Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review)

  • Authors:
    • Xinxin Bian
    • Haizhu Gao
    • Cuimei Guo
    • Nan Lin
    • Lijun Gan
    • Xueying Chen
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China, Department of Cardiology, Shandong Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining Key Laboratory of Precise Therapeutic Research of Coronary Intervention, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
    Copyright: © Bian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 315
    |
    Published online on: September 10, 2025
       https://doi.org/10.3892/mmr.2025.13680
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial infarction (MI) is an important pathological event in cardiovascular disease and the heterogeneous changes in cardiomyocytes and non‑cardiomyocytes that occur following its occurrence have a profound effect on cardiac repair and functional recovery. Single‑cell sequencing, a novel technology for the analysis of tissues at the single‑cell level, permits a comprehensive insight into the heterogeneity of different cell populations. The current review presented a summary of the application of single‑cell sequencing to detect the heterogeneity of cardiomyocytes and non‑cardiomyocytes following MI. It focused on the classification and changes of cell clusters and explored the mechanisms of post‑infarction cardiac regeneration and remodeling with the aim of providing a theoretical foundation for identifying potential targets to enhance the diagnosis and treatment of post‑infarction cardiac remodeling.
View Figures

Figure 1

Cardiomyocyte cluster typing and
marker genes for each cluster. vCM1-vCM5 represent myocardial cell
populations under different ventricular conditions, which are
determined by characteristics such as stress response, metabolic
changes and proliferation. Marker genes such as MYH6 are notably
expressed in vCM2, indicating that they are closely related to
metabolic activities in myocardial repair. (A) Adult cardiomyocyte
cluster typing and marker genes for each cluster. (B) Mouse
cardiomyocyte cluster typing and marker genes for each cluster.
SnRNA-seq, single-nucleus RNA sequencing; ScRNA-seq, single-cell
RNA sequencing; vCM, ventricular cardiomyocyte clusters; aCM,
atrial cardiomyocyte clusters; vCM1, functionally maintained
cardiomyocytes; vCM2, myocardial cells enriched in the right
ventricle (with high expression of MYH6); vCM3, stress-responsive
cardiomyocytes (expressing ANKRD1, etc.); vCM4, high-energy
metabolic cardiomyocytes (enriched mitochondrial genes, CRYAB);
vCM5, electrophysiologically associated cardiomyocytes (high
expression of DLC1 and EBF2); aCM1, basic functional
cardiomyocytes; aCM2, metabolic regulation of cardiomyocytes in the
right atrium (predominantly expressed ALDH1A2, etc.); aCM3, smooth
muscle-like cardiomyocytes; aCM4, cardiomyocytes with high
metabolic activity; aCM5, electrophysiological regulation of
cardiomyocytes; CM1, steady-state contractile mature
cardiomyocytes; CM2, injury stress-response cardiomyocytes (high
expression of Top2A and Casc5); CM3, metabolism-adaptive
cardiomyocytes; CM4, inflammatory/fibrotic regulatory
cardiomyocytes (expressing Atp5b, Sod2 and Mb); CM5, terminally
differentiated/senescent cardiomyocytes (expressing Xirp2, Ankrd1
and CD44).

Figure 2

Endothelial cell cluster typing and
marker genes for each cluster. The high expression of capillary
marker Gpihbp1 in VEC1 and VEC2, as well as the enrichment of
macrovascular genes such as Plvap and Vwf in VEC3, indicate that
they are related to the maintenance of vascular activity and
angiogenesis. Endothelial cells have multiple functions in blood
vessels, including vascular stability, blood flow regulation,
material exchange and immune response. Following myocardial
infarction, endothelial cells have the functions of repair,
vascular regeneration and remodeling, as well as coagulation. (A)
Endothelial cell clusters of ventricular tissue origin and marker
genes. (B) Endothelial cell clusters of TIP origin and marker
genes. TIP, cardiac interstitial cell population; ScRNA-seq,
single-cell RNA sequencing; VEC1-3, venous endothelial cells (VEC1
highly expresses Gpihbp1, VEC2 cluster highly expresses Cxcl1 and
Icam1, VEC3 highly expresses Plvap and Vwf); Art.EC, arterial
endothelial cells (enriched with artery-related genes such as
Cxcl12); Endo, metabolism-related endothelial cells (specifically
expressing metabolic genes such as H19 and Cpe); Pro.EC,
proliferative active endothelial cells [highly expressing
proliferation genes Hmgb2 and Birc5]; VEC1, microvascular
endothelial cells [expressing Ly6a (encoding SCA1) and vascular
transcription factor Sox17]; VEC2, arterial endothelial cells
(involved in NOTCH signaling pathways, such as Sox17, Hey1); VEC3,
venous endothelial cells.

Figure 3

Fibroblast cluster typing and marker
genes for each cluster. The high expression of myofibroblast marker
genes Acta2, Tagln and Cthrc1 in FB1/B group/Fibro-Myo; enrichment
of the differentiation inhibitory gene Dlk1 in FB2; the specific
expression of the proliferation gene Mki67 in Pro.FB; the
upregulation of matrix homeostasis genes Fbln5 and Bgn in FB4; the
significant expression of sclerosis-related genes Comp, Cilp and
Angptl7 in CF5/CF6 and the enrichment of osteogenic genes Adamtsl2
and paracrine factor SFRP2 in MFCs. This indicates that they are
respectively involved in fibrotic driving, differentiation
inhibition, proliferation repair, matrix remodeling and chronic
scar hardening. (A*) Fibroblast clusters of cardiac interstitial
cell origin and marker genes. (B*) Fibroblast clusters of
non-cardiomyocyte origin and marker genes. (C*-E*) Fibroblast
clusters of cardiac ventricular tissue origin and marker genes. The
CF1-CF4 subsets highly express genes related to the degradation of
homeostasis fibroblasts (Hsd11b1, Lpl and Dpt) and ECM; CF5 and CF6
express genes related to the activation of fibroblasts, cartilage
development and ossification, including Angptl7, Cilp, Comp, Ecrg4,
Fmod, Postn, Meox1 and Thbs4. ScRNA-seq, single-cell RNA
sequencing; Fibro1, the matrix generates fibroblasts; ibro2,
damage-responsive fibroblasts; Fibro3, precursor fibroblasts;
Fibro-myo, myofibroblasts (highly expressing Cthrc1 and Ddah1);
Type I, quiescent interstitial progenitor cells; Type II, cells
responding to transitional state damage; Type III, terminally
differentiated profibrotic cells; FB1, stromal homeostasis
fibroblasts; FB2, inflammatory injury response fibroblasts
(specifically expressing Dlk1); FB3, precursor of myofibroblasts
(specifically expressing Nov, Thy1, Pi16, Axl and Cd34); FB4,
perivascular repair fibroblasts (highly expressing Fbln5, Bgn and
Mfap); Pro.FB, regenerative potential progenitor cells; CF1,
resting-state progenitor cells; CF2, immunomodulatory fibroblasts;
CF3, stromal homeostasis fibroblasts; CF4, transition state
precursor fibroblasts; CF5, contractile myofibroblasts; CF6,
perivascular repair fibroblasts; CF7, lipid metabolism-related
fibroblasts (responsive growth factor); B, the stromal
microenvironment maintains fibroblasts; D, antigen-presenting
fibroblasts; I, myofibroblast precursor cells; J, terminal
contractile myofibroblasts.

Figure 4

Monocyte macrophage clusters typing
and marker genes for each cluster. High expression of
pro-inflammatory genes Ly6c2, S100a8 and the C1q family
(*C1qa/b/c*) in M1/MAC-Mo; enrichment of repair genes Spp1, Cd163
and Mrc1 in M2/MAC-TR; the significant upregulation of
anti-fibrotic genes Fabp5 and Gpnmb in Bhlhe41+MΦ; the activation
of phagocyte-related gene Folr2 in MAC-Gpnmb; and the co-expression
of the cross-lineage genes Col1a1 (fibroblast) and Cdh5
(endothelial) in MAC-Fib/MAC-Endo indicates that they are
respectively involved in inflammation initiation, tissue repair,
fibrosis inhibition, fragment clearance and lineage plasticity. (A)
Monocyte cell clusters of Cardiac ventricular tissue origin and
marker genes. (B) Monocyte cell clusters of Cardiac
CD45+ leukocytes origin and marker genes. (C) Monocyte
cell clusters of non-cardiomyocyte origin and marker genes. (D)
Monocyte cell clusters of non-cardiomyocyte (temporary cardiac
resident macrophage subset) origin and marker genes. The Ccr2_hi
cluster contains subgroups such as MAC_Mo/M1 and IFNIC and enriches
pro-inflammatory transcription factors such as Stat1 and Irf7. The
Ccr2_lo cluster contains subgroups such as MAC-TR, MAC-Fib and
MAC-Endo and is characterized by highly expressing Lyve1 and
Cx3cr1. ScRNA-seq, single-cell RNA sequencing; M1,
pro-inflammatory/damage-responsive macrophages (highly expressing
C1qa, C1qb, C1qc, Pf4); M2, repair/regeneration-promoting
macrophages (highly expressing C1qa, C1qb, C1qc, Spp1); MAC-TR-c1,
resting-state tissue-resident macrophages; MAC-TR-c2,
damage-responsive macrophages; MAC-TR-c3, ECM remodeling
macrophages; Mo-Ly6c, inflammatory mononuclear derived monocytes;
Mo-Ear2, anti-inflammatory readiness monocytes; IFNIC,
interferon-responsive macrophages; MAC-Olr1, lipid phagocytic
macrophages; MAC-Gpnmb, profibrotic macrophages; MAC-Lars2,
metabolic repair macrophages; IFNIC, interferon-responsive
macrophages; MAC-Mo/M1, classic pro-inflammatory macrophages;
MAC-M2, repair macrophages; MAC-TR, tissue-resident macrophages;
MAC-3, lipid-clearing macrophages; MAC-APC, antigen-presenting
macrophages; MAC-4, profibrotic macrophages; MAC-Fib, profibrotic
macrophages; MAC-Endo, promotes angiogenesis macrophages; MΦ1,
homeostatic tissue-resident macrophages (expressing
Timd4+ and Lyve1); MΦ2, repair hub macrophages
(expressing Bhlhe41+, Vegfa+); MΦ3,
profibrotic macrophages (expressing Spp1+ and
Mmp9+); Mki67+MΦ, proliferative and migratory
macrophages (expressing Mki67+ and
Cxcr4+).

Figure 5

T and B cell clusters typing and
marker genes for each cluster [MZ marker genes related literature].
High expression of pro-inflammatory factor IL-1β, chemokine Ccl6
and transcription factor Irf5/Fosb in effector T cells regulate the
enrichment of immune regulatory pathways (such as Sp1) in T cells;
co-activation of the dual-chemokine receptor Cxcr5/Ccr7 and the
tissue repair factor Tgfb1 in hB cells; and upregulation of the
cell cycle gene Trp53/Cdc27 in Cyc B cells indicates that they are
respectively involved in inflammatory drive, immunosuppression,
repair chemotaxis and proliferation responses. (A) T cell clusters
typing and marker genes for each cluster. (B) Cell clusters typing
and marker genes for each cluster. ScRNA-seq, single-cell RNA
sequencing; Naive T cells, immune response preparatory T cells;
effector T cells, pro-inflammatory injury type T cells (expressing
Ccl6 and IL-1β); regulatory T cells, immunosuppressive T cells
(rich in Sp1 regulators); NK cells, direct killer T cells; B1
cells, natural immune barrier type B cells; B2 cells, lymphoid
tissue localization type B cells; marginal zone B cells (MZ), rapid
antibody-responsive B cells; germinal center B cells (GC),
antibody-affinity mature B cells; hB, heart-associated B cells,
repair of core-type B cells (expressing Tgfb1, Cd69, Cxcr5 and
Ccr7); CD74+, antigen-presenting type B fine (expressing
Cd74+); IFNR cells, interferon-responsive B cells; Cyc
cells, proliferation type B cells (expressing Trp53, Cdc27, Mrto4,
Nhp2, Ranbp1 and Ncl Gnl3).

Figure 6

Major Interactions between cells in
the heart following MI. It mainly demonstrates the interactions
among cardiomyocytes, macrophages, endothelial cells and
fibroblasts in the heart after myocardial infarction and also
involves a few epicardial cells. It clearly shows the roles of
cardiomyocytes in stress compensation after myocardial infarction,
endothelial cells in promoting angiogenesis and regulating
inflammation, macrophages in promoting inflammation, angiogenesis
and remodeling and fibroblasts in repairing scar formation and
promoting fibrosis. OSM, oncostatin M; CM, cardiomyocyte;
MMP14/MT1-MMP, membrane-type matrix metalloproteinase-1; METRNL,
meteorin-like.
View References

1 

Heusch G: Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 17:773–789. 2020. View Article : Google Scholar : PubMed/NCBI

2 

van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR Jr, Ajmone Marsan N, Delgado V and Bax JJ: Left ventricular post-infarct remodeling: Implications for systolic function improvement and outcomes in the modern era. JACC Heart Fail. 8:131–140. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Liu Y, Xu J, Wu M, Kang L and Xu B: The effector cells and cellular mediators of immune system involved in cardiac inflammation and fibrosis after myocardial infarction. J Cell Physiol. 235:8996–9004. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:140492017. View Article : Google Scholar : PubMed/NCBI

5 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM III, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al: Integrated analysis of multimodal single-cell data. Cell. 184:3573–3587.e29. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Rondini EA and Granneman JG: Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J. 477:583–600. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Mackay IM, Arden KE and Nitsche A: Real-time PCR in virology. Nucleic Acids Res. 30:1292–1305. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Kalisky T, Blainey P and Quake SR: Genomic analysis at the single-cell level. Annu Rev Genet. 45:431–445. 2011. View Article : Google Scholar : PubMed/NCBI

9 

van der Leun AM, Thommen DS and Schumacher TN: CD8+ T cell states in human cancer: Insights from single-cell analysis. Nat Rev Cancer. 20:218–232. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Stewart BJ, Ferdinand JR and Clatworthy MR: Using single-cell technologies to map the human immune system-implications for nephrology. Nat Rev Nephrol. 16:112–128. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Zaragosi LE, Deprez M and Barbry P: Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract. Biochem Soc Trans. 48:327–336. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I and Enard W: Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65:631–643.e4. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Gao S: Data analysis in single-cell transcriptome sequencing. Methods Mol Biol. 1754:311–326. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Saliba AE, Westermann AJ, Gorski SA and Vogel J: Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res. 42:8845–8860. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, et al: Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 148:873–885. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S and Sandberg R: Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161:1202–1214. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G, et al: Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol. 20:387–392. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T and Ueda HR: Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 14:R312013. View Article : Google Scholar : PubMed/NCBI

21 

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A and Amit I: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343:776–779. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A and Amit I: MARS-seq2.0: An experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc. 14:1841–1862. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, Huang Y and Wang J: Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. 73:130–142.e5. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Yekelchyk M, Guenther S, Preussner J and Braun T: Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res Cardiol. 114:362019. View Article : Google Scholar : PubMed/NCBI

25 

Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, Choudhury SR, Aguet F, Gelfand E, Ardlie K, et al: Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 14:955–958. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Fischer J and Ayers T: Single nucleus RNA-sequencing: How it's done, applications and limitations. Emerg Top Life Sci. 5:687–690. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Selewa A, Dohn R, Eckart H, Lozano S, Xie B, Gauchat E, Elorbany R, Rhodes K, Burnett J, Gilad Y, et al: Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep. 10:15352020. View Article : Google Scholar : PubMed/NCBI

28 

Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K, Wu H and Pei L: Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts. Genes Dev. 32:1344–1357. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, et al: Cells of the adult human heart. Nature. 588:466–472. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Mikhailov AT and Torrado M: The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. Int J Dev Biol. 52:811–821. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Kwapiszewska G, Wygrecka M, Marsh LM, Schmitt S, Trösser R, Wilhelm J, Helmus K, Eul B, Zakrzewicz A, Ghofrani HA, et al: Fhl-1, a new key protein in pulmonary hypertension. Circulation. 118:1183–1194. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, Carmichael GG, Taylor HS, Li D and Huang Y: H19 lncRNA promotes skeletal muscle insulin sensitivity in part by targeting AMPK. Diabetes. 67:2183–2198. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Lee JH, Protze SI, Laksman Z, Backx PH and Keller GM: Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell. 21:179–194.e4. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Cui M, Wang Z, Chen K, Shah AM, Tan W, Duan L, Sanchez-Ortiz E, Li H, Xu L, Liu N, et al: Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell. 53:102–116.e8. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, Li VSW, van den Born M, Gunst QD, Versteeg D, et al: Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA. 115:E12245–E12254. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Li Y, Lui KO and Zhou B: Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 15:445–456. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Libby P, Pasterkamp G, Crea F and Jang IK: Reassessing the mechanisms of acute coronary syndromes. Circ Res. 124:150–160. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Tani H, Sadahiro T, Yamada Y, Isomi M, Yamakawa H, Fujita R, Abe Y, Akiyama T, Nakano K, Kuze Y, et al: Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction. Circulation. 147:223–238. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Wang Z, Cui M, Shah AM, Tan W, Liu N, Bassel-Duby R and Olson EN: Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33:1084722020. View Article : Google Scholar : PubMed/NCBI

40 

Kalucka J, de Rooij LPMH, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, et al: Single-cell transcriptome atlas of murine endothelial cells. Cell. 180:764–779.e20. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Zhang H, Pu W, Li G, Huang X, He L, Tian X, Liu Q, Zhang L, Wu SM, Sucov HM and Zhou B: Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ Res. 118:1880–1893. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Artap S, Manderfield LJ, Smith CL, Poleshko A, Aghajanian H, See K, Li L, Jain R and Epstein JA: Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Dev Biol. 440:22–30. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE and Harvey RP: Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 8:e438822019. View Article : Google Scholar : PubMed/NCBI

44 

Tombor LS, John D, Glaser SF, Luxán G, Forte E, Furtado M, Rosenthal N, Baumgarten N, Schulz MH, Wittig J, et al: Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun. 12:6812021. View Article : Google Scholar : PubMed/NCBI

45 

Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI

46 

Pei J, Cai L, Wang F, Xu C, Pei S, Guo H, Sun X, Chun J, Cong X, Zhu W, et al: LPA2 contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res. 131:388–403. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, J Lin SC, Aronow BJ, Tallquist MD and Molkentin JD: Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 7:122602016. View Article : Google Scholar : PubMed/NCBI

48 

Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC and Molkentin JD: Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 128:2127–2143. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Tallquist MD and Molkentin JD: Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol. 14:484–491. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Ivey MJ, Kuwabara JT, Pai JT, Moore RE, Sun Z and Tallquist MD: Resident fibroblast expansion during cardiac growth and remodeling. J Mol Cell Cardiol. 114:161–174. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhuang L, Lu L, Zhang R, Chen K and Yan X: Comprehensive integration of single-cell transcriptional profiling reveals the heterogeneities of non-cardiomyocytes in healthy and ischemic hearts. Front Cardiovasc Med. 7:6151612020. View Article : Google Scholar : PubMed/NCBI

52 

Ruiz-Villalba A, Romero JP, Hernández SC, Vilas-Zornoza A, Fortelny N, Castro-Labrador L, San Martin-Uriz P, Lorenzo-Vivas E, García-Olloqui P, Palacio M, et al: Single-Cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation. 142:1831–1847. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA and Furtado MB: Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. 30:3149–3163.e6. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Rodriguez P, Sassi Y, Troncone L, Benard L, Ishikawa K, Gordon RE, Lamas S, Laborda J, Hajjar RJ and Lebeche D: Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J. 40:967–978. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Wang Z, Cui M, Shah AM, Ye W, Tan W, Min YL, Botten GA, Shelton JM, Liu N, Bassel-Duby R and Olson EN: Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc Natl Acad Sci USA. 116:18455–18465. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Horn MA and Trafford AW: Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 93:175–185. 2016. View Article : Google Scholar : PubMed/NCBI

57 

González A, Schelbert EB, Díez J and Butler J: Myocardial interstitial fibrosis in heart failure: Biological and translational perspectives. J Am Coll Cardiol. 71:1696–1706. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Wang Y, Lee M, Yu G, Lee H, Han X and Kim D: CTHRC1 activates pro-tumorigenic signaling pathways in hepatocellular carcinoma. Oncotarget. 8:105238–105250. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Binks AP, Beyer M, Miller R and LeClair RJ: Cthrc1 lowers pulmonary collagen associated with bleomycin-induced fibrosis and protects lung function. Physiol Rep. 5:e131152017. View Article : Google Scholar : PubMed/NCBI

60 

Stohn JP, Perreault NG, Wang Q, Liaw L and Lindner V: Cthrc1, a novel circulating hormone regulating metabolism. PLoS One. 7:e471422012. View Article : Google Scholar : PubMed/NCBI

61 

LeClair RJ, Durmus T, Wang Q, Pyagay P, Terzic A and Lindner V: Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ Res. 100:826–833. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Janbandhu V, Tallapragada V, Patrick R, Li Y, Abeygunawardena D, Humphreys DT, Martin EMMA, Ward AO, Contreras O, Farbehi N, et al: Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell. 29:281–297.e12. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Zhuang L, Wang Y, Chen Z, Li Z, Wang Z, Jia K, Zhao J, Zhang H, Xie H, Lu L, et al: Global characteristics and dynamics of single immune cells after myocardial infarction. J Am Heart Assoc. 11:e0272282022. View Article : Google Scholar : PubMed/NCBI

64 

Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, et al: SCENIC: Single-cell regulatory network inference and clustering. Nat Methods. 14:1083–1086. 2017. View Article : Google Scholar : PubMed/NCBI

65 

King KR, Aguirre AD, Ye YX, Sun Y, Roh JD, Ng RP Jr, Kohler RH, Arlauckas SP, Iwamoto Y, Savol A, et al: IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med. 23:1481–1487. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, et al: Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol. 20:29–39. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Xu Y, Jiang K, Su F, Deng R, Cheng Z, Wang D, Yu Y and Xiang Y: A transient wave of Bhlhe41+ resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep. 42:1131742023. View Article : Google Scholar : PubMed/NCBI

68 

Qian J, Gao Y, Lai Y, Ye Z, Yao Y, Ding K, Tong J, Lin H, Zhu G, Yu Y, et al: Single-cell RNA sequencing of peripheral blood mononuclear cells from acute myocardial infarction. Front Immunol. 13:9088152022. View Article : Google Scholar : PubMed/NCBI

69 

Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann HC, et al: Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: Results from the prospective translational OPTICO-ACS study. Eur Heart J. 41:3549–3560. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Vergallo R and Crea F: Atherosclerotic plaque healing. N Engl J Med. 383:846–857. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Heinrichs M, Ashour D, Siegel J, Büchner L, Wedekind G, Heinze KG, Arampatzi P, Saliba AE, Cochain C, Hofmann U, et al: The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc Res. 117:2664–2676. 2021.PubMed/NCBI

72 

Zhang Y, Kanter EM and Yamada KA: Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol. 19:e233–e240. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Li Y, Feng J, Song S, Li H, Yang H, Zhou B, Li Y, Yue Z, Lian H, Liu L, et al: gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation. 142:967–982. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Yan M, Yang Y, Zhou Y, Yu C, Li R, Gong W and Zheng J: Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization. J Cell Mol Med. 25:9939–9952. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Wong NR, Mohan J, Kopecky BJ, Guo S, Du L, Leid J, Feng G, Lokshina I, Dmytrenko O, Luehmann H, et al: Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity. 54:2072–2088.e7. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Hu S, Gao Y, Gao R, Wang Y, Qu Y, Yang J, Wei X, Zhang F and Ge J: The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction. Int Immunopharmacol. 107:1086582022. View Article : Google Scholar : PubMed/NCBI

77 

Gladka MM, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer-Kloots J, Kremer V, Vos HR, Huibers MMH, Haigh JJ, et al: Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun. 12:842021. View Article : Google Scholar : PubMed/NCBI

78 

Kuang Y, Li X, Liu X, Wei L, Chen X, Liu J, Zhuang T, Pi J, Wang Y, Zhu C, et al: Vascular endothelial S1pr1 ameliorates adverse cardiac remodelling via stimulating reparative macrophage proliferation after myocardial infarction. Cardiovasc Res. 117:585–599. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Alonso-Herranz L, Sahún-Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, Clemente C, Cedenilla M, Villalba-Orero M, Inserte J, et al: Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. Elife. 9:e579202020. View Article : Google Scholar : PubMed/NCBI

80 

Reboll MR, Klede S, Taft MH, Cai CL, Field LJ, Lavine KJ, Koenig AL, Fleischauer J, Meyer J, Schambach A, et al: Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science. 376:1343–1347. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, Itoh M, Kawaji H, Carninci P, Rost B and Forrest AR: A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 6:78662015. View Article : Google Scholar : PubMed/NCBI

82 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45(D1): D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Wang Y, Li C, Zhao R, Qiu Z, Shen C, Wang Z, Liu W, Zhang W, Ge J and Shi B: CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction. Theranostics. 11:6315–6333. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bian X, Gao H, Guo C, Lin N, Gan L and Chen X: Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review). Mol Med Rep 32: 315, 2025.
APA
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., & Chen, X. (2025). Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review). Molecular Medicine Reports, 32, 315. https://doi.org/10.3892/mmr.2025.13680
MLA
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., Chen, X."Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review)". Molecular Medicine Reports 32.6 (2025): 315.
Chicago
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., Chen, X."Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review)". Molecular Medicine Reports 32, no. 6 (2025): 315. https://doi.org/10.3892/mmr.2025.13680
Copy and paste a formatted citation
x
Spandidos Publications style
Bian X, Gao H, Guo C, Lin N, Gan L and Chen X: Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review). Mol Med Rep 32: 315, 2025.
APA
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., & Chen, X. (2025). Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review). Molecular Medicine Reports, 32, 315. https://doi.org/10.3892/mmr.2025.13680
MLA
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., Chen, X."Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review)". Molecular Medicine Reports 32.6 (2025): 315.
Chicago
Bian, X., Gao, H., Guo, C., Lin, N., Gan, L., Chen, X."Heterogeneity and characteristic changes in cardiomyocytes and non‑cardiomyocytes following myocardial infarction: Insights from single‑cell sequencing analysis (Review)". Molecular Medicine Reports 32, no. 6 (2025): 315. https://doi.org/10.3892/mmr.2025.13680
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team