|
1
|
Neshat SY, Quiroz VM, Wang Y, Tamayo S and
Doloff JC: Liver Disease: induction, progression, immunological
mechanisms, and therapeutic interventions. Int J Mol Sci.
22:67772021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Devarbhavi H, Asrani SK, Arab JP, Nartey
YA, Pose E and Kamath PS: Global burden of liver disease: 2023
Update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xiao J, Wang F, Wong NK, He J, Zhang R,
Sun R, Xu Y, Liu Y, Li W, Koike K, et al: Global liver disease
burdens and research trends: Analysis from a Chinese perspective. J
Hepatol. 71:212–221. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Younossi ZM, Loomba R, Rinella ME,
Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro
F, Caldwell SH, Ratziu V, et al: Current and future therapeutic
regimens for nonalcoholic fatty liver disease and nonalcoholic
steatohepatitis. Hepatology. 68:361–371. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Alvarado-Tapias E, Pose E, Gratacós-Ginès
J, Clemente-Sánchez A, López-Pelayo H and Bataller R:
Alcohol-associated liver disease: Natural history, management and
novel targeted therapies. Clin Mol Hepatol. 31 (Suppl 1):S112–S133.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Llovet JM, De Baere T, Kulik L, Haber PK,
Greten TF, Meyer T and Lencioni R: Locoregional therapies in the
era of molecular and immune treatments for hepatocellular
carcinoma. Nat Rev Gastroenterol Hepatol. 18:293–313. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ishikawa T: Efficacy and features of
balloon-occluded transarterial chemoembolization for hepatocellular
carcinoma: A narrative review. Transl Gastroenterol Hepatol.
9:482024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pandey N and Black BE: Rapid detection and
signaling of DNA damage by PARP-1. Trends Biochem Sci. 46:744–757.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Galindo-Campos MA, Bedora-Faure M, Farrés
J, Lescale C, Moreno-Lama L, Martínez C, Martín-Caballero J,
Ampurdanés C, Aparicio P, Dantzer F, et al: Coordinated signals
from the DNA repair enzymes PARP-1 and PARP-2 promotes B-cell
development and function. Cell Death Differ. 26:2667–2681. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mukhopadhyay P, Rajesh M, Cao Z, Horváth
B, Park O, Wang H, Erdelyi K, Holovac E, Wang Y, Liaudet L, et al:
Poly (ADP-ribose) polymerase-1 is a key mediator of liver
inflammation and fibrosis. Hepatology. 59:1998–2009. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xu XL, Xing BC, Han HB, Zhao W, Hu MH, Xu
ZL, Li JY, Xie Y, Gu J, Wang Y and Zhang ZQ: The properties of
tumor-initiating cells from a hepatocellular carcinoma patient's
primary and recurrent tumor. Carcinogenesis. 31:167–174. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gariani K, Ryu D, Menzies KJ, Yi HS, Stein
S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, et al: Inhibiting
poly ADP-ribosylation increases fatty acid oxidation and protects
against fatty liver disease. J Hepatol. 66:132–141. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guillot C, Hall J, Herceg Z, Merle P and
Chemin I: Update on hepatocellular carcinoma breakthroughs:
Poly(ADP-ribose) polymerase inhibitors as a promising therapeutic
strategy. Clin Res Hepatol Gastroenterol. 38:137–142. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang Y, Wang C, Tian Y, Zhang F, Xu W, Li
X, Shu Z, Wang Y, Huang K and Huang D: Inhibition of
poly(ADP-ribose) polymerase-1 protects chronic alcoholic liver
injury. Am J Pathol. 186:3117–3130. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hardy T and Mann DA: Epigenetics in liver
disease: From biology to therapeutics. Gut. 65:1895–1905. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cheng ML, Nakib D, Perciani CT and
MacParland SA: The immune niche of the liver. Clin Sci (Lond).
135:2445–2466. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Piano S, Bunchorntavakul C, Marciano S and
Rajender Reddy K: Infections in cirrhosis. Lancet Gastroenterol
Hepatol. 9:745–757. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kubes P and Jenne C: Immune responses in
the liver. Annu Rev Immunol. 36:247–277. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mukhopadhyay P, Horváth B, Rajesh M, Varga
ZV, Gariani K, Ryu D, Cao Z, Holovac E, Park O, Zhou Z, et al: PARP
inhibition protects against alcoholic and non-alcoholic
steatohepatitis. J Hepatol. 66:589–600. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
De Siervi S, Cannito S and Turato C:
Chronic liver disease: latest research in pathogenesis, detection
and treatment. Int J Mol Sci. 24:106332023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Santinelli-Pestana DV, Aikawa E, Singh SA
and Aikawa M: PARPs and ADP-ribosylation in chronic inflammation: A
focus on macrophages. Pathogens. 12:9642023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Vida A, Márton J, Mikó E and Bai P:
Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev
Biol. 63:135–143. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li WH, Wang F, Song GY, Yu QH, Du RP and
Xu P: PARP-1: A critical regulator in radioprotection and
radiotherapy-mechanisms, challenges, and therapeutic opportunities.
Front Pharmacol. 14:11989482023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Szántó M, Gupte R, Kraus WL, Pacher P and
Bai P: PARPs in lipid metabolism and related diseases. Prog Lipid
Res. 84:1011172021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Demin AA, Hirota K, Tsuda M, Adamowicz M,
Hailstone R, Brazina J, Gittens W, Kalasova I, Shao Z, Zha S, et
al: XRCC1 prevents toxic PARP1 trapping during DNA base excision
repair. Mol Cell. 81:3018–3030.e5. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ogawa K, Masutani M, Kato K, Tang M,
Kamada N, Suzuki H, Nakagama H, Sugimura T and Shirai T: Parp-1
deficiency does not enhance liver carcinogenesis induced by
2-amino-3-methylimidazo[4,5-f]quinoline in mice. Cancer Lett.
236:32–38. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liao Y, Wang X, Ran G, Zhang S, Wu C, Tan
R, Liu Y, He Y, Liu T, Wu Z, et al: DNA damage and up-regulation of
PARP-1 induced by columbin in vitro and in vivo. Toxicol Lett.
379:20–34. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cantó C, Houtkooper RH, Pirinen E, Youn
DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux
PA, Cettour-Rose P, et al: The NAD(+) precursor nicotinamide
riboside enhances oxidative metabolism and protects against
high-fat diet-induced obesity. Cell Metab. 15:838–847. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wu AY, Sekar P, Huang DY, Hsu SH, Chan CM
and Lin WW: Spatiotemporal roles of AMPK in PARP-1- and
autophagy-dependent retinal pigment epithelial cell death caused by
UVA. J Biomed Sci. 30:912023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ju C, Liu C, Yan S, Wang Y, Mao X, Liang M
and Huang K: Poly(ADP-ribose) Polymerase-1 is required for
hepatocyte proliferation and liver regeneration in mice. Biochem
Biophys Res Commun. 511:531–535. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yimlamai D, Christodoulou C, Galli GG,
Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ
and Camargo FD: Hippo pathway activity influences liver cell fate.
Cell. 157:1324–1338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cover C, Fickert P, Knight TR,
Fuchsbichler A, Farhood A, Trauner M and Jaeschke H:
Pathophysiological role of poly(ADP-ribose) polymerase (PARP)
activation during acetaminophen-induced liver cell necrosis in
mice. Toxicol Sci. 84:201–208. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Andronikou C and Rottenberg S: Studying
PAR-dependent chromatin remodeling to tackle PARPi resistance.
Trends Mol Med. 27:630–642. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pazzaglia S and Pioli C: Multifaceted role
of PARP-1 in DNA repair and inflammation: Pathological and
therapeutic implications in cancer and non-cancer diseases. Cells.
9:412019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Llaneras J, Riveiro-Barciela M,
Rando-Segura A, Marcos-Fosch C, Roade L, Velázquez F,
Rodríguez-Frías F, Esteban R and Buti M: Etiologies and features of
acute viral hepatitis in Spain. Clin Gastroenterol Hepatol.
19:1030–1037. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cooke GS, Flower B, Cunningham E, Marshall
AD, Lazarus JV, Palayew A, Jia J, Aggarwal R, Al-Mahtab M, Tanaka
Y, et al: Progress towards elimination of viral hepatitis: A lancet
gastroenterology and hepatology commission update. Lancet
Gastroenterol Hepatol. 9:346–365. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yeh SH, Li CL, Lin YY, Ho MC, Wang YC,
Tseng ST and Chen PJ: Hepatitis B virus DNA integration drives
carcinogenesis and provides a new biomarker for HBV-related HCC.
Cell Mol Gastroenterol Hepatol. 15:921–929. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Funato K, Otsuka M, Sekiba K, Miyakawa Y,
Seimiya T, Shibata C, Kishikawa T and Fujishiro M: Hepatitis B
virus-associated hepatocellular carcinoma with Smc5/6 complex
deficiency is susceptible to PARP inhibitors. Biochem Biophys Res
Commun. 607:89–95. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou L, Liu CH, Lv D, Sample KM, Rojas Á,
Zhang Y, Qiu H, He L, Zheng L, Chen L, et al: Halting
hepatocellular carcinoma: Identifying intercellular crosstalk in
HBV-driven disease. Cell Rep. 44:1154572025. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu N, Liu Q, Yang X, Zhang F, Li X, Ma Y,
Guan F, Zhao X, Li Z, Zhang L and Ye X: Hepatitis B
virus-upregulated LNC-HUR1 promotes cell proliferation and
tumorigenesis by blocking p53 activity. Hepatology. 68:2130–2144.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen Y, Wen J, Qi D, Tong X, Liu N and Ye
X: HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer
cells. Sheng Wu Gong Cheng Xue Bao. 38:3501–3514. 2022.(In
Chinese). PubMed/NCBI
|
|
42
|
Machida K, Tsukamoto H, Mkrtchyan H, Duan
L, Dynnyk A, Liu HM, Asahina K, Govindarajan S, Ray R, Ou JH, et
al: Toll-like receptor 4 mediates synergism between alcohol and HCV
in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl
Acad Sci USA. 106:1548–1553. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pal S, Polyak SJ, Bano N, Qiu WC,
Carithers RL, Shuhart M, Gretch DR and Das A: Hepatitis C virus
induces oxidative stress, DNA damage and modulates the DNA repair
enzyme NEIL1. J Gastroenterol Hepatol. 25:627–634. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Smirnova OA, Ivanova ON, Mukhtarov F,
Valuev-Elliston VT, Fedulov AP, Rubtsov PM, Zakirova NF, Kochetkov
SN, Bartosch B and Ivanov AV: Hepatitis Delta virus antigens
trigger oxidative stress, activate antioxidant Nrf2/ARE pathway,
and induce unfolded protein response. Antioxidants (Basel).
12:9742023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bajaj JS: Alcohol, liver disease and the
gut microbiota. Nat Rev Gastroenterol Hepatol. 16:235–246. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Contreras-Zentella ML, Villalobos-García D
and Hernández-Muñoz R: Ethanol metabolism in the liver, the
induction of oxidant stress, and the antioxidant defense system.
Antioxidants (Basel). 11:12582022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Y, Luo W and Wang Y: PARP-1 and its
associated nucleases in DNA damage response. DNA Repair (Amst).
81:1026512019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Langelier MF and Pascal JM: PARP-1
mechanism for coupling DNA damage detection to poly(ADP-ribose)
synthesis. Curr Opin Struct Biol. 23:134–143. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang H, Wei S, Wu X, Zhang M, Zhou B,
Huang D and Dong W: Dihydrokaempferol attenuates
CCl4-induced hepatic fibrosis by inhibiting PARP-1 to
affect multiple downstream pathways and cytokines. Toxicol Appl
Pharmacol. 464:1164382023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ma XY, Zhang M, Fang G, Cheng CJ, Wang MK,
Han YM, Hou XT, Hao EW, Hou YY and Bai G: Ursolic acid reduces
hepatocellular apoptosis and alleviates alcohol-induced liver
injury via irreversible inhibition of CASP3 in vivo. Acta Pharmacol
Sin. 42:1101–1110. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yin F, Wu MM, Wei XL, Ren RX, Liu MH, Chen
CQ, Yang L, Xie RQ, Jiang SY, Wang XF and Wang H: Hepatic NCoR1
deletion exacerbates alcohol-induced liver injury in mice by
promoting CCL2-mediated monocyte-derived macrophage infiltration.
Acta Pharmacol Sin. 43:2351–2361. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ambade A, Lowe P, Kodys K, Catalano D,
Gyongyosi B, Cho Y, Iracheta-Vellve A, Adejumo A, Saha B, Calenda
C, et al: Pharmacological inhibition of CCR2/5 signaling prevents
and reverses alcohol-induced liver damage, steatosis, and
inflammation in mice. Hepatology. 69:1105–1121. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang XJ and Malhi H: Nonalcoholic fatty
liver disease. Ann Intern Med. 169:ITC65–ITC80. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Guo X, Yin X, Liu Z and Wang J:
Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural
products for prevention and treatment. Int J Mol Sci. 23:154892022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Harrison SA, Allen AM, Dubourg J,
Noureddin M and Alkhouri N: Challenges and opportunities in NASH
drug development. Nat Med. 29:562–573. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Saiman Y, Duarte-Rojo A and Rinella ME:
Fatty liver disease: Diagnosis and stratification. Annu Rev Med.
73:529–544. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ye H, Ma S, Qiu Z, Huang S, Deng G, Li Y,
Xu S, Yang M, Shi H, Wu C, et al: Poria cocos polysaccharides
rescue pyroptosis-driven gut vascular barrier disruption in order
to alleviates non-alcoholic steatohepatitis. J Ethnopharmacol.
296:1154572022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang JH, Byeon EH, Kang D, Hong SG, Yang
J, Kim DR, Yun SP, Park SW, Kim HJ, Huh JW, et al: Fermented
soybean paste attenuates biogenic amine-induced liver damage in
obese mice. Cells. 12:8222023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Guo R, Li Y, Song Q, Huang R, Ge X, Nieto
N, Jiang Y and Song Z: Increasing cellular NAD+ protects
hepatocytes against palmitate-induced lipotoxicity by preventing
PARP-1 inhibition and the mTORC1-p300 pathway activation. Am J
Physiol Cell Physiol. 328:C776–C790. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Salomone F, Barbagallo I, Godos J, Lembo
V, Currenti W, Cinà D, Avola R, D'Orazio N, Morisco F, Galvano F
and Li Volti G: Silibinin restores NAD+ levels and
induces the SIRT1/AMPK pathway in non-alcoholic fatty liver.
Nutrients. 9:10862017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang K, Du M, Tan X, Yang L, Li X, Jiang
Y, Wang C, Zhang F, Zhu F, Cheng M, et al: PARP1-mediated PPARα
poly(ADP-ribosyl)ation suppresses fatty acid oxidation in
non-alcoholic fatty liver disease. J Hepatol. 66:962–977. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Majeed Y, Halabi N, Madani AY, Engelke R,
Bhagwat AM, Abdesselem H, Agha MV, Vakayil M, Courjaret R, Goswami
N, et al: SIRT1 promotes lipid metabolism and mitochondrial
biogenesis in adipocytes and coordinates adipogenesis by targeting
key enzymatic pathways. Sci Rep. 11:81772021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ding RB, Bao J and Deng CX: Emerging roles
of SIRT1 in fatty liver diseases. Int J Biol Sci. 13:852–867. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ray K: Developing a toolbox for
drug-induced liver injury. Nat Rev Gastroenterol Hepatol.
17:7142020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kumachev A and Wu PE: Drug-induced liver
injury. CMAJ. 193:E3102021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Björnsson HK and Björnsson ES:
Drug-induced liver injury: Pathogenesis, epidemiology, clinical
features, and practical management. Eur J Intern Med. 97:26–31.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
European Association for the Study of the
Liver, . EASL clinical practice guidelines: Drug-induced liver
injury. J Hepatol. 70:1222–1261. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li X, Tang J and Mao Y: Incidence and risk
factors of drug-induced liver injury. Liver Int. 42:1999–2014.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gallyas F Jr and Sumegi B: Mitochondrial
protection by PARP inhibition. Int J Mol Sci. 21:27672020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang C, Xu W, Zhang Y, Huang D and Huang
K: Poly(ADP-ribosyl)ated PXR is a critical regulator of
acetaminophen-induced hepatotoxicity. Cell Death Dis. 9:8192018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Su Q, Kuang W, Hao W, Liang J, Wu L, Tang
C, Wang Y and Liu T: Antituberculosis drugs (rifampicin and
isoniazid) induce liver injury by regulating NLRP3 inflammasomes.
Mediators Inflamm. 2021:80862532021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Carbone M and Neuberger JM: Autoimmune
liver disease, autoimmunity and liver transplantation. J Hepatol.
60:210–223. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Trivedi PJ, Hirschfield GM, Adams DH and
Vierling JM: Immunopathogenesis of primary biliary cholangitis,
primary sclerosing cholangitis and autoimmune hepatitis: Themes and
concepts. Gastroenterology. 166:995–1019. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yilmaz K, Haeberle S, Kim YO, Fritzler MJ,
Weng SY, Goeppert B, Raker VK, Steinbrink K, Schuppan D, Enk A and
Hadaschik EN: Regulatory T-cell deficiency leads to features of
autoimmune liver disease overlap syndrome in scurfy mice. Front
Immunol. 14:12536492023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Heo NY and Kim H: Epidemiology and updated
management for autoimmune liver disease. Clin Mol Hepatol.
29:194–196. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang Y, Pötter S, Chen CW, Liang R, Gelse
K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW and Dees
C: Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in
systemic sclerosis. Ann Rheum Dis. 77:744–751. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Su X, Ye L, Chen X, Zhang H, Zhou Y, Ding
X, Chen D, Lin Q and Chen C: MiR-199-3p promotes ERK-mediated IL-10
production by targeting poly (ADP-ribose) polymerase-1 in patients
with systemic lupus erythematosus. Chem Biol Interact. 306:110–116.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang G, Ma H, Wang J and Khan MF:
Contribution of poly(ADP-ribose)polymerase-1 activation and
apoptosis in trichloroethene-mediated autoimmunity. Toxicol Appl
Pharmacol. 362:28–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hao J, Sun W and Xu H: Pathogenesis of
concanavalin A induced autoimmune hepatitis in mice. Int
Immunopharmacol. 102:1084112022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu Q, Yang H, Kang X, Tian H, Kang Y, Li
L, Yang X, Liu H, Ren P, Kuang X, et al: A synbiotic ameliorates
con A-induced autoimmune hepatitis in mice through modulation of
gut microbiota and immune imbalance. Mol Nutr Food Res.
67:e22004282023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Hao H and Hou T: Concanavalin
A-induced autoimmune hepatitis model in mice: Mechanisms and future
outlook. Open Life Sci. 17:91–101. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Filliol A, Piquet-Pellorce C, Dion S,
Genet V, Lucas-Clerc C, Dantzer F and Samson M: PARP2 deficiency
affects invariant-NKT-cell maturation and protects mice from
concanavalin A-induced liver injury. Am J Physiol Gastrointest
Liver Physiol. 313:G399–G409. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Virág L and Szabó C: The therapeutic
potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev.
54:375–429. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tanaka A: Emerging novel treatments for
autoimmune liver diseases. Hepatol Res. 49:489–499. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kisseleva T and Brenner D: Molecular and
cellular mechanisms of liver fibrosis and its regression. Nat Rev
Gastroenterol Hepatol. 18:151–166. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Horn P and Tacke F: Metabolic
reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gu L, Zhao C, Wang Y, Wang C, Yin X, Ye Q,
Liu Y, Zou X, Wang L, Zhuge Y, et al: Senescence of hepatic
stellate cells by specific delivery of manganese for limiting liver
fibrosis. Nano Lett. 24:1062–1073. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nithyananthan S and Thirunavukkarasu C:
Arsenic trioxide, a cancer chemo drug hampers fibrotic liver
regeneration by interrupting oxidative stress rekindling and
stellate cell rejuvenation. J Cell Physiol. 235:1222–1234. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Meng D, Li Z, Wang G, Ling L, Wu Y and
Zhang C: Carvedilol attenuates liver fibrosis by suppressing
autophagy and promoting apoptosis in hepatic stellate cells. Biomed
Pharmacother. 108:1617–1627. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tan Y, Li C, Zhou J, Deng F and Liu Y:
Berberine attenuates liver fibrosis by autophagy inhibition
triggering apoptosis via the miR-30a-5p/ATG5 axis. Exp Cell Res.
427:1136002023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Singal AG, Kanwal F and Llovet JM: Global
trends in hepatocellular carcinoma epidemiology: Implications for
screening, prevention and therapy. Nat Rev Clin Oncol. 20:864–884.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pan J, Zhang M, Dong L, Ji S, Zhang J,
Zhang S, Lin Y, Wang X, Ding Z, Qiu S, et al: Genome-Scale CRISPR
screen identifies LAPTM5 driving lenvatinib resistance in
hepatocellular carcinoma. Autophagy. 19:1184–1198. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
No authors listed. Hepatocellular
carcinoma. Nat Rev Dis Primers. 7:72021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zai W, Chen W, Han Y, Wu Z, Fan J, Zhang
X, Luan J, Tang S, Jin X, Fu X, et al: Targeting PARP and autophagy
evoked synergistic lethality in hepatocellular carcinoma.
Carcinogenesis. 41:345–357. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gerossier L, Dubois A, Paturel A, Fares N,
Cohen D, Merle P, Lachuer J, Wierinckx A, Saintigny P, Bancel B, et
al: PARP inhibitors and radiation potentiate liver cell death in
vitro. Do hepatocellular carcinomas have an achilles' heel? Clin
Res Hepatol Gastroenterol. 45:1015532021.PubMed/NCBI
|
|
96
|
Jeong KY and Park MH: The significance of
targeting Poly (ADP-ribose) polymerase-1 in pancreatic cancer for
providing a new therapeutic paradigm. Int J Mol Sci. 22:35092021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Demény MA and Virág L: The PARP enzyme
family and the hallmarks of cancer part 1. Cell intrinsic
hallmarks. Cancers (Basel). 13:20422021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF
and Dai HB: Human PARP1 substrates and regulators of its catalytic
activity: An updated overview. Front Pharmacol. 14:11371512023.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wong CW, Evangelou C, Sefton KN, Leshem R,
Zhang W, Gopalan V, Chattrakarn S, Fernandez Carro ML, Uzuner E,
Mole H, et al: PARP14 inhibition restores PD-1 immune checkpoint
inhibitor response following IFNγ-driven acquired resistance in
preclinical cancer models. Nat Commun. 14:59832023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sun G, Miao G, Li Z, Zheng W, Zhou C, Sun
G, Cao H, Li Z and Tang W: Inhibition of PARP potentiates immune
checkpoint therapy through miR-513/PD-L1 pathway in hepatocellular
carcinoma. J Oncol. 2022:69889232022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Konstantinopoulos PA, Waggoner S, Vidal
GA, Mita M, Moroney JW, Holloway R, Van Le L, Sachdev JC,
Chapman-Davis E, Colon-Otero G, et al: Single-arm phases 1 and 2
trial of niraparib in combination with pembrolizumab in patients
with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol.
5:1141–1149. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yu EY, Piulats JM, Gravis G, Fong PCC,
Todenhöfer T, Laguerre B, Arranz JA, Oudard S, Massard C,
Heinzelbecker J, et al: Pembrolizumab plus olaparib in patients
with metastatic castration-resistant prostate cancer: Long-term
results from the phase 1b/2 KEYNOTE-365 cohort a study. Eur Urol.
83:15–26. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yap TA, Bardia A, Dvorkin M, Galsky MD,
Beck JT, Wise DR, Karyakin O, Rubovszky G, Kislov N, Rohrberg K, et
al: Avelumab plus talazoparib in patients with advanced solid
tumors: The JAVELIN PARP medley nonrandomized controlled trial.
JAMA Oncol. 9:40–50. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ishteyaque S, Singh G, Yadav KS, Verma S,
Sharma RK, Sen S, Srivastava AK, Mitra K, Lahiri A, Bawankule DU,
et al: Cooperative STAT3-NFkB signaling modulates mitochondrial
dysfunction and metabolic profiling in hepatocellular carcinoma.
Metabolism. 152:1557712024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zein N, Elewa YHA, Alruwaili MK, Dewaard
M, Alorabi M, Albogami SM, Batiha GE and Zahran MH: Barhi date
(Phoenix dactylifera) extract ameliorates hepatocellular carcinoma
in male rats. Biomed Pharmacother. 156:1139762022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pasaol JC, Dejnaka E, Mucignat G, Bajzert
J, Henklewska M, Obmińska-Mrukowicz B, Giantin M, Pauletto M,
Zdyrski C, Dacasto M and Pawlak A: PARP inhibitor olaparib induces
DNA damage and acts as a drug sensitizer in an in vitro model of
canine hematopoietic cancer. BMC Vet Res. 21:4392025. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wu Y, Li Y, Guo W, Liu J, Lao W, Hu P, Lin
Y and Chen H: Laminaria japonica peptides suppress liver
cancer by inducing apoptosis: Possible signaling pathways and
mechanism. Mar Drugs. 20:7042022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Luo T, Yuan Y, Yu Q, Liu G, Long M, Zhang
K, Bian J, Gu J, Zou H, Wang Y, et al: PARP-1 overexpression
contributes to Cadmium-induced death in rat proximal tubular cells
via parthanatos and the MAPK signalling pathway. Sci Rep.
7:43312017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dong Q, Du Y, Li H, Liu C, Wei Y, Chen MK,
Zhao X, Chu YY, Qiu Y, Qin L, et al: EGFR and c-MET cooperate to
enhance resistance to PARP inhibitors in hepatocellular carcinoma.
Cancer Res. 79:819–829. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Merdrignac A, Papoutsoglou P and Coulouarn
C: Long noncoding RNAs in cholangiocarcinoma. Hepatology.
73:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Huang Z, Zhou JK, Peng Y, He W and Huang
C: The role of long noncoding RNAs in hepatocellular carcinoma. Mol
Cancer. 19:772020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen C, Chen J, Wang Y, Fang L, Guo C,
Sang T, Peng H, Zhao Q, Chen S, Lin X and Wang X: Ganoderma lucidum
polysaccharide inhibits HSC activation and liver fibrosis via
targeting inflammation, apoptosis, cell cycle, and ECM-receptor
interaction mediated by TGF-β/Smad signaling. Phytomedicine.
110:1546262023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ren Y, Chen Y, Tang EH, Hu Y, Niu B, Liang
H, Xi C, Zhao F and Cao Z: Arbidol attenuates liver fibrosis and
activation of hepatic stellate cells by blocking TGF-β1 signaling.
Eur J Pharmacol. 967:1763672024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang
XJ, Wang H, Du Y, Guan J, Wang X and Fu J: NAD+ improves
cognitive function and reduces neuroinflammation by ameliorating
mitochondrial damage and decreasing ROS production in chronic
cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J
Neuroinflammation. 18:2072021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Huang K, Du M, Tan X, Yang L, Li X, Jiang
Y, Wang C, Zhang F, Zhu F, Cheng M, et al: PARP1-mediated PPARα
poly(ADP-ribosyl)ation suppresses fatty acid oxidation in
non-alcoholic fatty liver disease. J Hepatol. 66:962–977. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nozaki T, Fujihara H, Watanabe M, Tsutsumi
M, Nakamoto K, Kusuoka O, Kamada N, Suzuki H, Nakagama H, Sugimura
T and Masutani M: Parp-1 deficiency implicated in colon and liver
tumorigenesis induced by azoxymethane. Cancer Sci. 94:497–500.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Valanejad L, Cast A, Wright M, Bissig KD,
Karns R, Weirauch MT and Timchenko N: PARP1 activation increases
expression of modified tumor suppressors and pathways underlying
development of aggressive hepatoblastoma. Commun Biol. 1:672018.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Pio L, O'Neill AF, Woodley H, Murphy AJ,
Tiao G, Franchi-Abella S, Fresneau B, Watanabe K, Alaggio R,
Lopez-Terrada D, et al: Hepatoblastoma. Nat Rev Dis Primers.
11:362025. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sha YL, Liu S, Yan WW and Dong B:
Wnt/β-catenin signaling as a useful therapeutic target in
hepatoblastoma. Biosci Rep. 39:BSR201924662019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Maharati A and Moghbeli M: PI3K/AKT
signaling pathway as a critical regulator of epithelial-mesenchymal
transition in colorectal tumor cells. Cell Commun Signal.
21:2012023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tan AC: Targeting the PI3K/Akt/mTOR
pathway in non-small cell lung cancer (NSCLC). Thorac Cancer.
11:511–518. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Hsu CM, Lin JJ, Su JH and Liu CI:
13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular
carcinoma cells through mitochondrial dysfunction and suppression
of the PI3K/AKT/mTOR/p70S6K signalling pathway. Pharm Biol.
60:2276–2285. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ethier C, Tardif M, Arul L and Poirier GG:
PARP-1 modulation of mTOR signaling in response to a DNA alkylating
agent. PLoS One. 7:e479782012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sun EJ, Wankell M, Palamuthusingam P,
McFarlane C and Hebbard L: Targeting the PI3K/Akt/mTOR pathway in
hepatocellular carcinoma. Biomedicines. 9:16392021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Gallyas F Jr, Sumegi B and Szabo C: Role
of Akt activation in PARP inhibitor resistance in cancer. Cancers
(Basel). 12:5322020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang S, Wang H, Davis BC, Liang J, Cui R,
Chen SJ and Xu ZX: PARP1 inhibitors attenuate AKT phosphorylation
via the upregulation of PHLPP1. Biochem Biophys Res Commun.
412:379–384. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen
H, Zhou G, Xia H and Zhang C: Inducing synergistic DNA damage by
TRIP13 and PARP1 inhibitors provides a potential treatment for
hepatocellular carcinoma. J Cancer. 13:2226–2237. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Bhamidipati D, Haro-Silerio JI, Yap TA and
Ngoi N: PARP inhibitors: Enhancing efficacy through rational
combinations. Br J Cancer. 129:904–916. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sarin SK, Kumar M, Eslam M, George J, Al
Mahtab M, Akbar SMF, Jia J, Tian Q, Aggarwal R, Muljono DH, et al:
Liver diseases in the Asia-Pacific region: A lancet
gastroenterology & hepatology commission. Lancet Gastroenterol
Hepatol. 5:167–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Michel LS, Dyroff S, Brooks FJ, Spayd KJ,
Lim S, Engle JT, Phillips S, Tan B, Wang-Gillam A, Bognar C, et al:
PET of poly (ADP-Ribose) polymerase activity in cancer: Preclinical
assessment and first in-human studies. Radiology. 282:453–463.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Destro G, Rizzo R, Rua C, Azimi RR and
Morbelli S: Exploring the radiochemistry of PARP inhibitors: A new
era in therapy and imaging. EJNMMI Radiopharm Chem. 10:372025.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Jeppesen TE, Shao T, Chen J, Patel JS,
Zhou X, Kjaer A and Liang SH: Poly(ADP-ribose) polymerase
(PARP)-targeted PET imaging in non-oncology application: A pilot
study in preclinical models of nonalcoholic steatohepatitis. Am J
Nucl Med Mol Imaging. 14:41–47. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
McDonald ES, Pantel AR, Shah PD, Farwell
MD, Clark AS, Doot RK, Pryma DA and Carlin SD: In vivo
visualization of PARP inhibitor pharmacodynamics. JCI Insight.
6:e1465922021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lee HS, Schwarz SW, Schubert EK, Chen DL,
Doot RK, Makvandi M, Lin LL, McDonald ES, Mankoff DA and Mach RH:
The development of 18F fluorthanatrace: A PET
radiotracer for imaging poly (ADP-ribose) polymerase-1. Radiol
Imaging Cancer. 4:e2100702022. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zheng W, Huang Y, Xie Y, Yang T, Cheng X,
Chen H, Li C, Jiang Z, Yu Z, Li Z, et al: Design, synthesis, and
evaluation of [18F]BIBD-300 as a positron emission
tomography tracer for poly(ADP-ribose) polymerase-1. Mol Pharm.
21:2606–2621. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Stotz S, Kinzler J, Nies AT, Schwab M and
Maurer A: Two experts and a newbie: [18F]PARPi vs.
[18F]FTT vs. [18F]FPyPARP-a comparison of
PARP imaging agents. Eur J Nucl Med Mol Imaging. 49:834–846. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Li H, Liu ZY, Wu N, Chen YC, Cheng Q and
Wang J: PARP inhibitor resistance: The underlying mechanisms and
clinical implications. Mol Cancer. 19:1072020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Chen M, Wang W, Hu S, Tong Y, Li Y, Wei Q,
Yu L, Zhu L, Zhu Y, Liu L, et al: Co-targeting WIP1 and PARP
induces synthetic lethality in hepatocellular carcinoma. Cell
Commun Signal. 20:392022. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zhou Y, Zhao S, Wu T and Zhang H:
Comparison of adverse reactions caused by olaparib for different
indications. Front Pharmacol. 13:9681632022. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
LaFargue CJ, Dal Molin GZ, Sood AK and
Coleman RL: Exploring and comparing adverse events between PARP
inhibitors. Lancet Oncol. 20:e15–e28. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Peck-Radosavljevic M: Thrombocytopenia in
chronic liver disease. Liver Int. 37:778–793. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Shin S, Jun DW, Saeed WK and Koh DH: A
narrative review of malnutrition in chronic liver disease. Ann
Transl Med. 9:1722021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Ren X, Sun P and Wang Y: PARP
inhibitor-related acute renal failure: A real-world study based on
the FDA adverse event reporting system database. Expert Opin Drug
Saf. 23:1463–1471. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Lazareth H, Delanoy N, Cohen R, Boissier
E, Ayari H, Combe P, Crespel C, Mercadier-Riaz E, Karras A,
Courbebaisse M, et al: Nephrotoxicity associated with niraparib. Am
J Kidney Dis. 76:898–900. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Wang S, Shi XL, Feng M, Wang X, Zhang ZH,
Zhao X, Han B, Ma HC, Dai B and Ding YT: Puerarin protects against
CCl4-induced liver fibrosis in mice: Possible role of PARP-1
inhibition. Int Immunopharmacol. 38:238–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Mukhopadhyay P, Horváth B, Rajesh M, Varga
ZV, Gariani K, Ryu D, Cao Z, Holovac E, Park O, Zhou Z, et al: PARP
inhibition protects against alcoholic and non-alcoholic
steatohepatitis. J Hepatol. 66:589–600. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Guo M and Wang SM: The BRCAness landscape
of cancer. Cells. 11:38772022. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Chen G, Zheng D, Zhou Y, Du S and Zeng Z:
Olaparib enhances radiation-induced systemic anti-tumor effects via
activating STING-chemokine signaling in hepatocellular carcinoma.
Cancer Lett. 582:2165072024. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Xu Y, Wu H, Huang L, Zhai B, Li X, Xu S,
Wu X, Zhu Q and Xu Q: Rational design, synthesis and biological
evaluation of dual PARP-1/2 and TNKS1/2 inhibitors for cancer
therapy. Eur J Med Chem. 237:1144172022. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Wang YQ, Wang PY, Wang YT, Yang GF, Zhang
A and Miao ZH: An update on poly(ADP-ribose)polymerase-1 (PARP-1)
inhibitors: Opportunities and challenges in cancer therapy. J Med
Chem. 59:9575–9598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Chan CY, Tan KV and Cornelissen B: PARP
inhibitors in cancer diagnosis and therapy. Clin Cancer Res.
27:1585–1594. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Kim DS, Camacho CV and Kraus WL: Alternate
therapeutic pathways for PARP inhibitors and potential mechanisms
of resistance. Exp Mol Med. 53:42–51. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Mweempwa A and Wilson MK: Mechanisms of
resistance to PARP inhibitors-an evolving challenge in oncology.
Cancer Drug Resist. 2:608–617. 2019.PubMed/NCBI
|
|
154
|
Priya B, Ravi S and Kirubakaran S:
Targeting ATM and ATR for cancer therapeutics: Inhibitors in
clinic. Drug Discov Today. 28:1036622023. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Wilson Z, Odedra R, Wallez Y, Wijnhoven
PWG, Hughes AM, Gerrard J, Jones GN, Bargh-Dawson H, Brown E, Young
LA, et al: ATR inhibitor AZD6738 (ceralasertib) exerts antitumor
activity as a monotherapy and in combination with chemotherapy and
the PARP inhibitor olaparib. Cancer Res. 82:1140–1152. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Jaidee R, Pocasap P, Jusakul A,
Senggunprai L, Prawan A, Hong JH, Heng HL, Kukongviriyapan V, Teh
BT and Kongpetch S: Synergistic suppression of cholangiocarcinoma
cells via DNA damage response and cell cycle arrest by dual
targeting PARP and ATM in DNA damage repair pathway. Biomed
Pharmacother. 189:1182732025. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Pandey P, Khan F, Qari HA, Upadhyay TK,
Alkhateeb AF and Oves M: Revolutionization in cancer therapeutics
via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4.
Pharmaceuticals (Basel). 15:3352022. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Stewart RA, Pilié PG and Yap TA:
Development of PARP and immune-checkpoint inhibitor combinations.
Cancer Res. 78:6717–6725. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Wang Y, Liu X, Zuo X, Wang C, Zhang Z,
Zhang H, Zeng T, Chen S, Liu M, Chen H, et al: NRDE2 deficiency
impairs homologous recombination repair and sensitizes
hepatocellular carcinoma to PARP inhibitors. Cell Genom.
4:1005502024. View Article : Google Scholar : PubMed/NCBI
|