Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review)

  • Authors:
    • Yue Zhu
    • Rui-Dong Ding
  • View Affiliations / Copyright

    Affiliations: Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 313
    |
    Published online on: September 9, 2025
       https://doi.org/10.3892/mmr.2025.13678
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bronchopulmonary dysplasia (BPD) is a severe respiratory condition that affects preterm infants, which is frequently associated with a poor long‑term prognosis. The gut‑lung axis is a bidirectional communication pathway mediated by microbial communities and shared immune mechanisms that has emerged as a important area of research. It has been indicated that gut microbiota can influence the progression of various pulmonary diseases, where the gut‑lung axis can affect the progression of BPD through various mechanisms, such as bacterial translocation, microbial metabolite exchange, inflammatory cytokine spillover and immune cell migration. Although the relationship between the gut‑lung axis and BPD remains under exploration, understanding this interaction may identify early warning markers and novel therapeutic strategies for BPD. The present review summarizes the influence of the gut‑lung axis on BPD, focusing on the bidirectional communication and gut microenvironmental changes during BPD and the possible immunoregulatory mechanisms involved. By elucidating these associations, the present review aims to provide novel insights into the prevention and treatment of BPD.
View Figures

Figure 1

Characteristics of intestinal
microbiota in preterm infants. The development of intestinal
microbes in preterm infants is influenced by key perinatal factors,
including gestational age, delivery mode, feeding mode and
antibiotics. Figure drawn with Figdraw software 2.0 (ID:
YSWWI01d07, www.figdraw.com; provided by Home
for Researchers, China). C-section, cesarean section.

Figure 2

Mechanism of the gut-lung axis in the
progression of BPD. The mechanism underlying immunological
modulation of the gut-lung axis in BPD includes: i) Gut microbiota
and its metabolites mediate the pulmonary immune response; ii) gut
microenvironment alters the level of pulmonary inflammation; and
iii) immune cell migration-mediated mucosal immunoregulatory
mechanisms. Figure drawn with Figdraw software 2.0 (ID: IRWIA45788,
www.figdraw.com; provided by Home for
Researchers, China). BPD, bronchopulmonary dysplasia; DC, dendritic
cell; ICL2, type 2 ILCs; ILC3, type 3 ILCs; ICLs, innate lymphoid
cells; SCFA, short-chain fatty acid; Th, T helper; TMAO,
trimethylamine N-oxide; Treg, regulatory T cells; VOC, volatile
organic compound.

Figure 3

Emerging therapeutic approaches for
BPD via the gut-lung axis. Several potential treatment implications
of the gut microbiome in BPD have emerged, including probiotics and
prebiotics, FMT, SCFA supplementation, avoiding premature birth,
breast feeding and the rational use of antibiotics. Figure drawn
with Figdraw software 2.0 (ID: TWPSObfadf, Obfadfwww.figdraw.com;
provided by Home for Researchers, China). BPD, bronchopulmonary
dysplasia; FMT, fecal microbiota transplantation; SCFA, short-chain
fatty acid.
View References

1 

Dankhara N, Holla I, Ramarao S and Kalikkot Thekkeveedu R: Bronchopulmonary dysplasia: Pathogenesis and pathophysiology. J Clin Med. 12:42072023. View Article : Google Scholar : PubMed/NCBI

2 

Collaco JM and McGrath-Morrow SA: Long-term outcomes of infants with severe BPD. Semin Perinatol. 48:1518912024. View Article : Google Scholar : PubMed/NCBI

3 

Gilfillan M, Bhandari A and Bhandari V: Diagnosis and management of bronchopulmonary dysplasia. BMJ. 375:n19742021. View Article : Google Scholar : PubMed/NCBI

4 

Shukla VV and Ambalavanan N: Recent advances in bronchopulmonary dysplasia. Indian J Pediatr. 88:690–695. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Chen X, Yuan L, Jiang S, Gu X, Lei X, Hu L, Xiao T, Zhu Y, Dang D, Li W, et al: Synergistic effects of achieving perinatal interventions on bronchopulmonary dysplasia in preterm infants. Eur J Pediatr. 183:1711–1721. 2024. View Article : Google Scholar : PubMed/NCBI

6 

Lu D, Huang Y, Kong Y, Tao T and Zhu X: Gut microecology: Why our microbes could be key to our health. Biomed Pharmacother. 131:1107842020. View Article : Google Scholar : PubMed/NCBI

7 

Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J and Ren S: Gut microecology: Effective targets for natural products to modulate uric acid metabolism. Front Pharmacol. 15:14467762024. View Article : Google Scholar : PubMed/NCBI

8 

Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, et al: Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 71:2669–2678. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Raftery AL, Tsantikos E, Harris NL and Hibbs ML: Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol. 11:21442020. View Article : Google Scholar : PubMed/NCBI

10 

Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, et al: Changes in the composition of the gut microbiota and the blood transcriptome in preterm infants at less than 29 weeks gestation diagnosed with bronchopulmonary dysplasia. mSystems. 4:e00484–19. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Chen SM, Lin CP and Jan MS: Early gut microbiota changes in preterm infants with bronchopulmonary dysplasia: A pilot Case-control study. Am J Perinatol. 38:1142–1149. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Zhao L, Song W and Chen YG: Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Rep. 40:1110532022. View Article : Google Scholar : PubMed/NCBI

13 

Batki J, Hetzel S, Schifferl D, Bolondi A, Walther M, Wittler L, Grosswendt S, Herrmann BG and Meissner A: Extraembryonic gut endoderm cells undergo programmed cell death during development. Nat Cell Biol. 26:868–877. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Fang Y and Li X: Metabolic and epigenetic regulation of endoderm differentiation. Trends Cell Biol. 32:151–164. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Aros CJ, Pantoja CJ and Gomperts BN: Wnt signaling in lung development, regeneration, and disease progression. Commun Biol. 4:6012021. View Article : Google Scholar : PubMed/NCBI

16 

Aspal M and Zemans RL: Mechanisms of ATII-to-ATI cell differentiation during lung regeneration. Int J Mol Sci. 21:31882020. View Article : Google Scholar : PubMed/NCBI

17 

Yang J, Wang J, Ding B, Jiang Z, Yu F, Li D, Sun W, Wang L, Xu H and Hu S: Feedback delivery of BMP 7 on the pathological oxidative stress via smart hyaluronic acid hydrogel potentiated the repairing of the gut epithelial integrity. Int J Biol Macromol. 282:1367942024. View Article : Google Scholar : PubMed/NCBI

18 

Herriges MJ, Tischfield DJ, Cui Z, Morley MP, Han Y, Babu A, Li S, Lu M, Cendan I, Garcia BA, et al: The NANCI-Nkx2.1 gene duplex buffers Nkx2.1 expression to maintain lung development and homeostasis. Genes Dev. 31:889–903. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chelladurai P, Kuenne C, Bourgeois A, Günther S, Valasarajan C, Cherian AV, Rottier RJ, Romanet C, Weigert A, Boucherat O, et al: Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Sci Transl Med. 14:eabe54072022. View Article : Google Scholar : PubMed/NCBI

20 

Dolmatov IY, Kalacheva NV, Tkacheva ES, Shulga AP, Zavalnaya EG, Shamshurina EV, Girich AS, Boyko AV and Eliseikina MG: Expression of Piwi, MMP, TIMP, and Sox during Gut Regeneration in Holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirotida). Genes (Basel). 12:12922021. View Article : Google Scholar : PubMed/NCBI

21 

Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 15:55–63. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Thursby E and Juge N: Introduction to the human gut microbiota. Biochem J. 474:1823–1836. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Keely S, Talley NJ and Hansbro PM: Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 5:7–18. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Keely S and Hansbro PM: Lung-gut cross talk: A potential mechanism for intestinal dysfunction in patients with COPD. Chest. 145:199–200. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Liu G, Mateer SW, Hsu A, Goggins BJ, Tay H, Mathe A, Fan K, Neal R, Bruce J, Burns G, et al: Platelet activating factor receptor regulates Colitis-induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunol. 12:862–873. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Fricker M, Goggins BJ, Mateer S, Jones B, Kim RY, Gellatly SL, Jarnicki AG, Powell N, Oliver BG, Radford-Smith G, et al: Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight. 3:e940402018. View Article : Google Scholar : PubMed/NCBI

27 

Mateer SW, Maltby S, Marks E, Foster PS, Horvat JC, Hansbro PM and Keely S: Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. J Leukoc Biol. 98:727–737. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Mateer SW, Mathe A, Bruce J, Liu G, Maltby S, Fricker M, Goggins BJ, Tay HL, Marks E, Burns G, et al: IL-6 drives Neutrophil-mediated pulmonary inflammation associated with bacteremia in murine models of colitis. Am J Pathol. 188:1625–1639. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Anand S and Mande SS: Diet, microbiota and gut-lung connection. Front Microbiol. 9:21472018. View Article : Google Scholar : PubMed/NCBI

30 

Marsland BJ, Trompette A and Gollwitzer ES: The Gut-lung axis in respiratory disease. Ann Am Thorac Soc. 12 (Suppl 2):S150–S56. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Dang AT and Marsland BJ: Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 12:843–850. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Al Alam D, Danopoulos S, Grubbs B, Ali N, MacAogain M, Chotirmall SH, Warburton D, Gaggar A, Ambalavanan N and Lal CV: human fetal lungs harbor a microbiome signature. Am J Respir Crit Care Med. 201:1002–1006. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Chakradhar S: A curious connection: Teasing apart the link between gut microbes and lung disease. Nat Med. 23:402–404. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J and Versalovic J: The placenta harbors a unique microbiome. Sci Transl Med. 6:237–265. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Collado MC, Rautava S, Aakko J, Isolauri E and Salminen S: Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 6:231292016. View Article : Google Scholar : PubMed/NCBI

36 

Ortiz Moyano R, Raya Tonetti F, Tomokiyo M, Kanmani P, Vizoso-Pinto MG, Kim H, Quilodrán-Vega S, Melnikov V, Alvarez S, Takahashi H, et al: The ability of respiratory commensal bacteria to beneficially modulate the lung innate immune response is a strain dependent characteristic. Microorganisms. 8:7272020. View Article : Google Scholar : PubMed/NCBI

37 

Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM, Mattei LM, Bittinger K, et al: Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 6:1962018. View Article : Google Scholar : PubMed/NCBI

38 

de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS and Smith GCS: Human placenta has no microbiome but can contain potential pathogens. Nature. 572:329–334. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Tauchi H, Yahagi K, Yamauchi T, Hara T, Yamaoka R, Tsukuda N, Watanabe Y, Tajima S, Ochi F, Iwata H, et al: Gut microbiota development of preterm infants hospitalised in intensive care units. Benef Microbes. 10:641–651. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Guittar J, Shade A and Litchman E: Trait-based community assembly and succession of the infant gut microbiome. Nat Commun. 10:5122019. View Article : Google Scholar : PubMed/NCBI

41 

La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, Stevens HJ, Bennett WE Jr, Shaikh N, Linneman LA, et al: Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA. 111:12522–12527. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, Brække K, Iversen PO, Drevon CA and de Vos W: Intestinal microbiota development and gestational age in preterm neonates. Sci Rep. 8:24532018. View Article : Google Scholar : PubMed/NCBI

43 

Bresesti I, Salvatore S, Valetti G, Baj A, Giaroni C and Agosti M: The Microbiota-gut axis in premature infants: Physio-pathological implications. Cells. 11:3792022. View Article : Google Scholar : PubMed/NCBI

44 

Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, et al: Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 562:583–588. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al: Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 17:690–703. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Lyons KE, Ryan CA, Dempsey EM, Ross RP and Stanton C: Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients. 12:10392020. View Article : Google Scholar : PubMed/NCBI

47 

Quigley M, Embleton ND and McGuire W: Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 6:CD0029712018.PubMed/NCBI

48 

Aguilar-Lopez M, Dinsmoor AM, Ho TTB and Donovan SM: A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes. 13:1–33. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL and Cohen H: Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 10:5729122020. View Article : Google Scholar : PubMed/NCBI

50 

Kalbermatter C, Fernandez Trigo N, Christensen S and Ganal-Vonarburg SC: Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol. 12:6830222021. View Article : Google Scholar : PubMed/NCBI

51 

Colombo SFG, Nava C, Castoldi F, Fabiano V, Meneghin F, Lista G and Cavigioli F: Preterm Infants' Airway microbiome: A scoping review of the current evidence. Nutrients. 16:4652024. View Article : Google Scholar : PubMed/NCBI

52 

Lohmann P, Luna RA, Hollister EB, Devaraj S, Mistretta TA, Welty SE and Versalovic J: The airway microbiome of intubated premature infants: Characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr Res. 76:294–301. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Pammi M, Lal CV, Wagner BD, Mourani PM, Lohmann P, Luna RA, Sisson A, Shivanna B, Hollister EB, Abman SH, et al: Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: A systematic review. J Pediatr. 204:126–133.e2. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Sun T, Yu H and Fu J: Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants. Front Pediatr. 9:7625452021. View Article : Google Scholar : PubMed/NCBI

55 

Chen X, Huang X, Lin Y, Lin B and Yang C, Huang Z and Yang C: Association of Ureaplasma infection pattern and azithromycin treatment effect with bronchopulmonary dysplasia in Ureaplasma positive infants: A cohort study. BMC Pulm Med. 23:2292023. View Article : Google Scholar : PubMed/NCBI

56 

Chung KF and Adcock IM: Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction. Eur Respir J. 31:1334–1356. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Song Z, Meng Y, Fricker M, Li X, Tian H, Tan Y and Qin L: The role of gut-lung axis in COPD: Pathogenesis, immune response, and prospective treatment. Heliyon. 10:e306122024. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Z, Jiang J, Li Z and Wan W: The change of cytokines and gut microbiome in preterm infants for bronchopulmonary dysplasia. Front Microbiol. 13:8048872022. View Article : Google Scholar : PubMed/NCBI

59 

Lal CV, Kandasamy J, Dolma K, Ramani M, Kumar R, Wilson L, Aghai Z, Barnes S, Blalock JE, Gaggar A, et al: Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 315:L810–L815. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Yang K and Dong W: Perspectives on probiotics and bronchopulmonary dysplasia. Front Pediatr. 8:5702472020. View Article : Google Scholar : PubMed/NCBI

61 

Willis KA, Siefker DT, Aziz MM, White CT, Mussarat N, Gomes CK, Bajwa A, Pierre JF, Cormier SA and Talati AJ: Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 318:L407–L418. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B and Delhaes L: The Gut-lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 10:92020. View Article : Google Scholar : PubMed/NCBI

63 

Wedgwood S, Gerard K, Halloran K, Hanhauser A, Monacelli S, Warford C, Thai PN, Chiamvimonvat N, Lakshminrusimha S, Steinhorn RH and Underwood MA: Intestinal dysbiosis and the developing lung: The role of toll-like receptor 4 in the gut-lung axis. Front Immunol. 11:3572020. View Article : Google Scholar : PubMed/NCBI

64 

Li Y, He L, Zhao Q and Bo T: Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum. J Appl Microbiol. 133:908–921. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Shen X, Yang Z, Wang Q, Chen X, Zhu Q, Liu Z, Patel N, Liu X and Mo X: Lactobacillus plantarum L168 improves hyperoxia-induced pulmonary inflammation and hypoalveolarization in a rat model of bronchopulmonary dysplasia. NPJ Biofilms Microbiomes. 10:442024. View Article : Google Scholar : PubMed/NCBI

66 

Underwood MA, Lakshminrusimha S, Steinhorn RH and Wedgwood S: Malnutrition, poor post-natal growth, intestinal dysbiosis and the developing lung. J Perinatol. 41:1797–1810. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Ding J, Xu J, Wu H, Li M, Xiao Y, Fu J, Zhu X, Wu N, Sun Q and Liu Y: The cross-talk between the metabolome and microbiome in a double-hit neonatal rat model of bronchopulmonary dysplasia. Genomics. 117:1109692025. View Article : Google Scholar : PubMed/NCBI

68 

Thatrimontrichai A, Praditaukrit M, Maneenil G, Dissaneevate S, Singkhamanan K and Surachat K: Characterization of gut microbiota in very low birth weight infants with versus without bronchopulmonary dysplasia. Clin Exp Pediatr. 68:503–511. 2025. View Article : Google Scholar : PubMed/NCBI

69 

Sodhi CP, Gonzalez Salazar AJ, Kovler ML, Fulton WB, Yamaguchi Y, Ishiyama A, Wang S, Prindle T Jr, Vurma M, Das T, et al: The administration of a pre-digested fat-enriched formula prevents necrotising enterocolitis-induced lung injury in mice. Br J Nutr. 128:1050–1063. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Jia H, Sodhi CP, Yamaguchi Y, Lu P, Martin LY, Good M, Zhou Q, Sung J, Fulton WB, Nino DF, et al: Pulmonary epithelial TLR4 activation leads to lung injury in neonatal necrotizing enterocolitis. J Immunol. 197:859–871. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Tan JY, Tang YC and Huang J: Gut microbiota and lung injury. Adv Exp Med Biol. 1238:55–72. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Samuelson DR, Welsh DA and Shellito JE: Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 6:10852015. View Article : Google Scholar : PubMed/NCBI

73 

Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ and Huffnagle GB: Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 1:161132016. View Article : Google Scholar : PubMed/NCBI

74 

Moreno-Villares JM, Andrade-Platas D, Soria-López M, Colomé-Rivero G, Catalan Lamban A, Martinez-Figueroa MG, Espadaler-Mazo J and Valverde-Molina J: Comparative efficacy of probiotic mixture Bifidobacterium longum KABP042 plus Pediococcus pentosaceus KABP041 vs. Limosilactobacillus reuteri DSM17938 in the management of infant colic: A randomized clinical trial. Eur J Pediatr. 183:5371–5381. 2024. View Article : Google Scholar : PubMed/NCBI

75 

Spreckels JE, Wejryd E, Marchini G, Jonsson B, de Vries DH, Jenmalm MC, Landberg E, Sverremark-Ekström E, Martí M and Abrahamsson T: Lactobacillus reuteri Colonisation of extremely preterm infants in a randomised Placebo-controlled trial. Microorganisms. 9:9152021. View Article : Google Scholar : PubMed/NCBI

76 

Zhang Q, Ran X, He Y, Ai Q and Shi Y: Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia. Front Pediat. 8:5951572021. View Article : Google Scholar : PubMed/NCBI

77 

Fanos V, Pintus MC, Lussu M, Atzori L, Noto A, Stronati M, Guimaraes H, Marcialis MA, Rocha G, Moretti C, et al: Urinary metabolomics of bronchopulmonary dysplasia (BPD): Preliminary data at birth suggest it is a congenital disease. J Matern Fetal Neonatal Med. 27 (Suppl 2):S39–S45. 2014. View Article : Google Scholar

78 

Pintus MC, Lussu M, Dessì A, Pintus R, Noto A, Masile V, Marcialis MA, Puddu M, Fanos V and Atzori L: Urinary 1H-NMR metabolomics in the first week of life can anticipate BPD diagnosis. Oxid Med Cell Longev. 2018:76206712018. View Article : Google Scholar : PubMed/NCBI

79 

Piersigilli F and Bhandari V: Metabolomics of bronchopulmonary dysplasia. Clin Chim Acta. 500:109–114. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Zhao Q, Li Y, Chai X, Xu L, Zhang L, Ning P, Huang J and Tian S: Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung. J Hazard Mater. 369:512–520. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Berkhout DJC, Niemarkt HJ, Benninga MA, Budding AE, van Kaam AH, Kramer BW, Pantophlet CM, van Weissenbruch MM, de Boer NKH and de Meij TGJ: Development of severe bronchopulmonary dysplasia is associated with alterations in fecal volatile organic compounds. Pediatr Res. 83:412–419. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Wright H, Bannaga AS, Iriarte R, Mahmoud M and Arasaradnam RP: Utility of volatile organic compounds as a diagnostic tool in preterm infants. Pediatr Res. 89:263–268. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K and Kato T: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Torow N, Hand TW and Hornef MW: Programmed and environmental determinants driving neonatal mucosal immune development. Immunity. 56:485–499. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Jugder BE, Kamareddine L and Watnick PI: Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity. 54:1683–1697. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI

87 

Weiss GA and Hennet T: Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 74:2959–2977. 2017. View Article : Google Scholar : PubMed/NCBI

88 

McDermott AJ and Huffnagle GB: The microbiome and regulation of mucosal immunity. Immunology. 142:24–31. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Cai J, Lu H, Su Z, Mi L, Xu S and Xue Z: Dynamic Changes of NCR-type 3 innate lymphoid cells and their role in mice with bronchopulmonary dysplasia. Inflammation. 45:497–508. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Li B, Yin GF, Wang YL, Tan YM, Huang CL and Fan XM: Impact of fecal microbiota transplantation on TGF-β1/Smads/ERK signaling pathway of endotoxic acute lung injury in rats. 3 Biotech. 10:522020. View Article : Google Scholar : PubMed/NCBI

91 

Tirone C, Pezza L, Paladini A, Tana M, Aurilia C, Lio A, D'Ippolito S, Tersigni C, Posteraro B, Sanguinetti M, et al: Gut and lung microbiota in preterm infants: Immunological modulation and implication in neonatal outcomes. Front Immunol. 10:29102019. View Article : Google Scholar : PubMed/NCBI

92 

Yao HC, Zhu Y, Lu HY, Ju HM, Xu SQ, Qiao Y and Wei SJ: Type 2 innate lymphoid cell-derived amphiregulin regulates type II alveolar epithelial cell transdifferentiation in a mouse model of bronchopulmonary dysplasia. Int Immunopharmacol. 122:1106722023. View Article : Google Scholar : PubMed/NCBI

93 

Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J and Deshmukh H: Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med. 9:eaaf94122017. View Article : Google Scholar : PubMed/NCBI

94 

Zhu Y, Mi L, Lu H, Ju H, Hao X and Xu S: ILC2 regulates hyperoxia-induced lung injury via an enhanced Th17 cell response in the BPD mouse model. BMC Pulm Med. 23:1882023. View Article : Google Scholar : PubMed/NCBI

95 

Willis KA and Ambalavanan N: Necrotizing enterocolitis and the Gut-lung axis. Semin Perinatol. 45:1514542021. View Article : Google Scholar : PubMed/NCBI

96 

Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK and Gewirtz AT: Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe. 32:335–348. 2024. View Article : Google Scholar : PubMed/NCBI

97 

Qu Y, Guo S, Liu Y, Wang G and Wu H: Association between probiotics and bronchopulmonary dysplasia in preterm infants. Sci Rep. 11:170602021. View Article : Google Scholar : PubMed/NCBI

98 

Villamor-Martínez E, Pierro M, Cavallaro G, Mosca F, Kramer B and Villamor E: Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: A Meta-analysis of randomized controlled trials. Nutrients. 9:11972017. View Article : Google Scholar : PubMed/NCBI

99 

Yoo S, Jung SC, Kwak K and Kim JS: The role of prebiotics in modulating gut microbiota: Implications for human health. Int J Mol Sci. 25:48342024. View Article : Google Scholar : PubMed/NCBI

100 

Antunes KH, Singanayagam A, Williams L, Faiez TS, Farias A, Jackson MM, Faizi FK, Aniscenko J, Kebadze T, Chander Veerati P, et al: Airway-delivered short-chain fatty acid acetate boosts antiviral immunity during rhinovirus infection. J Allergy Clin Immunol. 151:447–457. 2023. View Article : Google Scholar : PubMed/NCBI

101 

Ito T, Nakanishi Y, Shibata R, Sato N, Jinnohara T, Suzuki S, Suda W, Hattori M, Kimura I, Nakano T, et al: The propionate-GPR41 axis in infancy protects from subsequent bronchial asthma onset. Gut Microbes. 15:22065072023. View Article : Google Scholar : PubMed/NCBI

102 

Lee SH, Lee JH and Lee SW: Application of Microbiome-based therapies in chronic respiratory diseases. J Microbiol. 62:201–216. 2024. View Article : Google Scholar : PubMed/NCBI

103 

Menegolla MP, Silveira RC, Görgen ARH, Gandolfi FE and Procianoy RS: Antibiotics and beyond: Unraveling the dynamics of bronchopulmonary dysplasia in very preterm infants. Pediatr Pulmonol. 59:3260–3267. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Martin I, Silverberg M, Abdelgawad A, Tanaka K, Halloran BA, Nicola T, Myers ED, Desai JP, White CT, Karabayir I, et al: The fungal microbiota modulate neonatal oxygen-induced lung injury. Microbiome. 13:242025. View Article : Google Scholar : PubMed/NCBI

105 

Dorshkind K and Crooks G: Layered immune system development in mice and humans. Immunol Rev. 315:5–10. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Loering S, Cameron GJM, Starkey MR and Hansbro PM: Lung development and emerging roles for type 2 immunity. J Pathol. 247:686–696. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Moeller AH and Sanders JG: Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos Trans R Soc Lond B Biol Sci. 75:201905972020. View Article : Google Scholar : PubMed/NCBI

108 

Sprockett DD, Price JD, Juritsch AF, Schmaltz RJ, Real MVF, Goldman SL, Sheehan M, Ramer-Tait AE and Moeller AH: Home-site advantage for host species-specific gut microbiota. Sci Adv. 9:54992023. View Article : Google Scholar : PubMed/NCBI

109 

Gao Y, Wang K, Lin Z, Cai S, Peng A, He L, Qi H, Jin Z and Qian X: The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia. Front Cell Infect Microbiol. 14:14346872024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Y and Ding R: Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review). Mol Med Rep 32: 313, 2025.
APA
Zhu, Y., & Ding, R. (2025). Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review). Molecular Medicine Reports, 32, 313. https://doi.org/10.3892/mmr.2025.13678
MLA
Zhu, Y., Ding, R."Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review)". Molecular Medicine Reports 32.6 (2025): 313.
Chicago
Zhu, Y., Ding, R."Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review)". Molecular Medicine Reports 32, no. 6 (2025): 313. https://doi.org/10.3892/mmr.2025.13678
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Y and Ding R: Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review). Mol Med Rep 32: 313, 2025.
APA
Zhu, Y., & Ding, R. (2025). Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review). Molecular Medicine Reports, 32, 313. https://doi.org/10.3892/mmr.2025.13678
MLA
Zhu, Y., Ding, R."Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review)". Molecular Medicine Reports 32.6 (2025): 313.
Chicago
Zhu, Y., Ding, R."Role of the gut‑lung axis in bronchopulmonary dysplasia: Physiological basis, pathogenesis and immunological modulation (Review)". Molecular Medicine Reports 32, no. 6 (2025): 313. https://doi.org/10.3892/mmr.2025.13678
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team