|
1
|
US Preventive Services Task Force, .
Mangione CM, Barry MJ, Nicholson WK, Cabana M, Chelmow D, Coker TR,
Davis EM, Donahue KE, Jaén CR, et al: Serologic screening for
genital herpes infection: US preventive services task force
reaffirmation recommendation statement. JAMA. 329:502–507. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Havens JL, Calvignac-Spencer S, Merkel K,
Burrel S, Boutolleau D and Wertheim JO: Phylogeographic analysis
reveals an ancient East African origin of human herpes simplex
virus 2 dispersal out-of-Africa. Nat Commun. 13:54772022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Johnston C, Gottlieb SL and Wald A: Status
of vaccine research and development of vaccines for herpes simplex
virus. Vaccine. 34:2948–2952. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Omarova S, Cannon A, Weiss W, Bruccoleri A
and Puccio J: Genital herpes simplex virus-an updated review. Adv
Pediatr. 69:149–162. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
James C, Harfouche M, Welton NJ, Turner
KM, Abu-Raddad LJ, Gottlieb SL and Looker KJ: Herpes simplex virus:
global infection prevalence and incidence estimates, 2016. Bull
World Health Organ. 98:315–329. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bennett C, Rebafka A, Carrier J, Cook S
and Edwards D: Impact of primary and recurrent genital herpes on
the quality of life of young people and adults: A mixed methods
systematic review. JBI Evid Synth. 20:1406–1473. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Desai DV and Kulkarni SS: Herpes simplex
virus: The interplay between HSV, Host, and HIV-1. Viral Immunol.
28:546–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lafferty WE, Downey L, Celum C and Wald A:
Herpes simplex virus type 1 as a cause of genital herpes: Impact on
surveillance and prevention. J Infect Dis. 181:1454–1457. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Masese L, Baeten JM, Richardson BA, Bukusi
E, John-Stewart G, Graham SM, Shafi J, Kiarie J, Overbaugh J and
McClelland RS: Changes in the contribution of genital tract
infections to HIV acquisition among Kenyan high-risk women from
1993 to 2012. AIDS. 29:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Schalkwijk HH, Snoeck R and Andrei G:
Acyclovir resistance in herpes simplex viruses: Prevalence and
therapeutic alternatives. Biochem Pharmacol. 206:1153222022.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ning L, Shishi Z, Bo W and Huiqing L:
Targeting immunometabolism against acute lung injury. Clin Immunol.
249:1092892023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mockler MB, Conroy MJ and Lysaght J:
Targeting T cell immunometabolism for cancer immunotherapy;
Understanding the impact of the tumor microenvironment. Front
Oncol. 4:1072014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fullerton MD, Steinberg GR and Schertzer
JD: Immunometabolism of AMPK in insulin resistance and
atherosclerosis. Mol Cell Endocrinol. 366:224–234. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bone mineral densitometry, . Health and
Public Policy Committee, American College of Physicians. Ann Intern
Med. 109:8461988.PubMed/NCBI
|
|
15
|
Xu H, Zhou S, Tang Q, Xia H and Bi F:
Cholesterol metabolism: New functions and therapeutic approaches in
cancer. Biochim Biophys Acta Rev Cancer. 1874:1883942020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen D, Zhang X, Li Z and Zhu B: Metabolic
regulatory crosstalk between tumor microenvironment and
tumor-associated macrophages. Theranostics. 11:1016–1030. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Di'Narzo AF, Houten SM, Kosoy R, Huang R,
Vaz FM, Hou R, Wei G, Wang W, Comella PH, Dodatko T, et al:
Integrative analysis of the inflammatory bowel disease serum
metabolome improves our understanding of genetic etiology and
points to novel putative therapeutic targets. Gastroenterology.
162:828–843. e112022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang Z, Gerstein M and Snyder M: RNA-Seq:
A revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63.
2009. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Canzler S and Hackermuller J: multiGSEA: A
GSEA-based pathway enrichment analysis for multi-omics data. BMC
Bioinformatics. 21:5612020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen S, Zhu J, Hua C, Feng C, Wu X, Zhou
C, Chen X, Zhang B, Xu Y, Ma Z, et al: Single-cell RNA sequencing
reveals the diversity of the immunological landscape response to
genital herpes. Virol Sin. 39:860–874. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang C, Yu JJ, Yang C, Yuan ZL, Zeng H,
Wang JJ, Shang S, Lv XX, Liu XT, Liu J, et al: Wild-type IDH1
maintains NSCLC stemness and chemoresistance through activation of
the serine biosynthetic pathway. Sci Transl Med. 15:eade41132023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang J, Filippakis H, Hougard T, Du H, Ye
C, Liu HJ, Zhang L, Hindi K, Bagwe S, Nijmeh J, et al:
Interleukin-6 mediates PSAT1 expression and serine metabolism in
TSC2-deficient cells. Proc Natl Acad Sci USA. 118:e21012681182021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jun S, Datta S, Wang L, Pegany R, Cano M
and Handa JT: The impact of lipids, lipid oxidation, and
inflammation on AMD, and the potential role of miRNAs on lipid
metabolism in the RPE. Exp Eye Res. 181:346–355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hehner J, Schneider L, Woitalla A, Ott B,
Vu KCT, Schöbel A, Hain T, Schwudke D and Herker E:
Glycerophospholipid remodeling is critical for orthoflavivirus
infection. Nat Commun. 15:86832024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dolce V, Cappello AR, Lappano R and
Maggiolini M: Glycerophospholipid synthesis as a novel drug target
against cancer. Curr Mol Pharmacol. 4:167–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kondakova T, D'Heygere F, Feuilloley MJ,
Orange N, Heipieper HJ and Duclairoir Poc C: Glycerophospholipid
synthesis and functions in Pseudomonas. Chem Phys Lipids.
190:27–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Farley SE, Kyle JE, Leier HC, Bramer LM,
Weinstein JB, Bates TA, Lee JY, Metz TO, Schultz C and Tafesse FG:
A global lipid map reveals host dependency factors conserved across
SARS-CoV-2 variants. Nat Commun. 13:34872022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yan J and Horng T: Lipid metabolism in
regulation of macrophage functions. Trends Cell Biol. 30:979–989.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Karagiannis F, Masouleh SK, Wunderling K,
Surendar J, Schmitt V, Kazakov A, Michla M, Hölzel M, Thiele C and
Wilhelm C: Lipid-droplet formation drives pathogenic group 2 innate
lymphoid cells in airway inflammation. Immunity. 52:620–634.
e62020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Costantini C, Bellet MM, Renga G,
Stincardini C, Borghi M, Pariano M, Cellini B, Keller N, Romani L
and Zelante T: Tryptophan co-metabolism at the host-pathogen
interface. Front Immunol. 11:672020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dhankhar R, Gupta V, Kumar S, Kapoor RK
and Gulati P: Microbial enzymes for deprivation of amino acid
metabolism in malignant cells: Biological strategy for cancer
treatment. Appl Microbiol Biotechnol. 104:2857–2869. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Maeda R, Seki N, Uwamino Y, Wakui M,
Nakagama Y, Kido Y, Sasai M, Taira S, Toriu N, Yamamoto M, et al:
Amino acid catabolite markers for early prognostication of
pneumonia in patients with COVID-19. Nat Commun. 14:84692023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Al-Shalan HAM, Zhou L, Dong Z, Wang P,
Nicholls PK, Boughton B, Stumbles PA, Greene WK and Ma B: Systemic
perturbations in amino acids/amino acid derivatives and tryptophan
pathway metabolites associated with murine influenza A virus
infection. Virol J. 20:2702023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen Q, Liang X, Wu T, Jiang J, Jiang Y,
Zhang S, Ruan Y, Zhang H, Zhang C, Chen P, et al: Integrative
analysis of metabolomics and proteomics reveals amino acid
metabolism disorder in sepsis. J Transl Med. 20:1232022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yan M, Xiao LY, Gosau M, Friedrich RE,
Smeets R, Fu LL, Feng HC and Burg S: The causal association between
COVID-19 and herpes simplex virus: A Mendelian randomization study.
Front Immunol. 14:12812922023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bourgin M, Durand S and Kroemer G:
Diagnostic, prognostic and mechanistic biomarkers of COVID-19
identified by mass spectrometric metabolomics. Metabolites.
13:3422023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang Y, Guo R, Kim SH, Shah H, Zhang S,
Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, et al:
SARS-CoV-2 hijacks folate and one-carbon metabolism for viral
replication. Nat Commun. 12:16762021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ukolova IV and Borovskii GB: OXPHOS
organization and activity in mitochondria of plants with different
life strategies. Int J Mol Sci. 24:152292023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Purandare N, Ghosalkar E, Grossman LI and
Aras S: Mitochondrial oxidative phosphorylation in viral
infections. Viruses. 15:23802023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schank M, Zhao J, Moorman JP and Yao ZQ:
The Impact of HIV- and ART-induced mitochondrial dysfunction in
cellular senescence and aging. Cells. 10:1742021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cortelli P, Mandrioli J, Zeviani M, Lodi
R, Prata C, Pecorari M, Orlando G and Guaraldi G: Mitochondrial
complex III deficiency in a case of HCV related noninflammatory
myopathy. J Neurol. 254:1450–1452. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim
MS, Frere J, Zhang Y, Soto Albrecht Y, Murdock DG, Angelin A, Singh
LN, et al: Core mitochondrial genes are down-regulated during
SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med.
15:eabq15332023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Senthilazhagan K, Sakthimani S, Kallanja D
and Venkataraman S: SARS-CoV-2: Analysis of the effects of
mutations in non-structural proteins. Arch Virol. 168:1862023.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sahu U, Mullarkey MP, Murphy SA, Anderson
JC, Putluri V, Kamal AHM, Park JH, Lee TJ, Ling AL, Kaipparettu BA,
et al: IDH status dictates oHSV mediated metabolic reprogramming
affecting anti-tumor immunity. Nat Commun. 16:38742025. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Greene TT, Jo Y, Chiale C, Macal M, Fang
Z, Khatri FS, Codrington AL, Kazane KR, Akbulut E, Swaminathan S,
et al: Metabolic deficiencies underlie reduced plasmacytoid
dendritic cell IFN-I production following viral infection. Nat
Commun. 16:14602025. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lee AG, Scott JM, Fabbrizi MR, Jiang X,
Sojka DK, Miller MJ, Baldridge MT, Yokoyama WM and Shin H: T cell
response kinetics determines neuroinfection outcomes during murine
HSV infection. JCI Insight. 5:e1342582020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cairns TM, Ditto NT, Lou H, Brooks BD,
Atanasiu D, Eisenberg RJ and Cohen GH: Global sensing of the
antigenic structure of herpes simplex virus gD using
high-throughput array-based SPR imaging. PLoS Pathog.
13:e10064302017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rathbun MM and Szpara ML: A holistic
perspective on herpes simplex virus (HSV) ecology and evolution.
Adv Virus Res. 110:27–57. 2021. View Article : Google Scholar : PubMed/NCBI
|