You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Pirillo A, Casula M, Olmastroni E, Norata GD and Catapano AL: Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 18:689–700. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Repositioning of the global epicentre of non-optimal cholesterol. Nature. 582:73–77. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Zhao D and Qi Y: Global trends in the epidemiology and management of dyslipidemia. J Clin Med. 11:63772022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, Wong VW, Cai J, Shapiro MD, Eslam M, et al: An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 17:773–791. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Li Z, Song Y, Liu Y, Zhao H, Liu Y, Zhang T, Yuan Y, Cai X, Wang S, et al: Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin Chim Acta. 495:365–373. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Corvilain B: Lipoprotein metabolism. Rev Med Brux. 18:3–9. 1997.(In French). PubMed/NCBI | |
|
Errico TL, Chen X, Martin Campos JM, Julve J, Escolà-Gil JC and Blanco-Vaca F: Basic mechanisms: Structure, function and metabolism of plasma lipoproteins. Clin Investig Arterioscler. 25:98–103. 2013.PubMed/NCBI | |
|
Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, et al: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J. 41:111–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, et al: Triglyceride-rich lipoproteins and High-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur Heart J. 32:1345–1361. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ and Bornfeldt KE: Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 69:508–516. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, Hovingh GK, Kastelein JJ, Melamed S, Barter P, Waters DD and Ray KK: Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation. 138:770–781. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Raposeiras-Roubin S, Rosselló X, Oliva B, Fernández-Friera L, Mendiguren JM, Andrés V, Bueno H, Sanz J, Martínez de Vega V, Abu-Assi E, et al: Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 77:3031–3041. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, et al: Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 41:2313–2330. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gotto AM Jr and Brinton EA: Assessing low levels of High-density lipoprotein cholesterol as a risk factor in coronary heart disease: A working group report and update. J Am Coll Cardiol. 43:717–724. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li JJ, Ma CS, Zhao D and Yan XW: Lipoprotein(a) and cardiovascular disease in Chinese population: A beijing heart society expert scientific statement. JACC Asia. 2:653–665. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta A, Vasquez N, Ayers CR, Patel J, Hooda A, Khera A, Blumenthal RS, Shapiro MD, Rodriguez CJ, Tsai MY, et al: Independent association of lipoprotein(a) and coronary artery calcification with atherosclerotic cardiovascular risk. J Am Coll Cardiol. 79:757–768. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ong KL, McClelland RL, Allison MA, Cushman M, Garg PK, Tsai MY, Rye KA and Tabet F: Lipoprotein (a) and coronary artery calcification: Prospective study assessing interactions with other risk factors. Metabolism. 116:1547062021. View Article : Google Scholar : PubMed/NCBI | |
|
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Unwin N and Alberti KG: Chronic non-communicable diseases. Annals of tropical medicine and parasitology. 100:455–464. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu Y, Jiang X and Dai W: The roles of a novel inflammatory neopterin in subjects with coronary atherosclerotic heart disease. Int Immunopharmacol. 24:169–172. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
NCD Risk Factor Collaboration (NCD-RisC), . Repositioning of the global epicentre of Non-optimal cholesterol. Nature. 582:73–77. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Song PK, Man QQ, Li H, Pang SJ, Jia SS, Li YQ, He L, Zhao WH and Zhang J: Trends in lipids level and dyslipidemia among chinese adults, 2002–2015. Biomed Environ Sci. 32:559–570. 2019.PubMed/NCBI | |
|
Pan L, Yang Z, Wu Y, Yin RX, Liao Y, Wang J, Gao B and Zhang L; China National Survey of Chronic Kidney Disease Working Group, : The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis. 248:2–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li JJ: Chinese guideline for lipid management (2023): A new guideline rich in domestic elements for controlling dyslipidemia. J Geriatr Cardiol. 20:618–620. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xia Q, Chen Y, Yu Z, Huang Z, Yang Y, Mao A and Qiu W: Prevalence, awareness, treatment, and control of dyslipidemia in Chinese adults: A systematic review and meta-analysis. Front Cardiovasc Med. 10:11863302023. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Liu HH, Guo YL, Zhu CG, Wu NQ, Xu RX, Dong Q and Li JJ: Improvement of evaluation in Chinese patients with atherosclerotic cardiovascular disease using the Very-high-risk refinement: A population-based study. Lancet Reg Health West Pac. 17:1002862021.PubMed/NCBI | |
|
Rygiel K: Hypertriglyceridemia-common causes, prevention and treatment strategies. Curr Cardiol Rev. 14:67–76. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mc Namara K, Alzubaidi H and Jackson JK: Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integr Pharm Res Pract. 8:1–11. 2019.PubMed/NCBI | |
|
Vaezi Z and Amini A: Familial Hypercholesterolemia. StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC; Treasure Island (FL): ineligible companies. Disclosure: Afshin Amini declares no relevant financial relationships with ineligible companies. 2025 | |
|
Benn M, Watts GF, Tybjaerg-Hansen A and Nordestgaard BG: Mutations causative of familial hypercholesterolaemia: Screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur Heart J. 37:1384–1394. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, et al: Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European atherosclerosis society. Eur Heart J. 34:3478–3490a. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Vrablik M, Tichy L, Freiberger T, Blaha V, Satny M and Hubacek JA: Genetics of familial hypercholesterolemia: New insights. Front Genet. 11:5744742020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Zhou BY, Li S, Sun NL, Hua Q, Wu SL, Cao YS, Guo YL, Wu NQ, Zhu CG, et al: Genetic basis of index patients with familial hypercholesterolemia in Chinese population: Mutation spectrum and Genotype-phenotype correlation. Lipids Health Dis. 17:2522018. View Article : Google Scholar : PubMed/NCBI | |
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H and Martin C: Familial Hypercholesterolemia: The most frequent cholesterol metabolism disorder caused disease. Int J Mol Sci. 19:34262018. View Article : Google Scholar : PubMed/NCBI | |
|
Sawhney JPS and Madan K: Familial hypercholesterolemia. Indian Heart J. 76 (Suppl 1):S108–S112. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hopkins PN, Toth PP, Ballantyne CM and Rader DJ; National Lipid Association Expert Panel on Familial Hypercholesterolemia, : Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 5 (3 Suppl):S9–S17. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Singh S and Bittner V: Familial hypercholesterolemia-epidemiology, diagnosis, and screening. Curr Atheroscler Rep. 17:4822015. View Article : Google Scholar : PubMed/NCBI | |
|
Choi D, Malick WA, Koenig W, Rader DJ and Rosenson RS: Familial Hypercholesterolemia: Challenges for a High-Risk Population: JACC Focus Seminar 1/3. J Am Coll Cardiol. 81:1621–1632. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Garg A and Radhakrishnan S: Pediatric hyperlipidemia. Indian Heart J. 76 (Suppl 1):S104–S107. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hegele RA, Boren J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, et al: Rare dyslipidaemias, from phenotype to genotype to management: A European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 8:50–67. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao YX, Sun D, Liu HH, Jin JL, Li S, Guo YL, Wu NQ, Zhu CG, Liu G, Dong Q, et al: Improvement of definite diagnosis of familial hypercholesterolemia using an expanding genetic analysis. JACC Asia. 1:82–89. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gill PK and Hegele RA: Familial combined hyperlipidemia is a polygenic trait. Curr Opin Lipidol. 33:126–132. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nawawi HM, Chua YA and Watts GF: The brave new world of genetic testing in the management of the dyslipidaemias. Curr Opin Cardiol. 35:226–233. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Taghizadeh E, Farahani N, Mardani R, Taheri F, Taghizadeh H and Gheibihayat SM: Genetics of familial combined hyperlipidemia (FCHL) disorder: An update. Biochem Genet. 60:453–481. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Trinder M, Vikulova D, Pimstone S, Mancini GBJ and Brunham LR: Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis. 340:35–43. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wierzbicki AS, Kim EJ, Esan O and Ramachandran R: Hypertriglyceridaemia: An update. J Clin Pathol. 75:798–806. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, et al: Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 478:110–113. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Horswell SD, Fryer LG, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, et al: CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res. 54:3491–3505. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Naukkarinen J, Ehnholm C and Peltonen L: Genetics of familial combined hyperlipidemia. Curr Opin Lipidol. 17:285–290. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Heidemann BE, Koopal C, Baass A, Defesche JC, Zuurbier L, Mulder MT, Roeters van Lennep JE, Riksen NP, Boot C, Marais AD and Visseren FLJ: Establishing the relationship between familial dysbetalipoproteinemia and genetic variants in the APOE gene. Clin Genet. 102:253–261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Koopal C, Marais AD and Visseren FL: Familial dysbetalipoproteinemia: An underdiagnosed lipid disorder. Curr Opin Endocrinol Diabetes Obes. 24:133–139. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Krauss RM, Lu JT, Higgins JJ, Clary CM and Tabibiazar R: VLDL receptor gene therapy for reducing atherogenic lipoproteins. Mol Metab. 69:1016852023. View Article : Google Scholar : PubMed/NCBI | |
|
Packard CJ and Shepherd J: Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol. 17:3542–3556. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG and Frikke-Schmidt R: Plasma levels of apolipoprotein E, APOE genotype, and All-cause and cause-specific mortality in 105 949 individuals from a white general population cohort. Eur Heart J. 40:2813–2824. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U and Danesh J: Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 298:1300–1311. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Khan TA, Shah T, Prieto D, Zhang W, Price J, Fowkes GR, Cooper J, Talmud PJ, Humphries SE, Sundstrom J, et al: Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol. 42:475–492. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Koopal C, Geerlings MI, Muller M, de Borst GJ, Algra A, van der Graaf Y and Visseren FL; SMART Study Group, : The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease. Atherosclerosis. 246:187–192. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mahley RW, Weisgraber KH and Huang Y: Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA. 103:5644–5651. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Goldberg RB and Chait A: A comprehensive update on the chylomicronemia syndrome. Front Endocrinol (Lausanne). 11:5939312020. View Article : Google Scholar : PubMed/NCBI | |
|
Hegele RA, Berberich AJ, Ban MR, Wang J, Digenio A, Alexander VJ, D'Erasmo L, Arca M, Jones A, Bruckert E, et al: Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol. 12:920–927.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Paquette M, Bernard S, Hegele RA and Baass A: Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis. 283:137–142. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Koseki M, Yamashita S, Ogura M, Ishigaki Y, Ono K, Tsukamoto K, Hori M, Matsuki K, Yokoyama S and Harada-Shiba M: Current diagnosis and management of tangier disease. J Atheroscler Thromb. 28:802–810. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ and Cuchel M: A systematic review of the natural history and biomarkers of primary lecithin: Cholesterol acyltransferase deficiency. J Lipid Res. 63:1001692022. View Article : Google Scholar : PubMed/NCBI | |
|
Mensink RP, Zock PL, Kester AD and Katan MB: Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A Meta-analysis of 60 controlled trials. Am J Clin Nutr. 77:1146–1155. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies, : 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis. 290:140–205. 2019. View Article : Google Scholar | |
|
Trautwein EA and McKay S: The role of specific components of a Plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients. 12:26712020. View Article : Google Scholar : PubMed/NCBI | |
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM and Metallo CM: Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab. 37:274–290.e9. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hieronimus B and Stanhope KL: Dietary fructose and dyslipidemia: New mechanisms involving apolipoprotein CIII. Curr Opin Lipidol. 31:20–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H, Niimi M, Matsuhisa F, Zhou H, Kitajima S, Chen Y, Wang C, Yang X, Yao J, Yang D, et al: Apolipoprotein CIII deficiency protects against atherosclerosis in knockout rabbits. Arterioscler Thromb Vasc Biol. 40:2095–2107. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rohr MW, Narasimhulu CA, Rudeski-Rohr TA and Parthasarathy S: Negative effects of a High-Fat diet on intestinal permeability: A review. Adv Nutr. 11:77–91. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dimitriadis G, Mitrou P, Lambadiari V, Maratou E and Raptis SA: Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 93 (Suppl 1):S52–S59. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Cheng Y, Zhang G and Wang B: Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep. 48:5675–5687. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen SC and Tseng CH: Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev Diabet Stud. 10:88–100. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fukui T and Hirano T: High-density lipoprotein subspecies between patients with type 1 diabetes and type 2 diabetes without/with intensive insulin therapy. Endocr J. 59:561–569. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hirano T: Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 25:771–782. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cao X, Liu XM and Zhou LH: Recent progress in research on the distribution and function of NUCB2/nesfatin-1 in peripheral tissues. Endocr J. 60:1021–1027. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Basar O, Akbal E, Köklü S, Koçak E, Tuna Y, Ekiz F, Gültuna S, Yιlmaz FM and Aydoğan T: A novel appetite peptide, nesfatin-1 in patients with non-alcoholic fatty liver disease. Scand J Clin Lab Invest. 72:479–483. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Li Z, Gao L, Li Y, Zhao J and Zhang W: AMPK-dependent modulation of hepatic lipid metabolism by nesfatin-1. Mol Cell Endocrinol. 417:20–26. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nasri A, Kowaluk M, Widenmaier SB and Unniappan S: Nesfatin-1 and nesfatin-1-like peptide attenuate hepatocyte lipid accumulation and nucleobindin-1 disruption modulates lipid metabolic pathways. Commun Biol. 7:6232024. View Article : Google Scholar : PubMed/NCBI | |
|
Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G and Ren J: PCSK9 in metabolism and diseases. Metabolism. 163:1560642024. View Article : Google Scholar : PubMed/NCBI | |
|
Rosso C, Kazankov K, Younes R, Esmaili S, Marietti M, Sacco M, Carli F, Gaggini M, Salomone F, Møller HJ, et al: Crosstalk between adipose tissue insulin resistance and liver macrophages in Non-alcoholic fatty liver disease. J Hepatol. 71:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Verges B, Petit JM, Duvillard L, Dautin G, Florentin E, Galland F and Gambert P: Adiponectin is an important determinant of apoA-I catabolism. Arterioscler Thromb Vasc Biol. 26:1364–1369. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Biondi B: Thyroid and obesity: An intriguing relationship. J Clin Endocrinol Metab. 95:3614–3617. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Obregon MJ: Thyroid hormone and adipocyte differentiation. Thyroid. 18:185–195. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Grover GJ, Mellstrom K and Malm J: Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr Vasc Pharmacol. 5:141–154. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C and Cheng SY: Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol. 44:143–154. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Peng H, Chen X, Wu X and Wang B: Hyperlipidemia and hypothyroidism. Clin Chim Acta. 527:61–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pearce EN: Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 97:326–333. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, Li W, Dou A, Zhang R and Davies BSJ: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab. 6:1137–1149. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moradi H and Vaziri ND: Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease. Front Biosci (Landmark Ed). 23:146–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Borba EF, Bonfá E, Vinagre CG, Ramires JA and Maranhão RC: Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum. 43:1033–1040. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
de Carvalho JF, Bonfá E and Borba EF: Systemic lupus erythematosus and ‘lupus dyslipoproteinemia’. Autoimmun Rev. 7:246–250. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
McMahon M, Grossman J, Skaggs B, Fitzgerald J, Sahakian L, Ragavendra N, Charles-Schoeman C, Watson K, Wong WK, Volkmann E, et al: Dysfunctional proinflammatory High-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum. 60:2428–2437. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tselios K, Koumaras C, Gladman DD and Urowitz MB: Dyslipidemia in systemic lupus erythematosus: Just another comorbidity? Semin Arthritis Rheum. 45:604–610. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cox AJ, West NP and Cripps AW: Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3:207–215. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fei N and Zhao L: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7:880–884. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jia X, Xu W, Zhang L, Li X, Wang R and Wu S: Impact of gut microbiota and Microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 11:6347802021. View Article : Google Scholar : PubMed/NCBI | |
|
Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, et al: Short chain fatty acids in human gut and metabolic health. Benef Microbes. 11:411–455. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, Garcia-Perez I, Fountana S, Serrano-Contreras JI, Holmes E, et al: Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut. 68:1430–1438. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Byrne CS, Chambers ES, Preston T, Tedford C, Brignardello J, Garcia-Perez I, Holmes E, Wallis GA, Morrison DJ and Frost GS: Effects of inulin propionate ester incorporated into palatable food products on appetite and resting energy expenditure: A randomised crossover study. Nutrients. 11:8612019. View Article : Google Scholar : PubMed/NCBI | |
|
van Deuren T, Blaak EE and Canfora EE: Butyrate to combat obesity and Obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes Rev. 23:e134982022. View Article : Google Scholar : PubMed/NCBI | |
|
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, et al: Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 64:1744–1754. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Wang Y, Jin L and Huang W: Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne). 13:9295302022. View Article : Google Scholar : PubMed/NCBI | |
|
Xue R, Su L, Lai S, Wang Y, Zhao D, Fan J, Chen W, Hylemon PB and Zhou H: Bile acid receptors and the Gut-liver axis in nonalcoholic fatty liver disease. Cells. 10:28062021. View Article : Google Scholar : PubMed/NCBI | |
|
Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, Chan AP, Brearley-Sholto MC, Wahlström A, Ashby JW, et al: FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 33:1671–1684.e4. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao K, Mu CL, Farzi A and Zhu WY: Tryptophan metabolism: A link between the gut microbiota and brain. Adv Nutr. 11:709–723. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC, Martin R, Michel ML, Chong-Nguyen C, Roussel R, Straube M, et al: Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28:737–749.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Postal BG, Ghezzal S, Aguanno D, André S, Garbin K, Genser L, Brot-Laroche E, Poitou C, Soula H, Leturque A, et al: AhR activation defends gut barrier integrity against damage occurring in obesity. Mol Metab. 39:1010072020. View Article : Google Scholar : PubMed/NCBI | |
|
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, et al: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 39:372–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ai Z, Xing X, Fan Y, Zhang Y, Nan B, Li X, Wang Y and Liu J: The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: A review. Crit Rev Food Sci Nutr. 64:3556–3572. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang C, Zhou XH, Gong PM, Niu HY, Lyu LZ, Wu YF, Han X and Zhang LW: Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food Funct. 12:4315–4324. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Oh N, Lee J, Kim H, Kwon M, Seo J and Roh S: Comparison of Cell-free extracts from three newly identified lactobacillus plantarum strains on the inhibitory effect of adipogenic differentiation and insulin resistance in 3T3-L1 adipocytes. Biomed Res Int. 2021:66765022021. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, Park DS and Kim YS: Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and reduces High-Fat-Diet-induced obesity in mice. J Agric Food Chem. 69:6032–6042. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
In Kim H, Kim JK, Kim JY, Jang SE, Han MJ and Kim DH: Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr Res. 67:78–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Yu J, Yang Y, Li Z, Zhang Y, Zhang F, Wang Q, Xie Y, Zhao B and Wu C: Strain-level screening of human gut microbes identifies Blautia producta as a new anti-hyperlipidemic probiotic. Gut Microbes. 15:22280452023. View Article : Google Scholar : PubMed/NCBI | |
|
Lorkowski S: Long known and mostly unused: Lifestyle measures to support Lipid-lowering therapy. Dtsch Med Wochenschr. 147:796–806. 2022.(In German). PubMed/NCBI | |
|
National Clinical Guideline Centre (UK), . National Institute for Health and Clinical Excellence: Guidance: Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease. National Institute for Health and Care Excellence (UK), 2014. Copyright © National Clinical Guideline Centre; London: 2014 | |
|
Hirota T, Fujita Y and Ieiri I: An updated review of pharmacokinetic drug interactions and phar macogenetics of statins. Expert Opin Drug Metab Toxicol. 16:809–822. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Watts GF, Barrett PH, Ji J, Serone AP, Chan DC, Croft KD, Loehrer F and Johnson AG: Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 52:803–811. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Xing L, Jia X, Pang X, Xiang Q, Zhao X, Ma L, Liu Z, Hu K, Wang Z and Cui Y: Comparative Lipid-Lowering/Increasing Efficacy of 7 statins in patients with dyslipidemia, cardiovascular diseases, or diabetes mellitus: Systematic review and network Meta-analyses of 50 randomized controlled trials. Cardiovasc Ther. 2020:39870652020. View Article : Google Scholar : PubMed/NCBI | |
|
Cannon CP, Steinberg BA, Murphy SA, Mega JL and Braunwald E: Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 48:438–445. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Cholesterol Treatment Trialists' (CTT) Collaboration, . Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, et al: Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 376:1670–1681. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cholesterol Treatment Trialists' (CTT) Collaboration, . Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, et al: Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 385:1397–1405. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, et al: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 359:2195–2207. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez F, Maron DJ, Knowles JW, Virani SS, Lin S and Heidenreich PA: Association between intensity of statin therapy and mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2:47–54. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Turner RM and Pirmohamed M: Statin-related myotoxicity: A comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J Clin Med. 9:222019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Plutzky J, Skentzos S, Morrison F, Mar P, Shubina M and Turchin A: Discontinuation of statins in routine care settings: A cohort study. Ann Intern Med. 158:526–534. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Feingold KR: Maximizing the benefits of cholesterol-lowering drugs. Curr Opin Lipidol. 30:388–394. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Berberich AJ and Hegele RA: A Modern approach to dyslipidemia. Endocr Rev. 43:611–653. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, et al: Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 372:2387–2397. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sharp Collaborative Group, : Study of heart and renal protection (SHARP): Randomized trial to assess the effects of lowering Low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J. 160:785–794.e10. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Lou H, Jiang B, Shao R, Ruan Z and Wang J: Simultaneous determination of hyzetimibe and its main active metabolite in plasma by LC-MS/MS and its application in PK study. Bioanalysis. 7:1857–1867. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Ruan Z, Chen J, Yang D, Shao R, Lou H and Jiang B: Population pharmacokinetics and enterohepatic recirculation of hyzetimibe and its main metabolite in Chinese healthy subjects. Br J Clin Pharmacol. 88:3153–3161. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liao J, Wang X, Li Z and Ouyang D: Pharmacokinetic study of Oral 14C-radiolabeled hyzetimibe, a new cholesterol absorption inhibitor. Front Pharmacol. 12:6653722021. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan Z, Jiang B, Chen J, Zhang X, Lou H, Xiang M, Shao Q and Wang J: Pharmacokinetics, pharmacodynamics, safety, and tolerability of hyzetimibe (HS-25) in healthy Chinese subjects. J Clin Pharmacol. 54:1144–1152. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Knapp HH, Schrott H, Ma P, Knopp R, Chin B, Gaziano JM, Donovan JM, Burke SK and Davidson MH: Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 110:352–360. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mazidi M, Rezaie P, Karimi E and Kengne AP: The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: A systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 227:850–857. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Crouse JR III: Hypertriglyceridemia: A contraindication to the use of bile acid binding resins. Am J Med. 83:243–248. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Xia XD, Gu HM and Zhang DW: Proprotein convertase Subtilisin/Kexin-type 9 and lipid Metabolism. Adv Exp Med Biol. 1276:137–156. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rakipovski G, Hovingh GK and Nyberg M: Proprotein convertase Subtilisin/Kexin type 9 inhibition as the next statin? Curr Opin Lipidol. 31:340–346. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S and Cannon CP: Combination Lipid-lowering therapies for the prevention of recurrent cardiovascular events. Curr Cardiol Rep. 20:552018. View Article : Google Scholar : PubMed/NCBI | |
|
Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, Koenig W, Somaratne R, Kassahun H, Yang J, et al: Effect of evolocumab on progression of coronary disease in Statin-treated patients: The GLAGOV randomized clinical trial. JAMA. 316:2373–2384. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yuan Z, Lu J, Eliaschewitz FG, Lorenzatti AJ, Monsalvo ML, Wang N, Hamer AW and Ge J: Randomized study of evolocumab in patients with type 2 diabetes and dyslipidaemia on background statin: Pre-specified analysis of the Chinese population from the BERSON clinical trial. Diabetes Obes Metab. 21:1464–1473. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
O'Donoghue ML, Giugliano RP, Wiviott SD, Atar D, Keech A, Kuder JF, Im K, Murphy SA, Flores-Arredondo JH, López JAG, et al: Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation. 146:1109–1119. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Chen J, Chopra VK, Zhang S, Su G, Ma C, Huang Z, Ma Y, Yao Z, Yuan Z, et al: ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J Clin Lipidol. 14:98–108. e1082020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao YX, Liu HH, Li S and Li JJ: A Meta-analysis of the effect of PCSK9-monoclonal antibodies on circulating lipoprotein (a) levels. Am J Cardiovasc Drugs. 19:87–97. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, et al: Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 372:1489–1499. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stein EA and Turner TA: Are the PCSK9 inhibitors the panacea of atherosclerosis treatment? Expert Rev Cardiovasc Ther. 15:491–494. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Thedrez A, Blom DJ, Ramin-Mangata S, Blanchard V, Croyal M, Chemello K, Nativel B, Pichelin M, Cariou B, Bourane S, et al: Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (Low-Density Lipoprotein Receptor): Implications for the efficacy of evolocumab. Arterioscler Thromb Vasc Biol. 38:592–598. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Keam SJ: Tafolecimab: First Approval. Drugs. 83:1545–1549. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chai M, He Y, Zhao W, Han X, Zhao G, Ma X, Qiao P, Shi D, Liu Y, Han W, et al: Efficacy and safety of tafolecimab in Chinese patients with heterozygous familial hypercholesterolemia: A randomized, double-blind, placebo-controlled phase 3 trial (CREDIT-2). BMC Med. 21:772023. View Article : Google Scholar : PubMed/NCBI | |
|
Qi L, Liu D, Qu Y, Chen B, Meng H, Zhu L, Li L, Wang S, Liu C, Zheng G, et al: Tafolecimab in Chinese patients with hypercholesterolemia (CREDIT-4): A randomized, Double-Blind, Placebo-controlled phase 3 trial. JACC Asia. 3:636–645. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huo Y, Chen B, Lian Q, Wang S, Liu L, Lu D, Qu Y, Zheng G, Li L, Ji Y, et al: Tafolecimab in Chinese patients with non-familial hypercholesterolemia (CREDIT-1): A 48-week randomized, double-blind, placebo-controlled phase 3 trial. Lancet Reg Health West Pac. 41:1009072023.PubMed/NCBI | |
|
Brandts J and Ray KK: Small interfering RNA to proprotein convertase subtilisin/kexin type 9: Transforming LDL-cholesterol-lowering strategies. Curr Opin Lipidol. 31:182–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, et al: A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 376:41–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, et al: Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 382:1520–1530. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al: Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 382:1507–1519. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Khan SA, Naz A, Qamar Masood M and Shah R: Meta-Analysis of inclisiran for the treatment of hypercholesterolemia. Am J Cardiol. 134:69–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wright RS, Raal FJ, Koenig W, Landmesser U, Leiter LA, Vikarunnessa S, Lesogor A, Maheux P, Talloczy Z, Zang X, et al: Inclisiran administration potently and durably lowers LDL-C over an extended-term follow-up: The ORION-8 trial. Cardiovasc Res. 120:1400–1410. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tawara K, Tomikawa M and Abiko Y: Mode of action of probucol in reducing serum cholesterol in mice. Jpn J Pharmacol. 40:123–133. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Yamashita S, Masuda D and Matsuzawa Y: Did we abandon probucol too soon? Curr Opin Lipidol. 26:304–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Burke AC, Telford DE and Huff MW: Bempedoic acid: Effects on lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol. 30:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ballantyne CM, Laufs U, Ray KK, Leiter LA, Bays HE, Goldberg AC, Stroes ES, MacDougall D, Zhao X and Catapano AL: Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 27:593–603. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
De Filippo O, D'Ascenzo F, Iannaccone M, Bertaina M, Leone A, Borzillo I, Ravetti E, Solano A, Pagliassotto I, Nebiolo M, et al: Safety and efficacy of bempedoic acid: A systematic review and Meta-analysis of randomised controlled trials. Cardiovasc Diabetol. 22:3242023. View Article : Google Scholar : PubMed/NCBI | |
|
Hamayal M, Shahid W, Akhtar CH, Shekiba F, Iftikhar I, Tahir MD, Awwab M, Hussain S, Naeem S and Hafeez M: Risk of cardiovascular outcomes with bempedoic acid in High-risk statin intolerant patients: A systematic review and meta analysis. Future Cardiol. 20:639–650. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xue H, Zhang M, Liu J, Wang J and Ren G: Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep. 25:155–166. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Doggrell SA: What have we learnt from the clinical outcomes trials with the cetrapibs? Curr Opin Lipidol. 29:327–332. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tardif JC, Dube MP, Pfeffer MA, Waters DD, Koenig W, Maggioni AP, McMurray JJV, Mooser V, White HD, Heinonen T, et al: Study design of Dal-GenE, a pharmacogenetic trial targeting reduction of cardiovascular events with dalcetrapib. Am Heart J. 222:157–165. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tardif JC, Pfeffer MA, Kouz S, Koenig W, Maggioni AP, McMurray JJV, Mooser V, Waters DD, Grégoire JC, L'Allier PL, et al: Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: The dal-GenE trial. Eur Heart J. 43:3947–3956. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ballantyne CM, Ditmarsch M, Kastelein JJ, Nelson AJ, Kling D, Hsieh A, Curcio DL, Maki KC, Davidson MH and Nicholls SJ: Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: A randomized phase 2 trial. J Clin Lipidol. 17:491–503. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, et al: Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: A randomised, double-blind, placebo-controlled trial. Lancet. 375:998–1006. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A and Cicero AFG: Efficacy and safety of mipomersen: A systematic review and Meta-analysis of randomized clinical trials. Drugs. 79:751–766. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Reeskamp LF, Kastelein JJP, Moriarty PM, Duell PB, Catapano AL, Santos RD and Ballantyne CM: Safety and efficacy of mipomersen in patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 280:109–117. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Santos RD, Duell PB, East C, Guyton JR, Moriarty PM, Chin W and Mittleman RS: Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J. 36:566–575. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hashemi N, Odze RD, McGowan MP, Santos RD, Stroes ESG and Cohen DE: Liver histology during Mipomersen therapy for severe hypercholesterolemia. J Clin Lipidol. 8:606–611. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nurmohamed NS, Navar AM and Kastelein JJP: New and emerging therapies for reduction of LDL-cholesterol and apolipoprotein B: JACC focus seminar 1/4. J Am Coll Cardiol. 77:1564–1575. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brunham LR and Hegele RA: Lomitapide for the treatment of homozygous familial hypercholesterolaemia in children. Lancet Diabetes Endocrinol. 12:866–867. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, Averna MR, Sirtori CR, Shah PK, Gaudet D, et al: Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: A single-arm, open-label, phase 3 study. Lancet. 381:40–46. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Blom DJ, Averna MR, Meagher EA, du Toit Theron H, Sirtori CR, Hegele RA, Shah PK, Gaudet D, Stefanutti C, Vigna GB, et al: Long-Term efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in patients with homozygous familial hypercholesterolemia. Circulation. 136:332–335. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nohara A, Otsubo Y, Yanagi K, Yoshida M, Ikewaki K, Harada-Shiba M and Jurecka A: Safety and efficacy of lomitapide in japanese patients with homozygous familial hypercholesterolemia (HoFH): Results from the AEGR-733-301 Long-term extension study. J Atheroscler Thromb. 26:368–377. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ, Grobbee DE, Cass A, Chalmers J and Perkovic V: Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet. 375:1875–1884. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, et al: Effects of Long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 366:1849–1861. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, et al: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 341:410–418. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Fruchart JC, Hermans MP, Fruchart-Najib J and Kodama T: Selective peroxisome Proliferator-activated receptor alpha modulators (SPPARMα) in the metabolic syndrome: Is Pemafibrate light at the end of the tunnel? Curr Atheroscler Rep. 23:32021. View Article : Google Scholar : PubMed/NCBI | |
|
Diabetes Canada Clinical Practice Guidelines Expert Committee, . Mancini GBJ, Hegele RA and Leiter LA: Dyslipidemia. Can J Diabetes. 42 (Suppl 1):S178–S185. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Blair HA: Pemafibrate: First Global Approval. Drugs. 77:1805–1810. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fruchart JC, Hermans MP and Fruchart-Najib J: Selective peroxisome proliferator-Activated receptor alpha modulators (SPPARMalpha): New opportunities to reduce residual cardiovascular risk in chronic kidney disease? Curr Atheroscler Rep. 22:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Yokote K, Yamashita S, Arai H, Araki E, Suganami H and Ishibashi S; On Behalf Of The K-Study Group, : Long-term efficacy and safety of pemafibrate, a novel selective peroxisome Proliferator-Activated Receptor-α Modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int J Mol Sci. 20:7062019. View Article : Google Scholar : PubMed/NCBI | |
|
Tuteja S: Activation of HCAR2 by niacin: Benefits beyond lipid lowering. Pharmacogenomics. 20:1143–1150. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
HPS2-THRIVE Collaborative Group, . Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, et al: Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 371:203–212. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lavigne PM and Karas RH: The current state of niacin in cardiovascular disease prevention: A systematic review and Meta-regression. J Am Coll Cardiol. 61:440–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu QK: Triglyceride-lowering and anti-inflammatory mechanisms of omega-3 polyunsaturated fatty acids for atherosclerotic cardiovascular risk reduction. J Clin Lipidol. 15:556–568. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT Jr, Juliano RA, Jiao L, Granowitz C, et al: Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 380:11–22. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Khan SU, Lone AN, Khan MS, Virani SS, Blumenthal RS, Nasir K, Miller M, Michos ED, Ballantyne CM, Boden WE and Bhatt DL: Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine. 38:1009972021. View Article : Google Scholar : PubMed/NCBI | |
|
Nishizaki Y, Miyauchi K, Iwata H, Inoue T, Hirayama A, Kimura K, Ozaki Y, Murohara T, Ueshima K, Kuwabara Y, et al: Study protocol and baseline characteristics of Randomized trial for Evaluation in Secondary Prevention Efficacy of Combination Therapy-Statin and Eicosapentaenoic Acid: RESPECT-EPA, the combination of a randomized control trial and an observational biomarker study. Am Heart J. 257:1–8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ng DS: Evolving ANGPTL-based lipid-lowering strategies and beyond. Curr Opin Lipidol. 32:271–272. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout CV, Bruse S, Dansky HM, et al: Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 377:211–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan KC, Gipe DA, et al: Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med. 383:711–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wiegman A, Greber-Platzer S, Ali S, Reijman MD, Brinton EA, Charng MJ, Srinivasan S, Baker-Smith C, Baum S, Brothers JA, et al: Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. Circulation. 149:343–353. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudet D, Greber-Platzer S, Reeskamp LF, Iannuzzo G, Rosenson RS, Saheb S, Stefanutti C, Stroes E, Wiegman A, Turner T, et al: Evinacumab in homozygous familial hypercholesterolaemia: Long-term safety and efficacy. Eur Heart J. 45:2422–2434. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenson RS, Gaudet D, Ballantyne CM, Baum SJ, Bergeron J, Kershaw EE, Moriarty PM, Rubba P, Whitcomb DC, Banerjee P, et al: Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: A phase 2 randomized trial. Nat Med. 29:729–737. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gouni-Berthold I, Schwarz J and Berthold HK: Updates in drug treatment of severe hypertriglyceridemia. Curr Atheroscler Rep. 25:701–709. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bergmark BA, Marston NA, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, Park JG, Murphy SA, Verma S, et al: Effect of Vupanorsen on Non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation. 145:1377–1386. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zimerman A, Wiviott SD, Park JG, Murphy SA, Ran X, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, et al: Hepatic fat changes with antisense oligonucleotide therapy targeting ANGPTL3. J Clin Lipidol. 18:e261–e268. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al: Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med. 377:222–232. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Minicocci I, Montali A, Robciuc MR, Quagliarini F, Censi V, Labbadia G, Gabiati C, Pigna G, Sepe ML, Pannozzo F, et al: Mutations in the ANGPTL3 gene and familial combined hypolipidemia: A clinical and biochemical characterization. J Clin Endocrinol Metab. 97:E1266–E1275. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Watts GF, Schwabe C, Scott R, Gladding PA, Sullivan D, Baker J, Clifton P, Hamilton J, Given B, Melquist S, et al: RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: Phase 1 basket trial cohorts. Nat Med. 29:2216–2223. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenson RS, Gaudet D, Hegele RA, Ballantyne CM, Nicholls SJ, Lucas KJ, San Martin J, Zhou R, Muhsin M, Chang T, et al: Zodasiran, an RNAi Therapeutic Targeting ANGPTL3, for Mixed hyperlipidemia. N Engl J Med. 391:913–925. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, Brody JA, Khetarpal SA, Crosby JR, Fornage M, et al: Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 94:223–232. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, et al: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res. 61:1203–1220. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Spagnuolo CM and Hegele RA: Recent advances in treating hypertriglyceridemia in patients at high risk of cardiovascular disease with apolipoprotein C-III inhibitors. Expert Opin Pharmacother. 24:1013–1020. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG and Tybjaerg-Hansen A: Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 371:32–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
TGHDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, . Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, et al: Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 371:22–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gill PK, Dron JS and Hegele RA: Genetics of hypertriglyceridemia and atherosclerosis. Curr Opin Cardiol. 36:264–271. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nurmohamed NS, Dallinga-Thie GM and Stroes ESG: Targeting apoC-III and ANGPTL3 in the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther. 18:355–361. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng C, Khoo C, Furtado J and Sacks FM: Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 121:1722–1734. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hegele RA: APOC3 interference for familial chylomicronaemia syndrome. touchREV Endocrinol. 18:82–83. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitz J and Gouni-Berthold I: APOC-III antisense oligonucleotides: A new option for the treatment of hypertriglyceridemia. Curr Med Chem. 25:1567–1576. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Giammanco A, Spina R, Cefalù AB and Averna M: APOC-III: A gatekeeper in controlling triglyceride metabolism. Curr Atheroscler Rep. 25:67–76. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, Yang Q, Hughes SG, Geary RS, Arca M, et al: Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med. 381:531–542. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gouni-Berthold I, Alexander VJ, Yang Q, Hurh E, Steinhagen-Thiessen E, Moriarty PM, Hughes SG, Gaudet D, Hegele RA, O'Dea LSL, et al: Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9:264–275. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Witztum JL, Gaudet D, Arca M, Jones A, Soran H, Gouni-Berthold I, Stroes ESG, Alexander VJ, Jones R, Watts L, et al: Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: Long-term efficacy and safety data from patients in an open-label extension trial. J Clin Lipidol. 17:342–355. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tardif JC, Karwatowska-Prokopczuk E, Amour ES, Ballantyne CM, Shapiro MD, Moriarty PM, Baum SJ, Hurh E, Bartlett VJ, Kingsbury J, et al: Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J. 43:1401–1412. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bergmark BA, Marston NA, Prohaska TA, Alexander VJ, Zimerman A, Moura FA, Murphy SA, Goodrich EL, Zhang S, Gaudet D, et al: Olezarsen for Hypertriglyceridemia in patients at high cardiovascular risk. N Engl J Med. 390:1770–1780. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudet D, Clifton P, Sullivan D, Baker J, Schwabe C, Thackwray S, Scott R, Hamilton J, Given B, Melquist S, et al: RNA interference therapy targeting apolipoprotein C-III in hypertriglyceridemia. NEJM Evid. 2:EVIDoa22003252023. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudet D, Pall D, Watts GF, Nicholls SJ, Rosenson RS, Modesto K, San Martin J, Hellawell J and Ballantyne CM: Plozasiran (ARO-APOC3) for severe hypertriglyceridemia: The SHASTA-2 randomized clinical trial. JAMA Cardiol. 9:620–630. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ballantyne CM, Vasas S, Azizad M, Clifton P, Rosenson RS, Chang T, Melquist S, Zhou R, Mushin M, Leeper NJ, et al: Plozasiran, an RNA interference agent targeting APOC3, for mixed hyperlipidemia. N Engl J Med. 391:899–912. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li JJ, Ma CS, Zhao D, Yan XW, Beijing Heart S and Expert C: Lipoprotein(a) and cardiovascular disease in Chinese population: A beijing heart society expert scientific statement. JACC Asia. 2:653–665. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, et al: Oxidized phospholipids on Lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 134:611–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Plakogiannis R, Sorbera M, Fischetti B and Chen M: The role of antisense therapies targeting Lipoprotein(a). J Cardiovasc Pharmacol. 78:e5–e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, et al: Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 382:244–255. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stiekema LCA, Prange KHM, Hoogeveen RM, Verweij SL, Kroon J, Schnitzler JG, Dzobo KE, Cupido AJ, Tsimikas S, Stroes ESG, et al: Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur Heart J. 41:2262–2271. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
O'Donoghue ML, JA GL, Knusel B, Gencer B, Wang H, Wu Y, Kassahun H and Sabatine MS: Study design and rationale for the Olpasiran trials of cardiovascular events And lipoproteiN(a) reduction-DOSE finding study (OCEAN(a)-DOSE). Am Heart J. 251:61–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
O'Donoghue ML, Rosenson RS, Gencer B, López JAG, Lepor NE, Baum SJ, Stout E, Gaudet D, Knusel B, Kuder JF, et al: Small interfering RNA to reduce Lipoprotein(a) in cardiovascular disease. N Engl J Med. 387:1855–1864. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nissen SE, Wang Q, Nicholls SJ, Navar AM, Ray KK, Schwartz GG, Szarek M, Stroes ESG, Troquay R, Dorresteijn JAN, et al: Zerlasiran-A small-interfering RNA targeting Lipoprotein(a): A phase 2 randomized clinical trial. JAMA. 332:1992–2002. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Diaz N, Perez C, Escribano AM, Sanz G, Priego J, Lafuente C, Barberis M, Calle L, Espinosa JF, Priest BT, et al: Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature. 629:945–950. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Becker L, Cook PM and Koschinsky ML: Identification of sequences in apolipoprotein(a) that maintain its closed conformation: A novel role for apo(a) isoform size in determining the efficiency of covalent Lp(a) formation. Biochemistry. 43:9978–9988. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Becker L, Cook PM, Wright TG and Koschinsky ML: Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6–8 to lipoprotein(a) assembly. J Biol Chem. 279:2679–2688. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Brunner C, Kraft HG, Utermann G and Muller HJ: Cys4057 of apolipoprotein(a) is essential for lipoprotein(a) assembly. Proc Natl Acad Sci USA. 90:11643–11647. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Guevara J Jr, Spurlino J, Jan AY, Yang CY, Tulinsky A, Prasad BV, Gaubatz JW and Morrisett JD: Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a]. Biophys J. 64:686–700. 1993. View Article : Google Scholar : PubMed/NCBI |