). 11:5939312020. View Article : Google Scholar : PubMed/NCBI

61 

Hegele RA, Berberich AJ, Ban MR, Wang J, Digenio A, Alexander VJ, D'Erasmo L, Arca M, Jones A, Bruckert E, et al: Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol. 12:920–927.e4. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Paquette M, Bernard S, Hegele RA and Baass A: Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis. 283:137–142. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Koseki M, Yamashita S, Ogura M, Ishigaki Y, Ono K, Tsukamoto K, Hori M, Matsuki K, Yokoyama S and Harada-Shiba M: Current diagnosis and management of tangier disease. J Atheroscler Thromb. 28:802–810. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ and Cuchel M: A systematic review of the natural history and biomarkers of primary lecithin: Cholesterol acyltransferase deficiency. J Lipid Res. 63:1001692022. View Article : Google Scholar : PubMed/NCBI

65 

Mensink RP, Zock PL, Kester AD and Katan MB: Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A Meta-analysis of 60 controlled trials. Am J Clin Nutr. 77:1146–1155. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies, : 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis. 290:140–205. 2019. View Article : Google Scholar

67 

Trautwein EA and McKay S: The role of specific components of a Plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients. 12:26712020. View Article : Google Scholar : PubMed/NCBI

68 

Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM and Metallo CM: Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab. 37:274–290.e9. 2025. View Article : Google Scholar : PubMed/NCBI

69 

Hieronimus B and Stanhope KL: Dietary fructose and dyslipidemia: New mechanisms involving apolipoprotein CIII. Curr Opin Lipidol. 31:20–26. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Yan H, Niimi M, Matsuhisa F, Zhou H, Kitajima S, Chen Y, Wang C, Yang X, Yao J, Yang D, et al: Apolipoprotein CIII deficiency protects against atherosclerosis in knockout rabbits. Arterioscler Thromb Vasc Biol. 40:2095–2107. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Rohr MW, Narasimhulu CA, Rudeski-Rohr TA and Parthasarathy S: Negative effects of a High-Fat diet on intestinal permeability: A review. Adv Nutr. 11:77–91. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Dimitriadis G, Mitrou P, Lambadiari V, Maratou E and Raptis SA: Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 93 (Suppl 1):S52–S59. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Su X, Cheng Y, Zhang G and Wang B: Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep. 48:5675–5687. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Chen SC and Tseng CH: Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev Diabet Stud. 10:88–100. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Fukui T and Hirano T: High-density lipoprotein subspecies between patients with type 1 diabetes and type 2 diabetes without/with intensive insulin therapy. Endocr J. 59:561–569. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Hirano T: Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 25:771–782. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Cao X, Liu XM and Zhou LH: Recent progress in research on the distribution and function of NUCB2/nesfatin-1 in peripheral tissues. Endocr J. 60:1021–1027. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Basar O, Akbal E, Köklü S, Koçak E, Tuna Y, Ekiz F, Gültuna S, Yιlmaz FM and Aydoğan T: A novel appetite peptide, nesfatin-1 in patients with non-alcoholic fatty liver disease. Scand J Clin Lab Invest. 72:479–483. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Yin Y, Li Z, Gao L, Li Y, Zhao J and Zhang W: AMPK-dependent modulation of hepatic lipid metabolism by nesfatin-1. Mol Cell Endocrinol. 417:20–26. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Nasri A, Kowaluk M, Widenmaier SB and Unniappan S: Nesfatin-1 and nesfatin-1-like peptide attenuate hepatocyte lipid accumulation and nucleobindin-1 disruption modulates lipid metabolic pathways. Commun Biol. 7:6232024. View Article : Google Scholar : PubMed/NCBI

81 

Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G and Ren J: PCSK9 in metabolism and diseases. Metabolism. 163:1560642024. View Article : Google Scholar : PubMed/NCBI

82 

Rosso C, Kazankov K, Younes R, Esmaili S, Marietti M, Sacco M, Carli F, Gaggini M, Salomone F, Møller HJ, et al: Crosstalk between adipose tissue insulin resistance and liver macrophages in Non-alcoholic fatty liver disease. J Hepatol. 71:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Verges B, Petit JM, Duvillard L, Dautin G, Florentin E, Galland F and Gambert P: Adiponectin is an important determinant of apoA-I catabolism. Arterioscler Thromb Vasc Biol. 26:1364–1369. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Biondi B: Thyroid and obesity: An intriguing relationship. J Clin Endocrinol Metab. 95:3614–3617. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Obregon MJ: Thyroid hormone and adipocyte differentiation. Thyroid. 18:185–195. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Grover GJ, Mellstrom K and Malm J: Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr Vasc Pharmacol. 5:141–154. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Lu C and Cheng SY: Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol. 44:143–154. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Su X, Peng H, Chen X, Wu X and Wang B: Hyperlipidemia and hypothyroidism. Clin Chim Acta. 527:61–70. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Pearce EN: Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 97:326–333. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, Li W, Dou A, Zhang R and Davies BSJ: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab. 6:1137–1149. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Moradi H and Vaziri ND: Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease. Front Biosci (Landmark Ed). 23:146–161. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Borba EF, Bonfá E, Vinagre CG, Ramires JA and Maranhão RC: Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum. 43:1033–1040. 2000. View Article : Google Scholar : PubMed/NCBI

93 

de Carvalho JF, Bonfá E and Borba EF: Systemic lupus erythematosus and ‘lupus dyslipoproteinemia’. Autoimmun Rev. 7:246–250. 2008. View Article : Google Scholar : PubMed/NCBI

94 

McMahon M, Grossman J, Skaggs B, Fitzgerald J, Sahakian L, Ragavendra N, Charles-Schoeman C, Watson K, Wong WK, Volkmann E, et al: Dysfunctional proinflammatory High-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum. 60:2428–2437. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Tselios K, Koumaras C, Gladman DD and Urowitz MB: Dyslipidemia in systemic lupus erythematosus: Just another comorbidity? Semin Arthritis Rheum. 45:604–610. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Cox AJ, West NP and Cripps AW: Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3:207–215. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Fei N and Zhao L: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7:880–884. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Jia X, Xu W, Zhang L, Li X, Wang R and Wu S: Impact of gut microbiota and Microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 11:6347802021. View Article : Google Scholar : PubMed/NCBI

99 

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, et al: Short chain fatty acids in human gut and metabolic health. Benef Microbes. 11:411–455. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, Garcia-Perez I, Fountana S, Serrano-Contreras JI, Holmes E, et al: Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut. 68:1430–1438. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Byrne CS, Chambers ES, Preston T, Tedford C, Brignardello J, Garcia-Perez I, Holmes E, Wallis GA, Morrison DJ and Frost GS: Effects of inulin propionate ester incorporated into palatable food products on appetite and resting energy expenditure: A randomised crossover study. Nutrients. 11:8612019. View Article : Google Scholar : PubMed/NCBI

102 

van Deuren T, Blaak EE and Canfora EE: Butyrate to combat obesity and Obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes Rev. 23:e134982022. View Article : Google Scholar : PubMed/NCBI

103 

Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, et al: Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 64:1744–1754. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Tu J, Wang Y, Jin L and Huang W: Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne). 13:9295302022. View Article : Google Scholar : PubMed/NCBI

105 

Xue R, Su L, Lai S, Wang Y, Zhao D, Fan J, Chen W, Hylemon PB and Zhou H: Bile acid receptors and the Gut-liver axis in nonalcoholic fatty liver disease. Cells. 10:28062021. View Article : Google Scholar : PubMed/NCBI

106 

Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, Chan AP, Brearley-Sholto MC, Wahlström A, Ashby JW, et al: FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 33:1671–1684.e4. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Gao K, Mu CL, Farzi A and Zhu WY: Tryptophan metabolism: A link between the gut microbiota and brain. Adv Nutr. 11:709–723. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC, Martin R, Michel ML, Chong-Nguyen C, Roussel R, Straube M, et al: Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28:737–749.e4. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Postal BG, Ghezzal S, Aguanno D, André S, Garbin K, Genser L, Brot-Laroche E, Poitou C, Soula H, Leturque A, et al: AhR activation defends gut barrier integrity against damage occurring in obesity. Mol Metab. 39:1010072020. View Article : Google Scholar : PubMed/NCBI

110 

Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, et al: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 39:372–385. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Wang Y, Ai Z, Xing X, Fan Y, Zhang Y, Nan B, Li X, Wang Y and Liu J: The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: A review. Crit Rev Food Sci Nutr. 64:3556–3572. 2024. View Article : Google Scholar : PubMed/NCBI

112 

Liang C, Zhou XH, Gong PM, Niu HY, Lyu LZ, Wu YF, Han X and Zhang LW: Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food Funct. 12:4315–4324. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Oh N, Lee J, Kim H, Kwon M, Seo J and Roh S: Comparison of Cell-free extracts from three newly identified lactobacillus plantarum strains on the inhibitory effect of adipogenic differentiation and insulin resistance in 3T3-L1 adipocytes. Biomed Res Int. 2021:66765022021. View Article : Google Scholar : PubMed/NCBI

114 

Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, Park DS and Kim YS: Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and reduces High-Fat-Diet-induced obesity in mice. J Agric Food Chem. 69:6032–6042. 2021. View Article : Google Scholar : PubMed/NCBI

115 

In Kim H, Kim JK, Kim JY, Jang SE, Han MJ and Kim DH: Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr Res. 67:78–89. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Xu W, Yu J, Yang Y, Li Z, Zhang Y, Zhang F, Wang Q, Xie Y, Zhao B and Wu C: Strain-level screening of human gut microbes identifies Blautia producta as a new anti-hyperlipidemic probiotic. Gut Microbes. 15:22280452023. View Article : Google Scholar : PubMed/NCBI

117 

Lorkowski S: Long known and mostly unused: Lifestyle measures to support Lipid-lowering therapy. Dtsch Med Wochenschr. 147:796–806. 2022.(In German). PubMed/NCBI

118 

National Clinical Guideline Centre (UK), . National Institute for Health and Clinical Excellence: Guidance: Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease. National Institute for Health and Care Excellence (UK), 2014. Copyright © National Clinical Guideline Centre; London: 2014

119 

Hirota T, Fujita Y and Ieiri I: An updated review of pharmacokinetic drug interactions and phar macogenetics of statins. Expert Opin Drug Metab Toxicol. 16:809–822. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Watts GF, Barrett PH, Ji J, Serone AP, Chan DC, Croft KD, Loehrer F and Johnson AG: Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 52:803–811. 2003. View Article : Google Scholar : PubMed/NCBI

121 

Zhang X, Xing L, Jia X, Pang X, Xiang Q, Zhao X, Ma L, Liu Z, Hu K, Wang Z and Cui Y: Comparative Lipid-Lowering/Increasing Efficacy of 7 statins in patients with dyslipidemia, cardiovascular diseases, or diabetes mellitus: Systematic review and network Meta-analyses of 50 randomized controlled trials. Cardiovasc Ther. 2020:39870652020. View Article : Google Scholar : PubMed/NCBI

122 

Cannon CP, Steinberg BA, Murphy SA, Mega JL and Braunwald E: Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 48:438–445. 2006. View Article : Google Scholar : PubMed/NCBI

123 

Cholesterol Treatment Trialists' (CTT) Collaboration, . Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, et al: Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 376:1670–1681. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Cholesterol Treatment Trialists' (CTT) Collaboration, . Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, et al: Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 385:1397–1405. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, et al: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 359:2195–2207. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Rodriguez F, Maron DJ, Knowles JW, Virani SS, Lin S and Heidenreich PA: Association between intensity of statin therapy and mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2:47–54. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Turner RM and Pirmohamed M: Statin-related myotoxicity: A comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J Clin Med. 9:222019. View Article : Google Scholar : PubMed/NCBI

128 

Zhang H, Plutzky J, Skentzos S, Morrison F, Mar P, Shubina M and Turchin A: Discontinuation of statins in routine care settings: A cohort study. Ann Intern Med. 158:526–534. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Feingold KR: Maximizing the benefits of cholesterol-lowering drugs. Curr Opin Lipidol. 30:388–394. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Berberich AJ and Hegele RA: A Modern approach to dyslipidemia. Endocr Rev. 43:611–653. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, et al: Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 372:2387–2397. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Sharp Collaborative Group, : Study of heart and renal protection (SHARP): Randomized trial to assess the effects of lowering Low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J. 160:785–794.e10. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Chen J, Lou H, Jiang B, Shao R, Ruan Z and Wang J: Simultaneous determination of hyzetimibe and its main active metabolite in plasma by LC-MS/MS and its application in PK study. Bioanalysis. 7:1857–1867. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Chen W, Ruan Z, Chen J, Yang D, Shao R, Lou H and Jiang B: Population pharmacokinetics and enterohepatic recirculation of hyzetimibe and its main metabolite in Chinese healthy subjects. Br J Clin Pharmacol. 88:3153–3161. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Liao J, Wang X, Li Z and Ouyang D: Pharmacokinetic study of Oral 14C-radiolabeled hyzetimibe, a new cholesterol absorption inhibitor. Front Pharmacol. 12:6653722021. View Article : Google Scholar : PubMed/NCBI

136 

Ruan Z, Jiang B, Chen J, Zhang X, Lou H, Xiang M, Shao Q and Wang J: Pharmacokinetics, pharmacodynamics, safety, and tolerability of hyzetimibe (HS-25) in healthy Chinese subjects. J Clin Pharmacol. 54:1144–1152. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Knapp HH, Schrott H, Ma P, Knopp R, Chin B, Gaziano JM, Donovan JM, Burke SK and Davidson MH: Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 110:352–360. 2001. View Article : Google Scholar : PubMed/NCBI

138 

Mazidi M, Rezaie P, Karimi E and Kengne AP: The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: A systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 227:850–857. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Crouse JR III: Hypertriglyceridemia: A contraindication to the use of bile acid binding resins. Am J Med. 83:243–248. 1987. View Article : Google Scholar : PubMed/NCBI

140 

Guo S, Xia XD, Gu HM and Zhang DW: Proprotein convertase Subtilisin/Kexin-type 9 and lipid Metabolism. Adv Exp Med Biol. 1276:137–156. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Rakipovski G, Hovingh GK and Nyberg M: Proprotein convertase Subtilisin/Kexin type 9 inhibition as the next statin? Curr Opin Lipidol. 31:340–346. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Lee S and Cannon CP: Combination Lipid-lowering therapies for the prevention of recurrent cardiovascular events. Curr Cardiol Rep. 20:552018. View Article : Google Scholar : PubMed/NCBI

143 

Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, Koenig W, Somaratne R, Kassahun H, Yang J, et al: Effect of evolocumab on progression of coronary disease in Statin-treated patients: The GLAGOV randomized clinical trial. JAMA. 316:2373–2384. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Chen Y, Yuan Z, Lu J, Eliaschewitz FG, Lorenzatti AJ, Monsalvo ML, Wang N, Hamer AW and Ge J: Randomized study of evolocumab in patients with type 2 diabetes and dyslipidaemia on background statin: Pre-specified analysis of the Chinese population from the BERSON clinical trial. Diabetes Obes Metab. 21:1464–1473. 2019. View Article : Google Scholar : PubMed/NCBI

145 

O'Donoghue ML, Giugliano RP, Wiviott SD, Atar D, Keech A, Kuder JF, Im K, Murphy SA, Flores-Arredondo JH, López JAG, et al: Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation. 146:1109–1119. 2022. View Article : Google Scholar : PubMed/NCBI

146 

Han Y, Chen J, Chopra VK, Zhang S, Su G, Ma C, Huang Z, Ma Y, Yao Z, Yuan Z, et al: ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J Clin Lipidol. 14:98–108. e1082020. View Article : Google Scholar : PubMed/NCBI

147 

Cao YX, Liu HH, Li S and Li JJ: A Meta-analysis of the effect of PCSK9-monoclonal antibodies on circulating lipoprotein (a) levels. Am J Cardiovasc Drugs. 19:87–97. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, et al: Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 372:1489–1499. 2015. View Article : Google Scholar : PubMed/NCBI

149 

Stein EA and Turner TA: Are the PCSK9 inhibitors the panacea of atherosclerosis treatment? Expert Rev Cardiovasc Ther. 15:491–494. 2017. View Article : Google Scholar : PubMed/NCBI

150 

Thedrez A, Blom DJ, Ramin-Mangata S, Blanchard V, Croyal M, Chemello K, Nativel B, Pichelin M, Cariou B, Bourane S, et al: Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (Low-Density Lipoprotein Receptor): Implications for the efficacy of evolocumab. Arterioscler Thromb Vasc Biol. 38:592–598. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Keam SJ: Tafolecimab: First Approval. Drugs. 83:1545–1549. 2023. View Article : Google Scholar : PubMed/NCBI

152 

Chai M, He Y, Zhao W, Han X, Zhao G, Ma X, Qiao P, Shi D, Liu Y, Han W, et al: Efficacy and safety of tafolecimab in Chinese patients with heterozygous familial hypercholesterolemia: A randomized, double-blind, placebo-controlled phase 3 trial (CREDIT-2). BMC Med. 21:772023. View Article : Google Scholar : PubMed/NCBI

153 

Qi L, Liu D, Qu Y, Chen B, Meng H, Zhu L, Li L, Wang S, Liu C, Zheng G, et al: Tafolecimab in Chinese patients with hypercholesterolemia (CREDIT-4): A randomized, Double-Blind, Placebo-controlled phase 3 trial. JACC Asia. 3:636–645. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Huo Y, Chen B, Lian Q, Wang S, Liu L, Lu D, Qu Y, Zheng G, Li L, Ji Y, et al: Tafolecimab in Chinese patients with non-familial hypercholesterolemia (CREDIT-1): A 48-week randomized, double-blind, placebo-controlled phase 3 trial. Lancet Reg Health West Pac. 41:1009072023.PubMed/NCBI

155 

Brandts J and Ray KK: Small interfering RNA to proprotein convertase subtilisin/kexin type 9: Transforming LDL-cholesterol-lowering strategies. Curr Opin Lipidol. 31:182–186. 2020. View Article : Google Scholar : PubMed/NCBI

156 

Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, et al: A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 376:41–51. 2017. View Article : Google Scholar : PubMed/NCBI

157 

Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, et al: Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 382:1520–1530. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al: Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 382:1507–1519. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Khan SA, Naz A, Qamar Masood M and Shah R: Meta-Analysis of inclisiran for the treatment of hypercholesterolemia. Am J Cardiol. 134:69–73. 2020. View Article : Google Scholar : PubMed/NCBI

160 

Wright RS, Raal FJ, Koenig W, Landmesser U, Leiter LA, Vikarunnessa S, Lesogor A, Maheux P, Talloczy Z, Zang X, et al: Inclisiran administration potently and durably lowers LDL-C over an extended-term follow-up: The ORION-8 trial. Cardiovasc Res. 120:1400–1410. 2024. View Article : Google Scholar : PubMed/NCBI

161 

Tawara K, Tomikawa M and Abiko Y: Mode of action of probucol in reducing serum cholesterol in mice. Jpn J Pharmacol. 40:123–133. 1986. View Article : Google Scholar : PubMed/NCBI

162 

Yamashita S, Masuda D and Matsuzawa Y: Did we abandon probucol too soon? Curr Opin Lipidol. 26:304–316. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Burke AC, Telford DE and Huff MW: Bempedoic acid: Effects on lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol. 30:1–9. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Ballantyne CM, Laufs U, Ray KK, Leiter LA, Bays HE, Goldberg AC, Stroes ES, MacDougall D, Zhao X and Catapano AL: Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 27:593–603. 2020. View Article : Google Scholar : PubMed/NCBI

165 

De Filippo O, D'Ascenzo F, Iannaccone M, Bertaina M, Leone A, Borzillo I, Ravetti E, Solano A, Pagliassotto I, Nebiolo M, et al: Safety and efficacy of bempedoic acid: A systematic review and Meta-analysis of randomised controlled trials. Cardiovasc Diabetol. 22:3242023. View Article : Google Scholar : PubMed/NCBI

166 

Hamayal M, Shahid W, Akhtar CH, Shekiba F, Iftikhar I, Tahir MD, Awwab M, Hussain S, Naeem S and Hafeez M: Risk of cardiovascular outcomes with bempedoic acid in High-risk statin intolerant patients: A systematic review and meta analysis. Future Cardiol. 20:639–650. 2024. View Article : Google Scholar : PubMed/NCBI

167 

Xue H, Zhang M, Liu J, Wang J and Ren G: Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep. 25:155–166. 2023. View Article : Google Scholar : PubMed/NCBI

168 

Doggrell SA: What have we learnt from the clinical outcomes trials with the cetrapibs? Curr Opin Lipidol. 29:327–332. 2018. View Article : Google Scholar : PubMed/NCBI

169 

Tardif JC, Dube MP, Pfeffer MA, Waters DD, Koenig W, Maggioni AP, McMurray JJV, Mooser V, White HD, Heinonen T, et al: Study design of Dal-GenE, a pharmacogenetic trial targeting reduction of cardiovascular events with dalcetrapib. Am Heart J. 222:157–165. 2020. View Article : Google Scholar : PubMed/NCBI

170 

Tardif JC, Pfeffer MA, Kouz S, Koenig W, Maggioni AP, McMurray JJV, Mooser V, Waters DD, Grégoire JC, L'Allier PL, et al: Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: The dal-GenE trial. Eur Heart J. 43:3947–3956. 2022. View Article : Google Scholar : PubMed/NCBI

171 

Ballantyne CM, Ditmarsch M, Kastelein JJ, Nelson AJ, Kling D, Hsieh A, Curcio DL, Maki KC, Davidson MH and Nicholls SJ: Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: A randomized phase 2 trial. J Clin Lipidol. 17:491–503. 2023. View Article : Google Scholar : PubMed/NCBI

172 

Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, et al: Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: A randomised, double-blind, placebo-controlled trial. Lancet. 375:998–1006. 2010. View Article : Google Scholar : PubMed/NCBI

173 

Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A and Cicero AFG: Efficacy and safety of mipomersen: A systematic review and Meta-analysis of randomized clinical trials. Drugs. 79:751–766. 2019. View Article : Google Scholar : PubMed/NCBI

174 

Reeskamp LF, Kastelein JJP, Moriarty PM, Duell PB, Catapano AL, Santos RD and Ballantyne CM: Safety and efficacy of mipomersen in patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 280:109–117. 2019. View Article : Google Scholar : PubMed/NCBI

175 

Santos RD, Duell PB, East C, Guyton JR, Moriarty PM, Chin W and Mittleman RS: Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J. 36:566–575. 2015. View Article : Google Scholar : PubMed/NCBI

176 

Hashemi N, Odze RD, McGowan MP, Santos RD, Stroes ESG and Cohen DE: Liver histology during Mipomersen therapy for severe hypercholesterolemia. J Clin Lipidol. 8:606–611. 2014. View Article : Google Scholar : PubMed/NCBI

177 

Nurmohamed NS, Navar AM and Kastelein JJP: New and emerging therapies for reduction of LDL-cholesterol and apolipoprotein B: JACC focus seminar 1/4. J Am Coll Cardiol. 77:1564–1575. 2021. View Article : Google Scholar : PubMed/NCBI

178 

Brunham LR and Hegele RA: Lomitapide for the treatment of homozygous familial hypercholesterolaemia in children. Lancet Diabetes Endocrinol. 12:866–867. 2024. View Article : Google Scholar : PubMed/NCBI

179 

Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, Averna MR, Sirtori CR, Shah PK, Gaudet D, et al: Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: A single-arm, open-label, phase 3 study. Lancet. 381:40–46. 2013. View Article : Google Scholar : PubMed/NCBI

180 

Blom DJ, Averna MR, Meagher EA, du Toit Theron H, Sirtori CR, Hegele RA, Shah PK, Gaudet D, Stefanutti C, Vigna GB, et al: Long-Term efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in patients with homozygous familial hypercholesterolemia. Circulation. 136:332–335. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Nohara A, Otsubo Y, Yanagi K, Yoshida M, Ikewaki K, Harada-Shiba M and Jurecka A: Safety and efficacy of lomitapide in japanese patients with homozygous familial hypercholesterolemia (HoFH): Results from the AEGR-733-301 Long-term extension study. J Atheroscler Thromb. 26:368–377. 2019. View Article : Google Scholar : PubMed/NCBI

182 

Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ, Grobbee DE, Cass A, Chalmers J and Perkovic V: Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet. 375:1875–1884. 2010. View Article : Google Scholar : PubMed/NCBI

183 

Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, et al: Effects of Long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 366:1849–1861. 2005. View Article : Google Scholar : PubMed/NCBI

184 

Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, et al: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 341:410–418. 1999. View Article : Google Scholar : PubMed/NCBI

185 

Fruchart JC, Hermans MP, Fruchart-Najib J and Kodama T: Selective peroxisome Proliferator-activated receptor alpha modulators (SPPARMα) in the metabolic syndrome: Is Pemafibrate light at the end of the tunnel? Curr Atheroscler Rep. 23:32021. View Article : Google Scholar : PubMed/NCBI

186 

Diabetes Canada Clinical Practice Guidelines Expert Committee, . Mancini GBJ, Hegele RA and Leiter LA: Dyslipidemia. Can J Diabetes. 42 (Suppl 1):S178–S185. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Blair HA: Pemafibrate: First Global Approval. Drugs. 77:1805–1810. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Fruchart JC, Hermans MP and Fruchart-Najib J: Selective peroxisome proliferator-Activated receptor alpha modulators (SPPARMalpha): New opportunities to reduce residual cardiovascular risk in chronic kidney disease? Curr Atheroscler Rep. 22:432020. View Article : Google Scholar : PubMed/NCBI

189 

Yokote K, Yamashita S, Arai H, Araki E, Suganami H and Ishibashi S; On Behalf Of The K-Study Group, : Long-term efficacy and safety of pemafibrate, a novel selective peroxisome Proliferator-Activated Receptor-α Modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int J Mol Sci. 20:7062019. View Article : Google Scholar : PubMed/NCBI

190 

Tuteja S: Activation of HCAR2 by niacin: Benefits beyond lipid lowering. Pharmacogenomics. 20:1143–1150. 2019. View Article : Google Scholar : PubMed/NCBI

191 

HPS2-THRIVE Collaborative Group, . Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, et al: Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 371:203–212. 2014. View Article : Google Scholar : PubMed/NCBI

192 

Lavigne PM and Karas RH: The current state of niacin in cardiovascular disease prevention: A systematic review and Meta-regression. J Am Coll Cardiol. 61:440–446. 2013. View Article : Google Scholar : PubMed/NCBI

193 

Liu QK: Triglyceride-lowering and anti-inflammatory mechanisms of omega-3 polyunsaturated fatty acids for atherosclerotic cardiovascular risk reduction. J Clin Lipidol. 15:556–568. 2021. View Article : Google Scholar : PubMed/NCBI

194 

Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT Jr, Juliano RA, Jiao L, Granowitz C, et al: Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 380:11–22. 2019. View Article : Google Scholar : PubMed/NCBI

195 

Khan SU, Lone AN, Khan MS, Virani SS, Blumenthal RS, Nasir K, Miller M, Michos ED, Ballantyne CM, Boden WE and Bhatt DL: Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine. 38:1009972021. View Article : Google Scholar : PubMed/NCBI

196 

Nishizaki Y, Miyauchi K, Iwata H, Inoue T, Hirayama A, Kimura K, Ozaki Y, Murohara T, Ueshima K, Kuwabara Y, et al: Study protocol and baseline characteristics of Randomized trial for Evaluation in Secondary Prevention Efficacy of Combination Therapy-Statin and Eicosapentaenoic Acid: RESPECT-EPA, the combination of a randomized control trial and an observational biomarker study. Am Heart J. 257:1–8. 2023. View Article : Google Scholar : PubMed/NCBI

197 

Ng DS: Evolving ANGPTL-based lipid-lowering strategies and beyond. Curr Opin Lipidol. 32:271–272. 2021. View Article : Google Scholar : PubMed/NCBI

198 

Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout CV, Bruse S, Dansky HM, et al: Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 377:211–221. 2017. View Article : Google Scholar : PubMed/NCBI

199 

Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan KC, Gipe DA, et al: Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med. 383:711–720. 2020. View Article : Google Scholar : PubMed/NCBI

200 

Wiegman A, Greber-Platzer S, Ali S, Reijman MD, Brinton EA, Charng MJ, Srinivasan S, Baker-Smith C, Baum S, Brothers JA, et al: Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. Circulation. 149:343–353. 2024. View Article : Google Scholar : PubMed/NCBI

201 

Gaudet D, Greber-Platzer S, Reeskamp LF, Iannuzzo G, Rosenson RS, Saheb S, Stefanutti C, Stroes E, Wiegman A, Turner T, et al: Evinacumab in homozygous familial hypercholesterolaemia: Long-term safety and efficacy. Eur Heart J. 45:2422–2434. 2024. View Article : Google Scholar : PubMed/NCBI

202 

Rosenson RS, Gaudet D, Ballantyne CM, Baum SJ, Bergeron J, Kershaw EE, Moriarty PM, Rubba P, Whitcomb DC, Banerjee P, et al: Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: A phase 2 randomized trial. Nat Med. 29:729–737. 2023. View Article : Google Scholar : PubMed/NCBI

203 

Gouni-Berthold I, Schwarz J and Berthold HK: Updates in drug treatment of severe hypertriglyceridemia. Curr Atheroscler Rep. 25:701–709. 2023. View Article : Google Scholar : PubMed/NCBI

204 

Bergmark BA, Marston NA, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, Park JG, Murphy SA, Verma S, et al: Effect of Vupanorsen on Non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation. 145:1377–1386. 2022. View Article : Google Scholar : PubMed/NCBI

205 

Zimerman A, Wiviott SD, Park JG, Murphy SA, Ran X, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, et al: Hepatic fat changes with antisense oligonucleotide therapy targeting ANGPTL3. J Clin Lipidol. 18:e261–e268. 2024. View Article : Google Scholar : PubMed/NCBI

206 

Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al: Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med. 377:222–232. 2017. View Article : Google Scholar : PubMed/NCBI

207 

Minicocci I, Montali A, Robciuc MR, Quagliarini F, Censi V, Labbadia G, Gabiati C, Pigna G, Sepe ML, Pannozzo F, et al: Mutations in the ANGPTL3 gene and familial combined hypolipidemia: A clinical and biochemical characterization. J Clin Endocrinol Metab. 97:E1266–E1275. 2012. View Article : Google Scholar : PubMed/NCBI

208 

Watts GF, Schwabe C, Scott R, Gladding PA, Sullivan D, Baker J, Clifton P, Hamilton J, Given B, Melquist S, et al: RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: Phase 1 basket trial cohorts. Nat Med. 29:2216–2223. 2023. View Article : Google Scholar : PubMed/NCBI

209 

Rosenson RS, Gaudet D, Hegele RA, Ballantyne CM, Nicholls SJ, Lucas KJ, San Martin J, Zhou R, Muhsin M, Chang T, et al: Zodasiran, an RNAi Therapeutic Targeting ANGPTL3, for Mixed hyperlipidemia. N Engl J Med. 391:913–925. 2024. View Article : Google Scholar : PubMed/NCBI

210 

Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, Brody JA, Khetarpal SA, Crosby JR, Fornage M, et al: Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 94:223–232. 2014. View Article : Google Scholar : PubMed/NCBI

211 

Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, et al: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res. 61:1203–1220. 2020. View Article : Google Scholar : PubMed/NCBI

212 

Spagnuolo CM and Hegele RA: Recent advances in treating hypertriglyceridemia in patients at high risk of cardiovascular disease with apolipoprotein C-III inhibitors. Expert Opin Pharmacother. 24:1013–1020. 2023. View Article : Google Scholar : PubMed/NCBI

213 

Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG and Tybjaerg-Hansen A: Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 371:32–41. 2014. View Article : Google Scholar : PubMed/NCBI

214 

TGHDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, . Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, et al: Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 371:22–31. 2014. View Article : Google Scholar : PubMed/NCBI

215 

Gill PK, Dron JS and Hegele RA: Genetics of hypertriglyceridemia and atherosclerosis. Curr Opin Cardiol. 36:264–271. 2021. View Article : Google Scholar : PubMed/NCBI

216 

Nurmohamed NS, Dallinga-Thie GM and Stroes ESG: Targeting apoC-III and ANGPTL3 in the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther. 18:355–361. 2020. View Article : Google Scholar : PubMed/NCBI

217 

Zheng C, Khoo C, Furtado J and Sacks FM: Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 121:1722–1734. 2010. View Article : Google Scholar : PubMed/NCBI

218 

Hegele RA: APOC3 interference for familial chylomicronaemia syndrome. touchREV Endocrinol. 18:82–83. 2022. View Article : Google Scholar : PubMed/NCBI

219 

Schmitz J and Gouni-Berthold I: APOC-III antisense oligonucleotides: A new option for the treatment of hypertriglyceridemia. Curr Med Chem. 25:1567–1576. 2018. View Article : Google Scholar : PubMed/NCBI

220 

Giammanco A, Spina R, Cefalù AB and Averna M: APOC-III: A gatekeeper in controlling triglyceride metabolism. Curr Atheroscler Rep. 25:67–76. 2023. View Article : Google Scholar : PubMed/NCBI

221 

Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, Yang Q, Hughes SG, Geary RS, Arca M, et al: Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med. 381:531–542. 2019. View Article : Google Scholar : PubMed/NCBI

222 

Gouni-Berthold I, Alexander VJ, Yang Q, Hurh E, Steinhagen-Thiessen E, Moriarty PM, Hughes SG, Gaudet D, Hegele RA, O'Dea LSL, et al: Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9:264–275. 2021. View Article : Google Scholar : PubMed/NCBI

223 

Witztum JL, Gaudet D, Arca M, Jones A, Soran H, Gouni-Berthold I, Stroes ESG, Alexander VJ, Jones R, Watts L, et al: Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: Long-term efficacy and safety data from patients in an open-label extension trial. J Clin Lipidol. 17:342–355. 2023. View Article : Google Scholar : PubMed/NCBI

224 

Tardif JC, Karwatowska-Prokopczuk E, Amour ES, Ballantyne CM, Shapiro MD, Moriarty PM, Baum SJ, Hurh E, Bartlett VJ, Kingsbury J, et al: Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J. 43:1401–1412. 2022. View Article : Google Scholar : PubMed/NCBI

225 

Bergmark BA, Marston NA, Prohaska TA, Alexander VJ, Zimerman A, Moura FA, Murphy SA, Goodrich EL, Zhang S, Gaudet D, et al: Olezarsen for Hypertriglyceridemia in patients at high cardiovascular risk. N Engl J Med. 390:1770–1780. 2024. View Article : Google Scholar : PubMed/NCBI

226 

Gaudet D, Clifton P, Sullivan D, Baker J, Schwabe C, Thackwray S, Scott R, Hamilton J, Given B, Melquist S, et al: RNA interference therapy targeting apolipoprotein C-III in hypertriglyceridemia. NEJM Evid. 2:EVIDoa22003252023. View Article : Google Scholar : PubMed/NCBI

227 

Gaudet D, Pall D, Watts GF, Nicholls SJ, Rosenson RS, Modesto K, San Martin J, Hellawell J and Ballantyne CM: Plozasiran (ARO-APOC3) for severe hypertriglyceridemia: The SHASTA-2 randomized clinical trial. JAMA Cardiol. 9:620–630. 2024. View Article : Google Scholar : PubMed/NCBI

228 

Ballantyne CM, Vasas S, Azizad M, Clifton P, Rosenson RS, Chang T, Melquist S, Zhou R, Mushin M, Leeper NJ, et al: Plozasiran, an RNA interference agent targeting APOC3, for mixed hyperlipidemia. N Engl J Med. 391:899–912. 2024. View Article : Google Scholar : PubMed/NCBI

229 

Li JJ, Ma CS, Zhao D, Yan XW, Beijing Heart S and Expert C: Lipoprotein(a) and cardiovascular disease in Chinese population: A beijing heart society expert scientific statement. JACC Asia. 2:653–665. 2022. View Article : Google Scholar : PubMed/NCBI

230 

van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, et al: Oxidized phospholipids on Lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 134:611–624. 2016. View Article : Google Scholar : PubMed/NCBI

231 

Plakogiannis R, Sorbera M, Fischetti B and Chen M: The role of antisense therapies targeting Lipoprotein(a). J Cardiovasc Pharmacol. 78:e5–e11. 2021. View Article : Google Scholar : PubMed/NCBI

232 

Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, et al: Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 382:244–255. 2020. View Article : Google Scholar : PubMed/NCBI

233 

Stiekema LCA, Prange KHM, Hoogeveen RM, Verweij SL, Kroon J, Schnitzler JG, Dzobo KE, Cupido AJ, Tsimikas S, Stroes ESG, et al: Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur Heart J. 41:2262–2271. 2020. View Article : Google Scholar : PubMed/NCBI

234 

O'Donoghue ML, JA GL, Knusel B, Gencer B, Wang H, Wu Y, Kassahun H and Sabatine MS: Study design and rationale for the Olpasiran trials of cardiovascular events And lipoproteiN(a) reduction-DOSE finding study (OCEAN(a)-DOSE). Am Heart J. 251:61–69. 2022. View Article : Google Scholar : PubMed/NCBI

235 

O'Donoghue ML, Rosenson RS, Gencer B, López JAG, Lepor NE, Baum SJ, Stout E, Gaudet D, Knusel B, Kuder JF, et al: Small interfering RNA to reduce Lipoprotein(a) in cardiovascular disease. N Engl J Med. 387:1855–1864. 2022. View Article : Google Scholar : PubMed/NCBI

236 

Nissen SE, Wang Q, Nicholls SJ, Navar AM, Ray KK, Schwartz GG, Szarek M, Stroes ESG, Troquay R, Dorresteijn JAN, et al: Zerlasiran-A small-interfering RNA targeting Lipoprotein(a): A phase 2 randomized clinical trial. JAMA. 332:1992–2002. 2024. View Article : Google Scholar : PubMed/NCBI

237 

Diaz N, Perez C, Escribano AM, Sanz G, Priego J, Lafuente C, Barberis M, Calle L, Espinosa JF, Priest BT, et al: Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature. 629:945–950. 2024. View Article : Google Scholar : PubMed/NCBI

238 

Becker L, Cook PM and Koschinsky ML: Identification of sequences in apolipoprotein(a) that maintain its closed conformation: A novel role for apo(a) isoform size in determining the efficiency of covalent Lp(a) formation. Biochemistry. 43:9978–9988. 2004. View Article : Google Scholar : PubMed/NCBI

239 

Becker L, Cook PM, Wright TG and Koschinsky ML: Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6–8 to lipoprotein(a) assembly. J Biol Chem. 279:2679–2688. 2004. View Article : Google Scholar : PubMed/NCBI

240 

Brunner C, Kraft HG, Utermann G and Muller HJ: Cys4057 of apolipoprotein(a) is essential for lipoprotein(a) assembly. Proc Natl Acad Sci USA. 90:11643–11647. 1993. View Article : Google Scholar : PubMed/NCBI

241 

Guevara J Jr, Spurlino J, Jan AY, Yang CY, Tulinsky A, Prasad BV, Gaubatz JW and Morrisett JD: Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a]. Biophys J. 64:686–700. 1993. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao H, Wang Y, Li Y, Cheng R and Chen W: Research advances in current drugs targeting hyperlipidemia (Review). Mol Med Rep 32: 258, 2025.
APA
Zhao, H., Wang, Y., Li, Y., Cheng, R., & Chen, W. (2025). Research advances in current drugs targeting hyperlipidemia (Review). Molecular Medicine Reports, 32, 258. https://doi.org/10.3892/mmr.2025.13623
MLA
Zhao, H., Wang, Y., Li, Y., Cheng, R., Chen, W."Research advances in current drugs targeting hyperlipidemia (Review)". Molecular Medicine Reports 32.4 (2025): 258.
Chicago
Zhao, H., Wang, Y., Li, Y., Cheng, R., Chen, W."Research advances in current drugs targeting hyperlipidemia (Review)". Molecular Medicine Reports 32, no. 4 (2025): 258. https://doi.org/10.3892/mmr.2025.13623
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao H, Wang Y, Li Y, Cheng R and Chen W: Research advances in current drugs targeting hyperlipidemia (Review). Mol Med Rep 32: 258, 2025.
APA
Zhao, H., Wang, Y., Li, Y., Cheng, R., & Chen, W. (2025). Research advances in current drugs targeting hyperlipidemia (Review). Molecular Medicine Reports, 32, 258. https://doi.org/10.3892/mmr.2025.13623
MLA
Zhao, H., Wang, Y., Li, Y., Cheng, R., Chen, W."Research advances in current drugs targeting hyperlipidemia (Review)". Molecular Medicine Reports 32.4 (2025): 258.
Chicago
Zhao, H., Wang, Y., Li, Y., Cheng, R., Chen, W."Research advances in current drugs targeting hyperlipidemia (Review)". Molecular Medicine Reports 32, no. 4 (2025): 258. https://doi.org/10.3892/mmr.2025.13623
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team