|
1
|
Costa S, La Rocca G and Cavalieri V:
Epigenetic regulation of chromatin functions by MicroRNAs and Long
Noncoding RNAs and implications in human diseases. Biomedicines.
13:7252025. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Godden AM, Silva WTAF, Kiehl B, Jolly C,
Folkes L, Alavioon G and Immler S: Environmentally induced
variation in sperm sRNAs is linked to gene expression and
transposable elements in zebrafish offspring. Heredity (Edinb). Mar
22–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oliveira-Rizzo C, Colantuono CL,
Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR,
Khan S, Ignatchenko V, Lee YS, Kislinger T, et al: Multi-omics
study reveals Nc886/vtRNA2-1 as a positive regulator of prostate
cancer cell immunity. J Proteome Res. 24:433–448. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Estravís M, García-Sánchez A, Martin MJ,
Pérez-Pazos J, Isidoro-García M, Dávila I and Sanz C: RNY3
modulates cell proliferation and IL13 mRNA levels in a T lymphocyte
model: A possible new epigenetic mechanism of IL-13 regulation. J
Physiol Biochem. 79:59–69. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fabbri M, Paone A, Calore F, Galli R,
Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al:
MicroRNAs bind to Toll-like receptors to induce prometastatic
inflam-matory response. Proc Natl Acad Sci USA. 109:E2110–E2116.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wallach T, Wetzel M, Dembny P, Staszewski
O, Krüger C, Buonfiglioli A, Prinz M and Lehnardt S: Identification
of CNS Injury-Related microRNAs as Novel Toll-Like Receptor 7/8
Signaling Activators by Small RNA Sequencing. Cells. 9:1862020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Greidinger EL, Zang YJ, Martinez L, Jaimes
K, Nassiri M, Bejarano P, Barber GN and Hoffman RW: Differential
tissue targeting of autoimmunity manifestations by
autoantigen-associated Y RNAs. Arthritis Rheum. 56:1589–1597. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Oldenburg M, Krüger A, Ferstl R, Kaufmann
A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, et
al: TLR13 recognizes bacterial 23S rRNA devoid of erythromycin
resistance-forming modification. Science. 337:1111–1115. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne
S, Das B, Dobrowolski C, Rojas R and Karn J: Toll-like receptor 3
activation selectively reverses HIV latency in microglial cells.
Retrovirology. 14:92017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rodríguez-Corona JM, Ruiz Esparza-Garrido
R, Horta-Vega JV and Velázquez-Flores M: Circulating Y-RNAs: A
predicted function mainly in controlling the innate immune system,
cell signaling and DNA replication in pediatric patients with
pilocytic and diffuse astrocytoma. Clin Pediatr. 8:1–9. 2023.
|
|
11
|
Akira S, Takeda K and Kaisho T: Toll-like
receptors: Critical proteins linking innate and acquired immunity.
Nature Immunology. 2:675–680. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Feng Y, Zou L, Yan D, Chen H, Xu G, Jian
W, Ping Cui and Chao W: Extracellular MicroRNAs induce potent
innate immune responses via TLR7/MyD88-dependent mechanisms. J
Immunol. 199:2106–2117. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wiese MD, Manning-Bennett AT and Abuhelwa
AY: Investigational IRAK-4 Inhibitors for the treatment of
rheumatoid arthritis. Expert Opin invest Drugs. 29:475–482. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xiao L, Liu Y and Wang N: New paradigms in
inflammatory signaling in vascular endothelial cells. Am J Physiol
Heart Circ Physiol. 306:H317–H325. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Van Tassell BW, Seropian IM, Toldo S,
Salloum FN, Smithson L, Varma A, Hoke NN, Gelwix C, Chau V and
Abbate A: Pharmacologic inhibition of myeloid differentiation
factor 88 (MyD88) prevents left ventricular dilation and
hypertrophy after experimental acute myocardial infarction in the
mouse. J Cardiovasc Pharmacol. 55:385–390. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rakoff-Nahoum S, Paglino J,
Eslami-Varzaneh F, Edberg S and Medzhitov R: Recognition of
commensal microflora by Toll-like receptors is required for
intestinal homeostasis. Cell. 118:229–241. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tsan MF and Gao B: Endogenous ligands of
Toll-like receptors. J Leukoc Biol. 76:514–519. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rock FL, Hardiman G, Timans JC, Kastelein
RA and Bazan JF: A family of human receptors structurally related
to Drosophila Toll. Proc Natl Acad Sci USA. 95:588–593. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Takeda K and Akira S: Toll-like receptors
in innate immunity. Int Immunol. 17:1–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mussari CP, Dodd DS, Sreekantha RK,
Pasunoori L, Wan H, Posy SL, Critton D, Ruepp S, Subramanian M,
Watson A, et al: Discovery of potent and orally bioavailable small
molecule antagonists of toll-like receptors 7/8/9 (TLR7/8/9). ACS
Med Chem Lett. 11:1751–1758. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Balak DM, van Doorn MB, Arbeit RD,
Rijneveld R, Klaassen E, Sullivan T, Brevard J, Thio HB, Prens EP,
Burggraaf J and Rissmann R: IMO-8400, a toll-like receptor 7, 8,
and 9 antagonist, demonstrates clinical activity in a phase 2a,
randomized, placebo-controlled trial in patients with
moderate-to-severe plaque psoriasis. Clin Immunol. 174:63–72. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Patra MC, Achek A, Kim GY, Panneerselvam
S, Shin HJ, Baek WY, Lee WH, Sung J, Jeong U, Cho EY, et al: A
novel small-molecule inhibitor of endosomal TLRs reduces
inflammation and alleviates autoimmune disease symptoms in Murine
models. Cells. 9:16482020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Winckelmann AA, Munk-Petersen LV,
Rasmussen TA, Melchjorsen J, Hjelholt TJ, Montefiori D, Østergaard
L, Søgaard OS and Tolstrup M: Administration of a Toll-like
receptor 9 agonist decreases the pro viral reservoir in
virologically suppressed HIV-infected patients. PLoS One.
8:e620742013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Christensen S, Shupe J, Nickerson K,
Kashgarian M, Flavell R and Shlomchik M: Toll-like receptor 7 and
TLR9 dictate autoantibody specificity and have opposing
inflammatory and regulatory roles in a murine model of lupus.
Immunity. 25:417–428. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Komal A, Noreen M and El-Kott AF: TLR3
agonists: RGC100, ARNAX, and poly-IC: A comparative review. Immunol
Res. 69:312–322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
LeNaour J, Thierry S, Scuderi SA,
Boucard-Jourdin M, Liu P, Bonnin M, Pan Y, Perret C, Zhao L, Mao M,
et al: A chemically defined TLR3 agonist with anticancer activity.
Oncoimmunology. 12:22275102023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Singh M, Khong H, Dai Z, Huang XF, Wargo
JA, Cooper ZA, Vasilakos JP, Hwu P and Overwijk WW: Effective
innate and adaptive anti-melanoma immunity through localized
TLR-7/8 activation. J Immunol. 193:4722–4731. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fuge O, Vasdev N, Allchorne P and Green
JS: Immunotherapy for bladder cancer. Res Rep Urol. 7:65–79.
2015.PubMed/NCBI
|
|
29
|
Morales A, Eidinger D and Bruce AW:
Intracavitary Bacillus Calmette-Guerin in the treatment of
superficial bladder tumors. J Urol. 116:180–183. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bayraktar R, Bertilaccio MTS and Calin GA:
The interaction between two worlds: MicroRNAs and Toll-like
receptors. Front Immunol. 14:10532019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu J, Zhang X, Cai C, Zhou T and Chen Q:
Small RNA and Toll-like receptor interactions: Origins and disease
mechanisms. Trends Biochem Sci. Feb 15–2025.doi:
10.1016/j.tibs.2025.01.004 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
32
|
He WA, Calore F, Londhe P, Canella A,
Guttridge DC and Croce CM: Microvesicles containing miRNAs promote
muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci
USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Donzelli J, Proestler E, Riedel A,
Nevermann S, Hertel B, Guenther A, Gattenlöhner S, Savai R, Larsson
K and Saul MJ: Small extracellular vesicle-derived miR-574-5p
regulates PGE2-biosynthesis via TLR7/8 in lung cancer. J Extracell
Vesicles. 10:e121432021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huang X, Ma Z and Qin W: Screening and
bioinformatics analyses of key miRNAs associated with Toll-like
receptor activation in gastric cancer cells. Medicina (Kaunas).
59:5112023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Clancy RM, Alvarez D, Komissarova E,
Barrat FJ, Swartz J and Buyon JP: Ro60-associated single-stranded
RNA links inflammation with fetal cardiac fibrosis via ligation of
TLRs: A novel pathway to autoimmune-associated heart block. J
Immunol. 184:2148–2155. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li XD and Chen ZJ: Sequence specific
detection of bacterial 23S ribosomal RNA by TLR13. Elife.
1:e001022012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Krüger A, Oldenburg M, Chebrolu C, Beisser
D, Kolter J, Sigmund AM, Steinmann J, Schäfer S, Hochrein H,
Rahmann S, et al: Human TLR8 senses UR/URR motifs in bacterial and
mitochondrial RNA. EMBO Rep. 16:1656–1663. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang Z, Ji S, Liu L, Liu S, Wang B, Ma Y
and Cao X: Promotion of TLR7-MyD88-dependent inflammation and
autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat
Commun. 15:102242024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu B, Sun Y, Geng T, Wang H, Wu Z, Xu L,
Zhang M, Niu X, Zhao C, Shang J and Shang F: C5AR1-induced TLR1/2
pathway activation drives proliferation and metastasis in
anaplastic thyroid cancer. Mol Carcinog. 63:1938–1952. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang D, Wan X, Dennis AT, Bektik E, Wang
Z, Costa MGS, Fagnen C, Vénien-Bryan C, Xu X, Gratz DH, et al:
MicroRNA biophysically modulates cardiac action potential by direct
binding to ion channel. Circulation. 143:1597–1613. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans.
Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Llave C, Kasschau KD, Rector MA and
Carrington JC: Endogenous and silencing-associated small RNAs in
plants. Plant Cell. 14:1605–1619. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hansen TB, Venø MT, Jensen TI, Schaefer A,
Damgaard CK and Kjems J: Argonaute-associated short introns are a
novel class of gene regulators. Nat Commun. 7:115382016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Smalheiser NR and Torvik VI: Mammalian
microRNAs derived from genomic repeats. Trends Genet. 21:318–322.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Borchert GM, Lanier W and Davidson BL: RNA
polymerase III transcribes human microRNAs. Nat Struct Mol Biol.
13:1097–1101. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chung W, Agius P, Westholm JO, Chen M,
Okamura K, Robine N, Leslie CS and Lai EC: Computational and
experimental identification of mirtrons in Drosophila melanogaster
and Caenorhabditis elegans. Genome Res. 21:286–300. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lai EC: MicroRNAs are complementary to
3′UTR sequence motifs that mediate negative post-transcriptional
regulation. Nat Genet. 30:363–364. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Drinnenberg IA, Weinberg DE, Xie KT, Mower
JP, Wolfe KH, Fink GR and Bartel DP: RNAi in budding yeast.
Science. 326:544–550. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zardo G, Ciolfi A, Vian L, Starnes LM,
Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N,
et al: Polycombs and microRNA-223 regulate human granulopoiesis by
transcriptional control of target gene expression. Blood.
119:4034–4046. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Di Mauro V, Crasto S, Colombo FS, Di
Pasquale E and Catalucci D: Wnt signalling mediates miR-133a
nuclear re-localization for the transcriptional control of Dnmt3b
in cardiac cells. Sci Rep. 9:1–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Leucci E, Patella F, Waage J, Holmstrøm K,
Lindow M, Porse B, Kauppinen S and Lund AH: MicroRNA-9 targets the
long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep.
3:25352013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
van Beijnum JR, Buurman WA and Griffioen
AW: Convergence and amplification of toll-like receptor (TLR) and
receptor for advanced glycation end products (RAGE) signaling
pathways via high mobility group B1 (HMGB1). Angiogenesis.
11:91–99. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mardente S, Mari E, Consorti F, Gioia CD,
Negri R, Etna M, Zicari A and Antonaci A: HMGB1 induces the
overexpression of miR-222 and miR-221 and increases growth and
motility in papillary thyroid cancer cells. Oncol Rep.
28:2285–2289. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ronkainen H, Hirvikoski P, Kauppila S,
Vuopala KS, Paavonen TK, Selander KS and Vaarala MH: Absent
Toll-like receptor-9 expression predicts poor prognosis in renal
cell carcinoma. J Exp Clin Cancer Res. 30:842011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hao B, Chen Z, Bi B, Yu M, Yao S, Feng Y,
Yu Y, Pan L, Di D, Luo G and Zhang X: Role of TLR4 as a prognostic
factor for survival in various cancers: A meta-analysis.
Oncotarget. 9:13088–13099. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kabelitz D: Expression and function of
toll-like receptors in T lymphocytes. Curr Opin Immunol. 19:39–45.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Elliott DRF, Perner J, Li X, Symmons MF,
Verstak B, Eldridge M, Bower L, O'Donovan M and Gay NJ; OCCAMS
Consortium; Fitzgerald RC, : Impact of mutations in Toll-like
receptor pathway genes on esophageal carcinogenesis. PLoS Genet.
13:e10068082017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ngo VN, Young RM, Schmitz R, Jhavar S,
Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al:
Oncogenically active MYD88 mutations in human lymphoma. Nature.
470:115–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li R, Hao Y, Pan W, Wang W and Min Y:
Monophosphoryl lipid A-assembled nanovaccines enhance tumor
immunotherapy. Acta Biomater. 171:482–944. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao BG, Vasilakos JP, Tross D, Smirnov D
and Klinman DM: Combination therapy targeting toll like receptors
7, 8 and 9 eliminates large established tumors. J Immunother
Cancer. 2:122014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS,
Hosoya T, Kaneda MM, Varner JA, Pu M, Messer KS, Guiducci C, et al:
Combination immunotherapy with TLR agonists and checkpoint
inhibitors suppresses head and neck cancer. JCI Insight.
2:933972017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Takeda Y, Kataoka K, Yamagishi J, Ogawa S,
Seya T and Matsumoto M: A TLR3-specific adjuvant relieves innate
resistance to PD-L1 blockade without cytokine toxicity in tumor
vaccine immunotherapy. Cell Rep. 19:1874–1887. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Adams S: Toll-like receptor agonists in
cancer therapy. Immunotherapy. 1:949–964. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Heil F, Hemmi H, Hochrein H, Ampeberger F,
Kirchning C, Akira S, Lipford G, Wagner H and Bauer S:
Species-specific recognition of single-stranded RNA via toll-like
receptor 7 and 8. Science. 303:1526–1529. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yoshida T, Miura T, Matsumiya T, Yoshida
H, Morohashi H, Sakamoto Y, Kurose A, Imaizumi T and Hakamada K:
Toll-like receptor 3 as a recurrence risk factor and a potential
molecular therapeutic target in colorectal cancer. Clin Exp
Gastroenterol. 13:427–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bianchi F, Milione M, Casalini P, Centonze
G, Le Noci VM, Storti C, Alexiadis S, Truini M, Sozzi G, Patorino
U, et al: Toll-like receptor 3 as a new marker to detect high risk
early stage Non-small-cell Lung Cancer patients. Sci Rep.
9:142882019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yuan MM, Xu YY, Chen L, Li XY, Qin J and
Shen Y: TLR3 expression correlates with apoptosis, proliferation
and angiogenesis in hepatocellular carcinoma and predicts
prognosis. BMC Cancer. 15:2452015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ceccarelli S, Marzolesi VP, Vannucci J,
Bellezza G, Floridi C, Nocentini G, Cari L, Traina G, Petri D, Puma
F and Conte C: Toll-like receptor 4 and 8 are overexpressed in lung
biopsies of human Non-small cell lung carcinoma. Lung. 203:382025.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gonzalez-Reyes S, Fernandez JM, Gonzalez
LO, Aguirre A, Suarez A, Gonzalez JM, Escaff S and Vizoso FJ: Study
of TLR3, TLR4, and TLR9 in prostate carcinomas and their
association with biochemical recurrence. Cancer Immunol Immunother.
60:217–226. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chuang HC, Huang CC, Chien CY and Chuang
JH: Toll-like receptor 3-mediated tumor invasion in head and neck
cancer. Oral Oncol. 48:226–232. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen C, Feng Y, Zou L, Wang L, Chen HH,
Cai JY, Xu JM, Sosnovik DE and Chao W: Role of extracellular RNA
and TLR3-trif signaling in myocardial Ischemia-reperfusion injury.
J Am Heart Assoc. 3:e0006832014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cabrera-Fuentes HA, Ruiz-Meana M,
Simsekyilmaz S, Kostin S, Inserte J, Saffarzadeh M, Galuska SP,
Vijayan V, Barba I, Barreto G, et al: RNase1 prevents the damaging
interplay between extracellular RNA and tumour necrosis factor
alpha in cardiac ischaemia/reperfusion injury. Thromb Haemost.
112:1110–1119. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shimada BK, Yang Y, Zhu J, Wang S, Suen A,
Kronstadt SM, Jeyaram A, Jay SM, Zou L and Chao W: Extracellular
miR-146a-5p induces cardiac innate immune response and
cardiomyocyte dysfunction. Immunohorizons. 4:561–572. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu J, Feng Y, Jeyaram A, Jay SM, Zou L and
Chao W: Circulating plasma extracellular vesicles from septic mice
induce inflammation via MicroRNA- and TLR7-Dependent mechanisms. J
Immunol. 201:3392–3400. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang H, Zhu J, Gu L, Hu J, Feng X, Huang
W, Wang S, Yang Y, Cui P, Lin SH, et al: TLR7 Mediates acute
respiratory distress syndrome in sepsis by sensing extracellular
miR-146a. Am J Respir Cell Mol Biol. 67:375–388. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Georges HM, Cassin C, Tong M and Abrahams
VM: TLR8-activating miR-146a-3p is an intermediate signal
contributing to fetal membrane inflammation in response to
bacterial LPS. Immunology. 172:577–587. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hannestad UlF, Allard A, Nilsson K and
Rosén A: Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and
Autoantibodies to Type I Interferon in Sputum from Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome Patients. Viruses.
17:4222025. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Simpkin AJ, McNicholas BA, Hannon D,
Bartlett R, Chiumello D, Dalton HJ, Gibbons K, White N, Merson L,
Fan E, et al: Correction: Effect of early and later prone
positioning on outcomes in invasively ventilated COVID-19 patients
with acute respiratory distress syndrome: Analysis of the
prospective COVID-19 critical care consortium cohort study. Ann
Intensive Care. 15:442025. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fakhraei R, Song Y, Kazi DS, Wadhera RK,
Lemos JA, Das SR, Morrow DA, Dahabreh IJ, Rutan CM, Thomas K and
Yeh RW: Social vulnerability and Long-term cardiovascular outcomes
after COVID-19 hospitalization: An analysis of the american heart
association COVID-19 registry linked with medicare claims data. J
Am Heart Assoc. 14:e0380732025. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wallach T, Raden M, Hinkelmann L, Brehm M,
Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R and
Lehnardt S: Distinct SARS-CoV-2 RNA fragments activate Toll-like
receptors 7 and 8 and induce cytokine release from human
macrophages and microglia. Front Immunol. 13:10664562023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liao TL, Liu HJ, Chen DY, Tang KT, Chen YM
and Liu PY: SARS-CoV-2 primed platelets-derived microRNAs enhance
NETs formation by extracellular vesicle transmission and TLR7/8
activation. Cell Commun Signal. 21:3042023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Guedes JR, Santana I, Cunha C, Duro D,
Almeida MR, Cardoso AM, de Lima MCP and Cardoso AL: MicroRNA
deregulation and chemotaxis and phagocytosis impairment in
Alzheimer's disease. Alzheimers Dement (Amst). 3:7–17. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Évora A, Garcia G, Rubi A, De Vitis E,
Matos AT, Vaz AR, Gervaso F, Gigli G, Polini A and Brites D:
Exosomes enriched with miR-124-3p show therapeutic potential in a
new microfluidic triculture model that recapitulates neuron-glia
crosstalk in Alzheimer's disease. Front Pharmacol. 16:14740122025.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kazemi M, Sanati M, Shekari Khaniani M and
Ghafouri-Fard S: A review on the lncRNA-miRNA-mRNA regulatory
networks involved in inflammatory processes in Alzheimer's disease.
Brain Res. 1856:1495952025. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ravanidis S, Bougea A, Papagiannakis N,
Koros C, Simitsi AM, Pachi I, Breza M, Stefanis L and Doxakis E:
Validation of differentially expressed brain-enriched microRNAs in
the plasma of PD patients. Ann Clin Transl Neurol. 7:1594–1607.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Currim F, Brown-Leung J, Syeda T, Corson
M, Schumann S, Qi W, Baloni P, Shannahan JH, Rochet JC, Singh R and
Cannon JR: Rotenone induced acute miRNA alterations in
extracellular vesicles produce mitochondrial dysfunction and cell
death. NPJ Parkinsons Dis. 11:592025. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ishtiaq B, Paracha RZ, Nisar M, Ejaz S and
Hussain Z: Discovering promising drug candidates for Parkinson's
disease: Integrating miRNA and DEG analysis with molecular dynamics
and MMPBSA. J Comput Aided Mol Des. 39:82025. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wallach T, Mossmann ZJ, Szczepek M, Wetzel
M, Machado R, Raden M, Miladi M, Kleinau G, Krüger C, Dembny P, et
al: MicroRNA-100-5p and microRNA-298-5p released from apoptotic
cortical neurons are endogenous Toll-like receptor 7/8 ligands that
contribute to neurodegeneration. Mol Neurodegener. 16:802021.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Park C, Lei Z, Li Y, Ren B, He J, Huang H,
Chen F, Li H, Brunner K, Zhu J, et al: Extracellular vesicles in
sepsis plasma mediate neuronal inflammation in the brain through
miRNAs and innate immune signaling. J Neuroinflammation.
21:2522024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Deng L, Gao R, Chen H, Jiao B, Zhang C,
Wei L, Yan C, Ye-Lehmann S, Zhu T and Chen C: Let-7b-TLR7 signaling
axis contributes to the Anesthesia/Surgery-induced cognitive
impairment. Mol Neurobiol. 61:1818–1832. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wu N, Morsey BM, Emanuel KM and Fox HS:
Sequence-specific extracellular microRNAs activate TLR7 and induce
cytokine secretion and leukocyte migration. Mol Cell Biochem.
476:4139–4151. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tanji H, Ohto U, Shibata T, Taoka M,
Yamauchi Y, Isobe T, Miyake K and Shimizu T: Toll-like receptor 8
senses degradation products of single-stranded RNA. Nat Struct Mol
Biol. 22:109–115. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tanji H, Ohto U, Shibata T, Miyake K and
Shimizu T: Structural reorganization of the Toll-like receptor 8
dimer induced by agonistic ligands. Science. 339:1426–1429. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shibata T, Ohto U, Nomura S, Kibata K,
Motoi Y, Zhang Y, Murakami Y, Fukui R, Ishimoto T, Sano S, et al:
Guanosine and its modified derivatives are endogenous ligands for
TLR7. Int Immunol. 28:211–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Davenne T, Bridgeman A, Rigby RE and
Rehwinkel J: Deoxyguanosine is a TLR7 agonist. Eur J Immunol.
50:56–62. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang J, Chai J and Wang H: Structure of
the mouse toll-like receptor 13 ectodomain in complex with a
conserved sequence from bacterial 23S ribosomal RNA. FEBS J.
283:1631–1635. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Boccitto M and Wolin SL: Ro60 and Y RNAs:
Structure, functions, and roles in autoimmunity. Crit Rev Biochem
Mol Biol. 54:133–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kowalski MP and Krude T: Functional roles
of non-coding Y RNAs. Int J Biochem Cell Biol. 66:20–29. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Onafuwa-Nuga AA, King SR and Telesnitsky
A: Nonrandom packaging of host RNAs in moloney murine leukemia
virus. J Virol. 79:13528–13537. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Perreault J, Noël JF, Brière F, Cousineau
B, Lucier JF, Perreault JP and Boire G: Retropseudogenes derived
from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic
Acids Res. 33:2032–2041. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Telesnitsky A and Wolin SL: The host RNAs
in retroviral particles. Viruses. 8:1–15. 2016. View Article : Google Scholar
|
|
103
|
Haderk F, Schulz R, Iskar M, Cid LL, Worst
T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, et al:
Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci
Immunol. 2:eaah55092017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Irimie AI, Zimta AA, Ciocan C, Mehterov N,
Dudea D, Braicu C and Berindan-Neagoe I: The Unforeseen Non-Coding
RNAs in head and neck cancer. Genes (Basel). 9:1342018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Apolonia L, Schulz R, Curk T, Rocha P,
Swanson CM, Schaller T, Ule J and Malim MH: Promiscuous RNA binding
ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS
Pathog. 11:e10046092015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gao FY, Pang JC, Wang M, Lu MX, Liu ZG,
Cao JM, Ke XL and Yi MM: Structurally diverse genes encode TLR13 in
Nile tilapia: The two receptors can recognize Streptococcus 23S RNA
and conduct signal transduction through MyD88. Mol Immunol.
132:60–78. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Grote K, Nicolai M, Schubert U, Schieffer
B, Troidl C, Preissner KT, Bauer S and Fischer S: Extracellular
ribosomal RNA acts synergistically with Toll-like receptor 2
agonists to promote inflammation. Cells. 11:14402022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ren C, Cheng L, Sun Y, Zhang Q, de Haan
BJ, Zhang H, Faas MM and de Vos P: Lactic acid bacteria secrete
toll like receptor 2 stimulating and macrophage immunomodulating
bioactive factors. J Functional Foods. 66:1037832020. View Article : Google Scholar
|
|
109
|
Kanmani P and Kim H: Protective effects of
lactic acid bacteria against TLR4 induced inflammatory response in
hepatoma HepG2 cells through modulation of Toll-like receptor
negative regulators of Mitogen-activated protein kinase and NF-κB
signaling. Front Immunol. 9:15372018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yamasaki-Yashiki S, Shiraishi T, Gyobu M,
Sasaki H, Kunisawa J, Yokota SI and Katakura Y: Immunostimulatory
activity of lipoteichoic acid with three fatty acid residues
derived from Limosilactobacillus antri JCM
15950T. Appl Environ Microbiol. 90:e01197242024.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Nishibayashi R, Inoue R, Harada Y,
Watanabe T, Makioka Y and Ushida K: RNA of enterococcus faecalis
Strain EC-12 Is a major component inducing Interleukin-12
production from human monocytic cells. PLoS One. 10:e01298062015.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mattick JS, Amaral PP, Carninci P,
Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME,
Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions,
challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Velázquez-Flores MÁ, Rodríguez-Corona JM,
López-Aguilar JE, Siordia-Reyes G, Ramírez-Reyes G,
Sánchez-Rodríguez G and Ruiz Esparza-Garrido R: Noncoding RNAs as
potential biomarkers for DIPG diagnosis and prognosis: XIST and
XIST-210 involvement. Clin Transl Oncol. 23:501–513. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Bowman CM, Dahlberg JE, Ikemura T, Konisky
J and Nomura M: Specific inactivation of 16S ribosomal RNA induced
by colicin E3 in vivo. Proc Natl Acad Sci USA. 8:964–968. 1971.
View Article : Google Scholar
|
|
115
|
Borek E, Baliga BS, Gehrke CW, Kuo CW,
Belman S, Troll W and Waalkes TP: High turnover rate of transfer
RNA in tumor tissue. Cancer Res. 37:3362–3366. 1977.PubMed/NCBI
|
|
116
|
Li S, Xu Z and Sheng J: tRNA-derived small
RNA: A novel regulatory small non-coding RNA. Genes (Basel).
9:e2462018. View Article : Google Scholar
|
|
117
|
Couvillion MT, Sachidanandam R and Collins
K: A growth essential Tetrahymena Piwi protein carries tRNA
fragment cargo. Genes Dev. 24:2742–2747. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Pawar K, Shigematsu M, Sharbati S and
Kirino Y: Infection-induced 5′-half molecules of tRNAHisGUG
activate Toll-like receptor 7. PLoS Biol. 18:e30009822020.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Nicolas FE, Hall AE, Csorba T, Turnbull C
and Dalmay T: Biogenesis of YRNA derived small RNAs is independent
of the microRNA pathway. FEBS Lett. 586:1226–1230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Driedonks TAP and Nolte-'t Hoen ENM:
Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein
complexes; implications for the immune system. Front Immunol.
9:31642018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Thompson DM, Lu C, Green PJ and Parker R:
tRNA cleavage is a conserved response to oxidative stress in
eukaryotes. RNA. 14:2095–2103. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Di Fazio A, Schlackow M, Pong SK, Alagia A
and Gullerova M: Dicer dependent tRNA derived small RNAs promote
nascent RNA silencing. Nucleic Acids Res. 50:1734–1752. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yeung ML, Bennasser Y, Watashi K, Le SY,
Houzet L and Jeang KT: Pyrosequencing of small non-coding RNAs in
HIV-1 infected cells: Evidence for the processing of a
viral-cellular double stranded RNA hybrid. Nucleic Acids Res.
37:6575–6586. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Pawar K, Kawamura T and Kirino Y: The
tRNAVal half: A strong endogenous Toll-like receptor 7
ligand with a 5′-terminal universal sequence signature. Proc Natl
Acad Sci USA. 121:e23195691212024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ventola CL: The Antibiotic Resistance
Crisis Part 1: Causes and Threats. PT. 40:277–283. 2015.PubMed/NCBI
|
|
126
|
Mori V, Grant G and Hattingh L: Evaluation
of antimicrobial resistance surveillance data sources in primary
care setting: A scoping review. Fam Pract. 42:cmaf0132025.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Verhagen AP and Pruijn GJ: Are the Ro
RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs
may be involved in autoimmunity. Bioessays. 33:674–682. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hizir Z, Bottini S, Grandjean V, Trabucchi
M and Repetto E: RNY (YRNA)-derived small RNAs regulate cell death
and inflammation in monocytes/macrophages. Cell Death Dis.
8:e25302017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Giraldez MD, Spengler RM, Etheridge A,
Goicochea AJ, Tuck M, Choi SW, Galas DJ and Tewari M:
Phospho-RNA-seq: A modified small RNA-seq method that reveals
circulating mRNA and lncRNA fragments as potential biomarkers in
human plasma. EMBO J. 38:e1016952019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Harharan M, Scaria V and Brahmachari SK:
DbSMR: A novel resource of genome-wide SNPs affecting microRNA
mediated regulation. BMC Bioinformatics. 10:1082009. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Belter A, Gudanis D, Rolle K, Piwecka M,
Gdaniec Z, Naskręt-Barciszewska MZ and Barciszewski J: Mature
miRNAs form secondary structure, which suggests their function
beyond RISC. PLoS One. 9:e1138482014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Du K, Liu J, Broering R, Zhang X, Yang D,
Dittmer U and Lu M: Recent advances in the discovery and
development of TLR ligands as novel therapeutics for chronic HBV
and HIV infections. Expert. Opin. Drug Discov. 13:661–670.
2018.
|
|
133
|
Christensen S, Shupe J, Nickerson K,
Kashgarian M, Flavell R and Shlomchik M: Toll-like receptor 7 and
TLR9 dictate autoantibody specificity and have opposing
inflammatory and regulatory roles in a murine model of lupus.
Immunity. 25:417–428. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Cheng Z, Lin P and Cheng N: HBV/HIV
coinfection: Impact on the development and clinical treatment of
liver diseases. Front Med (Lausanne). 8:7139812021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Mullins SR, Vasilakos JP, Deschler K,
Grigsby I, Gillis P, John J, Elder MJ, Swales J, Timosenko E,
Cooper Z, et al: Intratumoral immunotherapy with TLR7/8 agonist
MEDI9197 modulates the tumor microenvironment leading to enhanced
activity when combined with other immunotherapies. J Immunother
Cancer. 7:2442019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Siu L, Brody J, Gupta S, Marabelle A,
Jimeno A, Munster P, Grilley-Olson J, Rook AH, Hollebecque A, Wong
RKS, et al: Safety and clinical activity of intratumoral MEDI9197
alone and in combination with durvalumab and/or palliative
radiation therapy in patients with advanced solid tumors. J
Immunother Cancer. 8:e0010952020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Baba A, Wakao M, Shinchi H, Chan M,
Hayashi T, Yao S, Cottam HB, Carson DA and Suda Y: Synthesis and
immunostimulatory activity of sugar-conjugated TLR7 ligands. Bioorg
Med Chem Lett. 30:1268402020. View Article : Google Scholar : PubMed/NCBI
|