Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Asprosin activates multiple placental pathways in vitro: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways

  • Authors:
    • Sophie Orton
    • Seley Gharanei
    • Jovile Kazileviciute
    • Sayeh Saravi
    • Vanlata Patel
    • Jayanta Chatterjee
    • Ioannis Kyrou
    • Emmanouil Karteris
    • Harpal S. Randeva
  • View Affiliations / Copyright

    Affiliations: Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK, College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham B4 7ET, UK, College of Health, Medicine and Life Sciences, Brunel University of London, Uxbridge UB8 3PH, UK
    Copyright: © Orton et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 309
    |
    Published online on: September 4, 2025
       https://doi.org/10.3892/mmr.2025.13674
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Asprosin is glucogenic adipokine that exerts a wide repertoire of actions, including the regulation of appetite, insulin resistance and cell proliferation. At present, little is known about the actions of asprosin in the human placenta. The present study investigated the effects of asprosin on the transcriptome of the BeWo and JEG‑3 placental cell lines, and assessed the expression of FBN1/Furin and asprosin's candidate receptors in healthy placentas when compared against placentas from pregnancies where the carrier had gestational diabetes mellitus (GDM). A number of methods, including tissue culture, clinical sample collection, RNA extraction, RNA sequencing, reverse transcription‑quantitative PCR and gene enrichment analyses were used in the present study. RNA sequencing revealed that asprosin induced cell specific differential expression for 51 genes in BeWo cells, and 204 in JEG‑3 cells, with nine common differentially expressed genes in both in vitro models including SLCA1 and HK2. Specific pathways involved in angiogenesis, fatty acid metabolism and mTOR/NOTCH/WNT/p53 signalling were also enriched. Only TLR4 was significantly downregulated in GDM placentas when compared with controls. The present study provides novel insight into the actions of asprosin in two well‑established in vitro placental (trophoblast) models, identifying key genes and signalling pathways. A common theme identified from these findings is that of glucose homeostasis, in accordance with the role of this adipokine.
View Figures

Figure 1

DEGs in BeWo and JEG-3 cells treated
with Asp. (A) A Venn diagram displaying the DEGs for Asp-treated
BeWo and JEG-3 cells when compared with their respective UNT
controls. (B and C) Geneset signature UMAP displaying up- and
down-regulated genes in different samples. UMAPs display genes
clustered by relative log-expression which were up- (red) or down-
(blue) regulated in (B) BeWo and (C) JEG-3 cells, UNT control and
10 nM Asp-treated samples. (D) Volcano plots for BeWo and JEG-3
cells, indicating the most up- and down-regulated DEGs. RNA
sequencing validation for (E) BeWo and (F) JEG-3 cells, using
reverse transcription-quantitative PCR. *P<0.05, **P<0.001.
DEGs, differentially expressed genes; UMAP, uniform manifold
approximation and projection; UNT, untreated; Asp, asprosin;
ZNF395, Zinc Finger Protein 395; DDIT4, DNA Damage Inducible
Transcript 4; SLC2A1, solute carrier family 2 member 1; Non-ST,
non-syncytialised; ns, not significant.

Figure 2

Differential expression of (A) SLCA1
and (B) HK2 using a (C) spatial transcriptomics trophoblast map.
SCT, villous syncytiotrophoblast; EVT, extravillous trophoblast
cells; eEVT, endovascular trophoblast cells; GC, placenta giant
cells; VCT, villous cytotrophoblast; VCT-p, VCT proliferative.

Figure 3

Clustered heatmap and functional
annotation. (A) Functional heat map of the top 50 differentially
expressed genes identified through highest standard deviation
across all samples (BeWo cells asprosin-treated vs. control). The
hierarchical clustering was performed at the gene level and using
the relative expression scale. In this heatmap, red signifies
over-expression and blue under-expression. (B) There are four
clusters S1 (blue), S2 (orange), S3 (green) and S4 (red). These
were generated using Omics Playground (https://bigomics.ch/omics-playground), which
correlates each gene set to over 42 reference databases, such as
Kyoto Encyclopaedia of Genes and Genomes and Gene Ontology.

Figure 4

Clustered heatmap and functional
annotation. (A) Clustered heatmap and functional annotation of the
top 50 differentially expressed genes identified through highest
standard deviation across all samples (JEG-3 asprosin-treated vs.
control). (B) Subsequently, four distinct clusters S1 (blue), S2
(orange), S3 (green) and S4 (red) were identified using Omics
Playground.

Figure 5

Enriched biological processes,
pathways, and molecular functions associated with asprosin
treatment. Biological processes of (A) BeWo and (B) JEG-3 cells.
Pathways of (C) BeWo and (D) JEG-3 cells. Molecular functions in
(E) BeWo and (F) JEG-3 cells.

Figure 6

Gene expression of (A) FBN1, (B)
Furin, (C) OR4M1, (D) PTPRD and (E) TLR4 in NHP (control) and GDM
placenta samples, as assessed by reverse transcription-quantitative
PCR. ****P<0.0001. FBN1, fibrillin-1; OR4M1, olfactory receptor
4M1; PTPRD, protein tyrosine phosphatase receptor type D; GDM,
gestational diabetes mellitus; NHP, normal human placenta; ns, not
significant.
View References

1 

Costa J, Mackay R, De Aguiar Greca SC, Corti A, Silva E, Karteris E and Ahluwalia A: The role of the 3Rs for understanding and modeling the human placenta. J Clin Med. 10:34442021. View Article : Google Scholar : PubMed/NCBI

2 

Herrick EJ and Bordoni B: Embryology, placenta. StatPearls (Internet). StatPearls Publishing; Treasure Island, FL: 2023, https://www.ncbi.nlm.nih.gov/books/NBK551634/November 11–2024

3 

Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, Saha PK, Del Solar M, Zhu B, York B, et al: Asprosin, a fasting-induced glucogenic protein hormone. Cell. 165:566–579. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Shabir K, Brown JE, Afzal I, Gharanei S, Weickert MO, Barber TM, Kyrou I and Randeva HS: Asprosin, a novel pleiotropic adipokine implicated in fasting and obesity-related cardio-metabolic disease: Comprehensive review of preclinical and clinical evidence. Cytokine Growth Factor Rev. 60:120–132. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Kerslake R, Hall M, Vagnarelli P, Jeyaneethi J, Randeva H, Pados G, Kyrou I and Karteris E: A pancancer overview of FBN1, asprosin and its cognate receptor OR4M1 with detailed expression profiling in ovarian cancer. Oncol Lett. 22:6502021. View Article : Google Scholar : PubMed/NCBI

6 

Shabir K, Gharanei S, Orton S, Patel V, Chauhan P, Karteris E, Randeva HS, Brown JE and Kyrou I: Asprosin exerts pro-inflammatory effects in THP-1 macrophages mediated via the Toll-like Receptor 4 (TLR4) pathway. Int J Mol Sci. 24:2272022. View Article : Google Scholar : PubMed/NCBI

7 

Lee T, Yun S, Jeong JH and Jung TW: Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 486:96–104. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Mishra I, Xie WR, Bournat JC, He Y, Wang C, Silva ES, Liu H, Ku Z, Chen Y, Erokwu BO, et al: Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metab. 34:549–563.e8. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Orton S, Karkia R, Mustafov D, Gharanei S, Braoudaki M, Filipe A, Panfilov S, Saravi S, Khan N, Kyrou I, et al: In silico and in vitro mapping of receptor-type protein tyrosine phosphatase receptor type D in health and disease: Implications for asprosin signalling in endometrial cancer and neuroblastoma. Cancers (Basel). 16:5822024. View Article : Google Scholar : PubMed/NCBI

10 

Ozturk HA and Arici FN: Achilles tendon thickness and serum asprosin level significantly increases in patients with polycystic ovary syndrome. PeerJ. 12:e179052024. View Article : Google Scholar : PubMed/NCBI

11 

Boz İB, Aytürk Salt S, Salt Ö, Sayın NC and Dibirdik İ: Association between plasma asprosin levels and gestational diabetes mellitus. Diabetes Metab Syndr Obes. 16:2515–2521. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Shafi N, Bano F and Uraneb S: The role of novel hormone asprosin in insulin resistance during preeclampsia. Pak J Pharm Sci. 34 (Suppl 3):1039–1043. 2021.PubMed/NCBI

13 

Banerjee A, Vishesh C, Anamika Tripathy M and Umesh R: Asprosin-mediated regulated of ovarian functions in mice: An age-dependent study. Peptides. 181:1712932024. View Article : Google Scholar : PubMed/NCBI

14 

Msheik H, El Hayek S, Bari MF, Azar J, Abou-Kheir W, Kobeissy F, Vatish M and Daoud G: Transcriptomic profiling of trophoblast fusion using BeWo and JEG-3 cell lines. Mol HumReprod. 25:811–824. 2019.

15 

Morea A, Saravi S, Sisu C, Hall M, Tosi S, Karteris E and Storlazzi CT: Effect of MYC and PARP inhibitors in ovarian cancer using an In-Vitro model. Anticancer Res. 44:1817–1827. 2024. View Article : Google Scholar : PubMed/NCBI

16 

FunRich, . Functional Enrichment Analysis Tool. http://www.funrich.org/December 28–2024

17 

BigOmics Analytics, . Omics Analysis Software. BigOmics Analytics SA; Lugano: 2019, https://bigomics.ch/December 28–2024

18 

Chen Y and Wang X: miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 48:D127–D131. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:e050052015. View Article : Google Scholar : PubMed/NCBI

20 

Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al: FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 15:2597–2601. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, et al: The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51:D638–D646. 2023. View Article : Google Scholar : PubMed/NCBI

23 

Arutyunyan A, Roberts K, Troulé K, Wong FCK, Sheridan MA, Kats I, Garcia-Alonso L, Velten B, Hoo R, Ruiz-Morales ER, et al: Spatial multiomics map of trophoblast development in early pregnancy. Nature. 616:143–151. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Burleigh DW, Kendziorski CM, Choi YJ, Grindle KM, Grendell RL, Magness RR and Golos TG: Microarray analysis of BeWo and JEG3 trophoblast cell lines: Identification of differentially expressed transctripts. Placenta. 28:383–389. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Lynch CS, Kennedy VC, Tanner AR, Ali A, Winger QA, Rozance PJ and Anthony RV: Impact of placental SLC2A3 deficiency during the first-half of gestation. Int J Mol Sci. 23:125302022. View Article : Google Scholar : PubMed/NCBI

26 

Tan VP and Miyamoto S: HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 11:963–964. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Song TR, Su GD, Chi YL, Wu T, Xu Y and Chen CC: Dysregu-lated miRNAs contribute to altered placental glucose metabolism in patients with gestational diabetes via targeting GLUT1 and HK2. Placenta. 105:14–22. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Lai R, Ji L, Zhang X, Xu Y, Zhong Y, Chen L, Hu H and Wang L: Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions. Mol Cell Endocrinol. 547:1115982022. View Article : Google Scholar : PubMed/NCBI

29 

Mparmpakas D, Zachariades E, Goumenou A, Gidron Y and Karteris E: Placental DEPTOR as a stress sensor during pregnancy. Clin Sci (Lond). 122:349–359. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Mparmpakas D, Zachariades E, Foster H, Kara A, Harvey A, Goumenou A and Karteris E: Expression of mTOR and downstream signalling components in the JEG-3 and BeWo human placental choriocarcinoma cell lines. Int J Mol Med. 25:65–69. 2010.PubMed/NCBI

31 

Yang J, Zhang Y, Tong J, Lv H, Zhang C and Chen ZJ: Dysfunction of DNA damage-inducible transcript 4 in the decidua is relevant to the pathogenesis of preeclampsia. Biol Reprod. 98:821–833. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Orioli L, Canouil M, Sawadogo K, Ning L, Deldicque L, Lause P, de Barsy M, Froguel P, Loumaye A, Deswysen Y, et al: Identification of myokines susceptible to improve glucose homeostasis after bariatric surgery. Eur J Endocrinol. 189:409–421. 2023. View Article : Google Scholar : PubMed/NCBI

33 

Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ and Bader DM: Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci. 121:3413–3421. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Vivot K, Moullé VS, Zarrouki B, Tremblay C, Mancini AD, Maachi H, Ghislain J and Poitout V: The regulator of G-protein signaling RGS16 promotes insulin secretion and β-cell proliferation in rodent and human islets. Mol Metab. 26:988–996. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Gou R and Zhang X: Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J. 37:e232632023. View Article : Google Scholar : PubMed/NCBI

36 

Lu X, Lan X, Fu X, Li J, Wu M, Xiao L and Zeng Y: Screening preeclampsia genes and the effects of CITED2 on trophoblastic function. Int J Gen Med. 17:3493–3509. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Lyu C, Ni T, Guo Y, Zhou T, Chen ZJ, Yan J and Li Y: Insufficient GDF15 expression predisposes women to unexplained recurrent pregnancy loss by impairing extravillous trophoblast invasion. Cell Prolif. 56:e135142023. View Article : Google Scholar : PubMed/NCBI

38 

Xu B, Chen X, Ding Y, Chen C, Liu T and Zhang H: Abnormal angiogenesis of placenta in progranulin-deficient mice. Mol Med Rep. 22:3482–3492. 2020.PubMed/NCBI

39 

Shibuya M: Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2:1097–1105. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Marini M, Vichi D, Toscano A, Thyrion GD, Bonaccini L, Parretti E, Gheri G, Pacini A and Sgambati E: Effect of impaired glucose tolerance during pregnancy on the expression of VEGF receptors in human placenta. Reprod Fertil Dev. 20:789–801. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Molè MA, Coorens THH, Shahbazi MN, Weberling A, Weatherbee BAT, Gantner CW, Sancho-Serra C, Richardson L, Drinkwater A, Syed N, et al: A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Commun. 12:36792021. View Article : Google Scholar : PubMed/NCBI

42 

Zhang Z, Tan Y, Zhu L, Zhang B, Feng P, Gao E, Xu C, Wang X, Yi W and Sun Y: Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 231:1165542019. View Article : Google Scholar : PubMed/NCBI

43 

Lu Y, Liu C, Pang X, Chen X, Wang C and Huang H: Bioinformatic identification of signature miRNAs associated with fetoplacental vascular dysfunction in gestational diabetes mellitus. Biochem Biophys Reps. 41:1018882024.PubMed/NCBI

44 

Zhong L, Long Y, Wang S, Lian R, Deng L, Ye Z, Wang Z and Liu B: Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 93:17–22. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Hoffmann T, Morcos YAT, Janoschek R, Turnwald EM, Gerken A, Müller A, Sengle G, Dötsh J, Appel S and Hucklenbruch-Rother E: Correlation of metabolic characteristics with maternal, fetal and placental asprosin in human pregnancy. Endocr Connect. 11:e2200692022. View Article : Google Scholar : PubMed/NCBI

46 

Barboza R, Lima FA, Reis AS, Murillo OJ, Peixoto EPM, Bandeira CL, Fotoran WL, Sardinha LR, Wunderlich G, Bevilacqua E, et al: TLR4-mediated placental pathology and pregnancy outcome in experimental malaria. Sci Rep. 7:86232017. View Article : Google Scholar : PubMed/NCBI

47 

Zhang Y, Liu W, Zhong Y, Li Q, Wu M, Yang L, Liu X and Zou L: Metformin corrects glucose metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis via inhibiting the TLR4/NF-κβ/PFKFB3 signaling in trophoblasts: Implication for a potential therapy of preeclampsia. Oxid Med Cell Longev. 2021:18063442021. View Article : Google Scholar : PubMed/NCBI

48 

Zhou J, Bai J, Guo Y, Fu L and Xing J: Higher levels of triglyceride, fatty acid translocase, and toll-like receptor 4 and lower level of HDL-C in pregnant women with GDM and their close correlation with neonatal weight. Gynecol Obstet Invest. 86:48–54. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Batalha IM, Maylem ERS, Spicer LJ, Pena Bello CA, Archilia EC and Shütz LF: Effects of asprosin on estradiol and progesterone secretion and proliferation of bovine granulosa cells. Mol Cell Endocrinol. 565:1118902023. View Article : Google Scholar : PubMed/NCBI

50 

Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC and Naziruddin B: MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells. 8:15332019. View Article : Google Scholar : PubMed/NCBI

51 

Atkin SL, Ramachandran V, Yousri NA, Benurwar M, Simper SC, McKinlay R, Adams TD, Najafi-Shoushtari SH and Hunt SC: Changes in blood microRNA expression and early metabolic responsiveness 21 days following bariatric surgery. Front Endocrinol (Lausanne). 9:7732019. View Article : Google Scholar : PubMed/NCBI

52 

Chen M and Yan J: A preliminary integrated analysis of miRNA-mRNA expression profiles reveals a role of miR-146a-3p/TRAF6 in plasma from gestational diabetes mellitus patients. Ginekol Pol. 95:627–635. 2024.PubMed/NCBI

53 

Oğlak SC, Aşir F, Yılmaz EZ, Bolluk G, Korak T and Ağaçayak E: The immunohistochemical and bioinformatics analysis of the placental expressions of vascular cell adhesion protein 1 (VCAM-1) and high mobility group box 1 (HMGB1) proteins in gestational diabetic mothers. Z Geburtshilfe Neonatol. 229:90–98. 2025. View Article : Google Scholar : PubMed/NCBI

54 

Yanai S, Tokuhara D, Tachibana D, Saito M, Sakashita Y, Shintaku H and Koyama M: Diabetic pregnancy activates the innate immune response through TLR5 or TLR1/2 on neonatal monocyte. J Reprod Immunol. 117:17–23. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Li QP, Pereira TJ, Moyce BL, Mahood TH, Doucette CA, Rempel J and Dolinsky VW: In utero exposure to gestational diabetes mellitus conditions TLR4 and TLR2 activated IL-1beta responses in spleen cells from rat offspring. Biochim Biophys Acta. 1862:2137–2146. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H and Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 116:3015–3025. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Orton S, Gharanei S, Kazileviciute J, Saravi S, Patel V, Chatterjee J, Kyrou I, Karteris E and Randeva HS: Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways. Mol Med Rep 32: 309, 2025.
APA
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J. ... Randeva, H.S. (2025). Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways. Molecular Medicine Reports, 32, 309. https://doi.org/10.3892/mmr.2025.13674
MLA
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J., Kyrou, I., Karteris, E., Randeva, H. S."Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways". Molecular Medicine Reports 32.5 (2025): 309.
Chicago
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J., Kyrou, I., Karteris, E., Randeva, H. S."Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways". Molecular Medicine Reports 32, no. 5 (2025): 309. https://doi.org/10.3892/mmr.2025.13674
Copy and paste a formatted citation
x
Spandidos Publications style
Orton S, Gharanei S, Kazileviciute J, Saravi S, Patel V, Chatterjee J, Kyrou I, Karteris E and Randeva HS: Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways. Mol Med Rep 32: 309, 2025.
APA
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J. ... Randeva, H.S. (2025). Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways. Molecular Medicine Reports, 32, 309. https://doi.org/10.3892/mmr.2025.13674
MLA
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J., Kyrou, I., Karteris, E., Randeva, H. S."Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways". Molecular Medicine Reports 32.5 (2025): 309.
Chicago
Orton, S., Gharanei, S., Kazileviciute, J., Saravi, S., Patel, V., Chatterjee, J., Kyrou, I., Karteris, E., Randeva, H. S."Asprosin activates multiple placental pathways <em>in vitro</em>: Evidence for potential involvement in angiogenesis, fatty acid metabolism and the mTOR, NOTCH and WNT signalling pathways". Molecular Medicine Reports 32, no. 5 (2025): 309. https://doi.org/10.3892/mmr.2025.13674
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team