|
1
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW,
Chen L, Zhou LQ, Chen M, Tian DS and Wang W: Signaling pathways
involved in ischemic stroke: molecular mechanisms and therapeutic
interventions. Signal Transduct Target Ther. 7:2152022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
GBD 2021 Nervous System Disorders
Collaborators, . Global, regional, and national burden of disorders
affecting the nervous system, 1990–2021: A systematic analysis for
the global burden of disease study 2021. Lancet Neurol. 23:344–381.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Feigin VL, Krishnamurthi RV, Parmar P,
Norrving B, Mensah GA, Bennett DA, Barker-Collo S, Moran AE, Sacco
RL, Truelsen T, et al: Update on the global burden of ischemic and
hemorrhagic stroke in 1990–2013: The GBD 2013 study.
Neuroepidemiology. 45:161–176. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Prendes CF, Rantner B, Hamwi T, Stana J,
Feigin VL, Stavroulakis K and Tsilimparis N; GBD Collaborators
Study Group, : Burden of stroke in Europe: An analysis of the
global burden of disease study findings from 2010 to 2019. Stroke.
55:432–442. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li XY, Kong XM, Yang CH, Cheng ZF, Lv JJ,
Guo H and Liu XH: Global, regional, and national burden of ischemic
stroke, 1990–2021: An analysis of data from the global burden of
disease study 2021. EClinicalMedicine. 75:1027582024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mercy UC, Farhadi K, Ogunsola AS, Karaye
RM, Baguda US, Eniola OA, Yunusa I and Karaye IM: Revisiting recent
trends in stroke death rates, United States, 1999–2020. J Neurol
Sci. 451:1207242023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Famakin BM, Chimowitz MI, Lynn MJ, Stern
BJ and George MG; WASID Trial Investigators, : Causes and severity
of ischemic stroke in patients with symptomatic intracranial
arterial stenosis. Stroke. 40:1999–2003. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Boehme AK, Esenwa C and Elkind MS: Stroke
risk factors, genetics, and prevention. Circ Res. 120:472–495.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ananth CV, Brandt JS, Keyes KM, Graham HL,
Kostis JB and Kostis WJ: Epidemiology and trends in stroke
mortality in the USA, 1975–2019. Int J Epidemiol. 52:858–866. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Abissegue G, Yakubu SI, Ajay AS and
Niyi-Odumosu F: A systematic review of the epidemiology and the
public health implications of stroke in Sub-Saharan Africa. J
Stroke Cerebrovasc Dis. 33:1077332024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao Y, Hua X, Ren X, Ouyang M, Chen C, Li
Y, Yin X, Song P, Chen X, Wu S, et al: Increasing burden of stroke
in China: A systematic review and meta-analysis of prevalence,
incidence, mortality, and case fatality. Int J Stroke. 18:259–267.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yang JL, Mukda S and Chen SD: Diverse
roles of mitochondria in ischemic stroke. Redox Biol. 16:263–275.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kaur MM and Sharma S: Mitochondrial repair
as potential pharmacological target in cerebral ischemia.
Mitochondrion. 63:23–31. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ham PB III and Raju R: Mitochondrial
function in hypoxic ischemic injury and influence of aging. Prog
Neurobiol. 157:92–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
An H, Zhou B and Ji X: Mitochondrial
quality control in acute ischemic stroke. J Cereb Blood Flow Metab.
41:3157–3170. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Andrabi SS, Parvez S and Tabassum H:
Ischemic stroke and mitochondria: Mechanisms and targets.
Protoplasma. 257:335–343. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Granger DN and Kvietys PR: Reperfusion
injury and reactive oxygen species: The evolution of a concept.
Redox Biol. 6:524–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Garbincius JF and Elrod JW: Mitochondrial
calcium exchange in physiology and disease. Physiol Rev.
102:893–992. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ludhiadch A, Sharma R, Muriki A and Munshi
A: Role of calcium homeostasis in ischemic stroke: A review. CNS
Neurol Disord Drug Targets. 21:52–61. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guicciardi ME, Trussoni CE, LaRusso NF and
Gores GJ: The spectrum of reactive cholangiocytes in primary
sclerosing cholangitis. Hepatology. 71:741–748. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Patergnani S, Danese A, Bouhamida E,
Aguiari G and Giorgi C: Various aspects of calcium signaling in the
regulation of apoptosis, autophagy, cell proliferation, and cancer.
Int J Mol Sci. 21:83232020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fels JA and Manfredi G: Sex differences in
ischemia/reperfusion injury: The role of mitochondrial permeability
transition. Neurochem Res. 44:2336–2345. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rahi V and Kaundal RK: Exploring the
intricacies of calcium dysregulation in ischemic stroke: Insights
into neuronal cell death and therapeutic strategies. Life Sci.
347:1226512024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fan M, Zhang J, Tsai CW, Orlando BJ,
Rodriguez M, Xu Y, Liao M, Tsai MF and Feng L: Structure and
mechanism of the mitochondrial Ca(2+) uniporter holocomplex.
Nature. 582:129–133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chang X, Liu R, Li R, Peng Y, Zhu P and
Zhou H: Molecular mechanisms of mitochondrial quality control in
ischemic cardiomyopathy. Int J Biol Sci. 19:426–448. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q,
Wang L and Gong Z: Mitochondrial calcium uniporter complex:
Unveiling the interplay between its regulators and calcium
homeostasis. Cell Signal. 121:1112842024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Patron M, Checchetto V, Raffaello A,
Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabò I, De
Stefani D and Rizzuto R: MICU1 and MICU2 finely tune the
mitochondrial Ca2+ uniporter by exerting opposite effects on MCU
activity. Mol Cell. 53:726–737. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ma J, Li J, Jin C, Yang J, Zheng C, Chen
K, Xie Y, Yang Y, Bo Z, Wang J, et al: Association of gut
microbiome and primary liver cancer: A two-sample Mendelian
randomization and case-control study. Liver Int. 43:221–233. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y,
Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, et al:
Architecture of the mitochondrial calcium uniporter. Nature.
533:269–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang C, Jacewicz A, Delgado BD, Baradaran
R and Long SB: Structures reveal gatekeeping of the mitochondrial
Ca(2+) uniporter by MICU1-MICU2. Elife. 9:e599912020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Delgado de la Herran H, Vecellio Reane D,
Cheng Y, Reane D, Cheng Y, Katona M, Hosp F, Greotti E,
Wettmarshausen J, Patron M, et al: Systematic mapping of
mitochondrial calcium uniporter channel (MCUC)-mediated calcium
signaling networks. EMBO J. 43:5288–5326. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–833. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kostic M and Sekler I: Functional
properties and mode of regulation of the mitochondrial Na(+)/Ca(2+)
exchanger, NCLX. Semin Cell Dev Biol. 94:59–65. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Takeuchi A and Matsuoka S: Physiological
and pathophysiological roles of mitochondrial Na+-Ca2+ exchanger,
NCLX, in hearts. Biomolecules. 11:18762021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Alvear TF, Farias-Pasten A, Vergara SA,
Prieto-Villalobos J, Silva-Contreras A, Fuenzalida FA, Quintanilla
RA and Orellana JA: Hemichannels contribute to mitochondrial Ca(2+)
and morphology alterations evoked by ethanol in astrocytes. Front
Cell Dev Biol. 12:14343812024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tano JY and Gollasch M: Calcium-activated
potassium channels in ischemia reperfusion: A brief update. Front
Physiol. 5:3812014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dambrova M, Zuurbier CJ, Borutaite V,
Liepinsh E and Makrecka-Kuka M: Energy substrate metabolism and
mitochondrial oxidative stress in cardiac ischemia/reperfusion
injury. Free Radic Biol Med. 165:24–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Han Y, Li X, Yang L, Zhang D, Li L, Dong
X, Li Y, Qun S and Li W: Ginsenoside Rg1 attenuates cerebral
ischemia-reperfusion injury due to inhibition of NOX2-mediated
calcium homeostasis dysregulation in mice. J Ginseng Res.
46:515–525. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bertero E, Popoiu TA and Maack C:
Mitochondrial calcium in cardiac ischemia/reperfusion injury and
cardioprotection. Basic Res Cardiol. 119:569–585. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Curcio M, Salazar IL, Mele M, Canzoniero
LMT and Duarte CB: Calpains and neuronal damage in the ischemic
brain: The swiss knife in synaptic injury. Prog Neurobiol.
143:1–35. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Odagiri K, Katoh H, Kawashima H, Tanaka T,
Ohtani H, Saotome M, Urushida T, Satoh H and Hayashi H: Local
control of mitochondrial membrane potential, permeability
transition pore and reactive oxygen species by calcium and
calmodulin in rat ventricular myocytes. J Mol Cell Cardiol.
46:989–997. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wu L, Tan JL, Chen ZY and Huang G:
Cardioprotection of post-ischemic moderate ROS against
ischemia/reperfusion via STAT3-induced the inhibition of MCU
opening. Basic Res Cardiol. 114:392019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Guan L, Che Z, Meng X, Yu Y, Li M, Yu Z,
Shi H, Yang D and Yu M: MCU Up-regulation contributes to myocardial
ischemia-reperfusion Injury through calpain/OPA-1-mediated
mitochondrial fusion/mitophagy Inhibition. J Cell Mol Med.
23:7830–7843. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang C, Shen J, Wang C, Huang Y, Wang L,
Yang Y, Hu W, Li P and Wu H: Mechanism of aconitine mediated
neuronal apoptosis induced by mitochondrial calcium overload caused
by MCU. Toxicol Lett. 384:86–95. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shintani-Ishida K, Inui M and Yoshida KI:
Ischemia-reperfusion induces myocardial infarction through
mitochondrial Ca2+ overload. J Mol Cell Cardiol. 53:233–239. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
de Jesús García-Rivas G,
Guerrero-Hernández A, Guerrero-Serna G, Rodríguez-Zavala JS and
Zazueta C: Inhibition of the mitochondrial calcium uniporter by the
oxo-bridged dinuclear ruthenium amine complex (Ru360) prevents from
irreversible injury in postischemic rat heart. FEBS J.
272:3477–3488. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kon N, Murakoshi M, Isobe A, Kagechika K,
Miyoshi N and Nagayama T: DS16570511 is a small-molecule inhibitor
of the mitochondrial calcium uniporter. Cell Death Discov.
3:170452017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wescott AP, Kao JPY, Lederer WJ and Boyman
L: Voltage-energized Calcium-sensitive ATP production by
mitochondria. Nat Metab. 1:975–984. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cohen HM, Salik O and Elrod JW: Signaling
pathways regulating mitochondrial calcium efflux-a commentary on
Rozenfeld et al: ‘Essential role of the mitochondrial
Na(+)/Ca(2+) exchanger NCLX in mediating PDE2-dependent neuronal
survival and learning’. Cell Calcium. 113:1027642023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cabral-Costa JV, Vicente-Gutiérrez C,
Agulla J, Lapresa R, Elrod JW, Almeida Á, Bolaños JP and
Kowaltowski AJ: Mitochondrial sodium/calcium exchanger NCLX
regulates glycolysis in astrocytes, impacting on cognitive
performance. J Neurochem. 165:521–535. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jadiya P, Cohen HM, Kolmetzky DW, Kadam
AA, Tomar D and Elrod JW: Neuronal loss of NCLX-dependent
mitochondrial calcium efflux mediates age-associated cognitive
decline. iScience. 26:1062962023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jadiya P, Kolmetzky DW, Tomar D, Di Meco
A, Lombardi AA, Lambert JP, Luongo TS, Ludtmann MH, Praticò D and
Elrod JW: Impaired mitochondrial calcium efflux contributes to
disease progression in models of Alzheimer's disease. Nat Commun.
10:38852019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Viejo L, Rubio-Alarcon M, Arribas RL,
Moreno-Castro M, Pérez-Marín R, Braun-Cornejo M, Estrada-Valencia M
and de Los Ríos C: Synthesis and biological assessment of
4,1-benzothiazepines with neuroprotective activity on the Ca(2+)
overload for the treatment of neurodegenerative diseases and
stroke. Molecules. 26:44372021. View Article : Google Scholar
|
|
54
|
Garbincius JF, Salik O, Cohen HM,
Choya-Foces C, Mangold AS, Makhoul AD, Schmidt AE, Khalil DY,
Doolittle JJ, Wilkinson AS, et al: TMEM65 regulates NCLX-dependent
mitochondrial calcium efflux. bioRxiv. Oct 9–2023.(Epub ahead of
print). doi: 10.1101/2023.10.06.561062.
|
|
55
|
Roy S, Dey K, Hershfinkel M, Ohana E and
Sekler I: Identification of residues that control Li+ versus Na+
dependent Ca2+ exchange at the transport site of the mitochondrial.
Biochim Biophys Acta Mol Cell Res. 1864.997–1008. 2017.PubMed/NCBI
|
|
56
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B
and Jin H: The role of oxidative stress in acute ischemic
stroke-related thrombosis. Oxid Med Cell Longev. 2022:84188202022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Choya-Foces C, Navarro E, Rios CL, López
MG, Egea J, Hernansanz-Agustín P and Martínez-Ruiz A: The
mitochondrial Na(+)/Ca(2+) exchanger NCLX is implied in the
activation of hypoxia-inducible factors. Redox Biol. 77:1033642024.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gupta D, Bhattacharjee O, Mandal D, Sen
MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, et
al: CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life
Sci. 232:1166362019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yamada Y and Harashima H: MITO-porter for
mitochondrial delivery and mitochondrial functional analysis. Handb
Exp Pharmacol. 240:457–472. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bick AG, Wakimoto H, Kamer KJ, Sancak Y,
Goldberger O, Axelsson A, DeLaughter DM, Gorham JM, Mootha VK,
Seidman JG and Seidman CE: Cardiovascular homeostasis dependence on
MICU2, a regulatory subunit of the mitochondrial calcium uniporter.
Proc Natl Acad Sci USA. 114:E9096–E9104. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sasaki H, Nakagawa I, Furuta T, Yokoyama
S, Morisaki Y, Saito Y and Nakase H: Mitochondrial calcium
uniporter (MCU) is Involved in an ischemic postconditioning effect
against ischemic reperfusion brain injury in mice. Cell Mol
Neurobiol. 44:322024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Verma M, Callio J, Otero PA, Sekler I,
Wills ZP and Chu CT: Mitochondrial calcium dysregulation
contributes to dendrite degeneration mediated by PD/LBD-associated
LRRK2 mutants. J Neurosci. 37:11151–11165. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lin W, Wang Y, Chen Y, Wang Q, Gu Z and
Zhu Y: Role of calcium signaling pathway-related gene regulatory
networks in ischemic stroke based on multiple WGCNA and single-cell
analysis. Oxid Med Cell Longev. 2021:80604772021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Aliotta A, Bertaggia Calderara D and
Alberio L: Flow cytometric monitoring of dynamic cytosolic calcium,
sodium, and potassium fluxes following platelet activation.
Cytometry A. 97:933–944. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Greotti E and Pozzan T: Live mitochondrial
or cytosolic calcium imaging using genetically-encoded cameleon
indicator in mammalian cells. Bio Protoc. 10:e35042020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Z, Jing X, Zhang S and Tian Y: A
copper nanocluster-based fluorescent probe for real-time imaging
and ratiometric biosensing of calcium ions in neurons. Anal Chem.
91:2488–2497. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Thiabaud GD, Schwalm M, Sen S, Barandov A,
Simon J, Harvey P, Spanoudaki V, Müller P, Sessler JL and Jasanoff
A: Texaphyrin-based calcium sensor for multimodal imaging. ACS
Sens. 8:3855–3861. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vecellio Reane D, Serna JDC and Raffaello
A: Unravelling the complexity of the mitochondrial Ca(2+)
uniporter: Regulation, tissue specificity, and physiological
implications. Cell Calcium. 121:1029072024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cui C, Yang J, Fu L, Wang M and Wang X:
Progress in understanding mitochondrial calcium uniporter
complex-mediated calcium signalling: A potential target for cancer
treatment. Br J Pharmacol. 176:1190–1205. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Woodruff TM, Thundyil J, Tang SC, Sobey
CG, Taylor SM and Arumugam TV: Pathophysiology, treatment, and
animal and cellular models of human ischemic stroke. Mol
Neurodegener. 6:112011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang Y, Wang J, Xing S, Li L, Zhao S, Zhu
W, Liang K, Liu Y and Chen L: Mitochondria determine the sequential
propagation of the calcium macrodomains revealed by the
super-resolution calcium lantern imaging. Sci China Life Sci.
63:1543–1551. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Matuz-Mares D, González-Andrade M,
Araiza-Villanueva MG, Vilchis-Landeros MM and Vázquez-Meza H:
Mitochondrial calcium: Effects of its imbalance in disease.
Antioxidants (Basel). 11:8012022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Calvo-Rodriguez M and Bacskai BJ:
Mitochondria and calcium in Alzheimer's disease: From cell
signaling to neuronal cell death. Trends Neurosci. 44:136–151.
2021. View Article : Google Scholar : PubMed/NCBI
|