|
1
|
Soerjomataram I and Bray F: Planning for
tomorrow: Global cancer incidence and the role of prevention
2020–2070. Nat Rev Clin Oncol. 18:663–672. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gong J, Cao J, Liu G and Huo JR: Function
and mechanism of F-box proteins in gastric cancer (Review). Int J
Oncol. 47:43–50. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Çetin G, Klafack S, Studencka-Turski M,
Krüger E and Ebstein F: The ubiquitin-proteasome system in immune
cells. Biomolecules. 11:602021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zheng N, Zhou Q, Wang Z and Wei W: Recent
advances in SCF ubiquitin ligase complex: Clinical implications.
Biochim Biophys Acta. 1866:12–22. 2016.PubMed/NCBI
|
|
5
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J and
Song EJ: Ubiquitin-proteasome system as a target for anticancer
treatment-an update. Arch Pharm Res. 46:573–597. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Luo Z, Pan Y, Jeong LS, Liu J and Jia L:
Inactivation of the cullin (CUL)-RING E3 ligase by the
NEDD8-activating enzyme inhibitor MLN4924 triggers protective
autophagy in cancer cells. Autophagy. 8:1677–1679. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Park J, Cho J and Song EJ:
Ubiquitin-proteasome system (UPS) as a target for anticancer
treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lin DI, Barbash O, Kumar KGS, Weber JD,
Harper JW, Klein-Szanto AJP, Rustgi A, Fuchs SY and Diehl JA:
Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF
(FBX4-alphaB crystallin) complex. Mol Cell. 24:355–366. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu P, Cong X, Liao S, Jia X, Wang X, Dai
W, Zhai L, Zhao L, Ji J, Ni D, et al: Global identification of
phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and
an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ.
29:1–13. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shapira M, Kakiashvili E, Rosenberg T and
Hershko DD: The mTOR inhibitor rapamycin down-regulates the
expression of the ubiquitin ligase subunit Skp2 in breast cancer
cells. Breast Cancer Res. 8:R462006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang
Y, Chen H, Wang W, Otkur W, Qi H, Xia T, et al: F-box proteins and
cancer: An update from functional and regulatory mechanism to
therapeutic clinical prospects. Theranostics. 10:4150–4167. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Warren WG, Osborn M, Yates A, Wright K and
O'Sullivan SE: The emerging role of fatty acid binding protein 5
(FABP5) in cancers. Drug Discov Today. 28:1036282023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mukherjee A, Chiang CY, Daifotis HA,
Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O and Lengyel
E: Adipocyte-induced FABP4 expression in ovarian cancer cells
promotes metastasis and mediates carboplatin resistance. Cancer
Res. 80:1748–1761. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sun X, Wang T, Guan ZR, Zhang C, Chen Y,
Jin J and Hua D: FBXO2, a novel marker for metastasis in human
gastric cancer. Biochem Biophys Res Commun. 495:2158–2164. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wei X, Bu J, Mo X, Lv B, Wang X and Hou B:
The prognostic significance of FBXO2 expression in colorectal
cancer. Int J Clin Exp Pathol. 11:5054–506. 2018.PubMed/NCBI
|
|
16
|
Ji J, Shen J, Xu Y, Xie M, Qian Q, Qiu T,
Shi W, Ren D, Ma J, Liu W and Liu B: FBXO2 targets glycosylated
SUN2 for ubiquitination and degradation to promote ovarian cancer
development. Cell Death Dis. 13:4422022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Che X, Jian F, Wang Y, Zhang J, Shen J,
Cheng Q, Wang X, Jia N and Feng W: FBXO2 promotes proliferation of
endometrial cancer by ubiquitin-mediated degradation of FBN1 in the
regulation of the cell cycle and the autophagy pathway. Front Cell
Dev Biol. 8:8432020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao X, Guo W, Zou L and Hu B: FBXO2
modulates STAT3 signaling to regulate proliferation and
tumorigenicity of osteosarcoma cells. Cancer Cell Int. 20:2452020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Buehler M, Yi X, Ge W, Blattmann P,
Rushing E, Reifenberger G, Felsberg J, Yeh C, Corn JE, Regli L, et
al: Quantitative proteomic landscapes of primary and recurrent
glioblastoma reveal a protumorigeneic role for FBXO2-dependent
glioma-microenvironment interactions. Neuro Oncol. 25:290–302.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guo W, Ren Y and Qiu X: FBXO2 promotes the
progression of papillary thyroid carcinoma through the p53 pathway.
Sci Rep. 14:225742024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cheng J, Liu O, Bin X and Tang Z: FBXO2 as
a switch guides a special fate of tumor clones evolving into a
highly malignant transcriptional subtype in oral squamous cell
carcinoma. Apoptosis. 30:167–184. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hershko A, Heller H, Elias S and
Ciechanover A: Components of ubiquitin-protein ligase system.
Resolution, affinity purification, and role in protein breakdown. J
Biol Chem. 258:8206–8214. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lyu L, Chen Z and McCarty N: TRIM44 links
the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded
proteins. Autophagy. 18:783–798. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Paudel RR, Lu D, Chowdhury SR, Monroy EY
and Wang J: Targeted protein degradation via lysosomes.
Biochemistry. 62:564–579. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hershko A, Ciechanover A, Heller H, Haas
AL and Rose IA: Proposed role of ATP in protein breakdown:
Conjugation of protein with multiple chains of the polypeptide of
ATP-dependent proteolysis. Proc Natl Acad Sci USA. 77:1783–1786.
1980. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hochstrasser M: Ubiquitin and
intracellular protein degradation. Curr Opin Cell Biol.
4:1024–1031. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hochstrasser M: Ubiquitin-dependent
protein degradation. Annu Rev Genet. 30:405–439. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jacopo M: Unconventional protein secretion
(UPS): Role in important diseases. Mol Biomed. 4:22023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aliabadi F, Sohrabi B, Mostafavi E,
Pazoki-Toroudi H and Webster TJ: Ubiquitin-proteasome system and
the role of its inhibitors in cancer therapy. Open Biol.
11:2003902021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li W, Bengtson MH, Ulbrich A, Matsuda A,
Reddy VA, Orth A, Chanda SK, Batalov S and Joazeiro CA: Genome-wide
and functional annotation of human E3 ubiquitin ligases identifies
MULAN, a mitochondrial E3 that regulates the organelle's dynamics
and signaling. PLoS One. 3:e14872008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xu C, Fan CD and Wang X: Regulation of
Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase.
Oncogene. 34:281–289. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang X, Gu H, Zhang E, Chen Q, Cao W, Yan
H, Chen J, Yang L, Lv N, He J, et al: The NEDD4-1 E3 ubiquitin
ligase: A potential molecular target for bortezomib sensitivity in
multiple myeloma. Int J Cancer. 146:1963–1978. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shangary S and Wang S: Targeting the
MDM2-p53 interaction for cancer therapy. Clin Cancer Res.
14:5318–5324. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fujii Y, Yada M, Nishiyama M, Kamura T,
Takahashi H, Tsunematsu R, Susaki E, Nakagawa T, Matsumoto A and
Nakayama KI: Fbxw7 contributes to tumor suppression by targeting
multiple proteins for ubiquitin-dependent degradation. Cancer Sci.
97:729–736. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wan L, Chen M, Cao J, Dai X, Yin Q, Zhang
J, Song SJ, Lu Y, Liu J, Inuzuka H, et al: The APC/C E3 ligase
complex activator FZR1 restricts BRAF oncogenic function. Cancer
Discov. 7:424–441. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang HC, Shi J, Orth JD and Mitchison TJ:
Evidence that mitotic exit is a better cancer therapeutic target
than spindle assembly. Cancer Cell. 16:347–358. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Manchado E, Guillamot M, de Cárcer G,
Eguren M, Trickey M, García-Higuera I, Moreno S, Yamano H, Cañamero
M and Malumbres M: Targeting mitotic exit leads to tumor regression
in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ
phosphatase. Cancer Cell. 18:641–654. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kidokoro T, Tanikawa C, Furukawa Y,
Katagiri T, Nakamura Y and Matsuda K: CDC20, a potential cancer
therapeutic target, is negatively regulated by p53. Oncogene.
27:1562–1571. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hadjihannas MV, Bernkopf DB, Brückner M
and Behrens J: Cell cycle control of Wnt/β-catenin signalling by
conductin/axin2 through CDC20. EMBO Rep. 13:347–354. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu PY, Xu N, Malyukova A, Scarlett CJ,
Sun YT, Zhang XD, Ling D, Su SP, Nelson C, Chang DK, et al: The
histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death
Differ. 20:503–514. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huang ZJ, Zhu JJ, Yang XY and Biskup E:
NEDD4 promotes cell growth and migration via PTEN/PI3K/AKT
signaling in hepatocellular carcinoma. Oncol Lett. 14:2649–2656.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hayashi S, Ozaki T, Yoshida K, Hosoda M,
Todo S, Akiyama S and Nakagawara A: p73 and MDM2 confer the
resistance of epidermoid carcinoma to cisplatin by blocking p53.
Biochem Biophys Res Commun. 347:60–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu L, Wong CC, Gong B and Yu J:
Functional significance and therapeutic implication of ring-type E3
ligases in colorectal cancer. Oncogene. 37:148–159. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lipkowitz S and Weissman AM: RINGs of good
and evil: RING finger ubiquitin ligases at the crossroads of tumour
suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang H, Lu X, Liu Z, Chen L, Xu Y, Wang Y,
Wei G and Chen Y: FBXW7 suppresses epithelial-mesenchymal
transition, stemness and metastatic potential of cholangiocarcinoma
cells. Oncotarget. 6:6310–6325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mao JH, Perez-Losada J, Wu D, Delrosario
R, Tsunematsu R, Nakayama KI, Brown K, Bryson S and Balmain A:
Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor
gene. Nature. 432:775–779. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rajagopalan H, Jallepalli PV, Rago C,
Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C:
Inactivation of hCDC4 can cause chromosomal instability. Nature.
428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Grim JE, Knoblaugh SE, Guthrie KA, Hagar
A, Swanger J, Hespelt J, Delrow JJ, Small T, Grady WM, Nakayama KI
and Clurman BE: Fbw7 and p53 cooperatively suppress advanced and
chromosomally unstable intestinal cancer. Mol Cell Biol.
32:2160–2167. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Thompson LL, Rutherford KA, Lepage CC and
McManus KJ: The SCF complex is essential to maintain genome and
chromosome stability. Int J Mol Sci. 22:85442021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Uddin S, Bhat AA, Krishnankutty R, Mir F,
Kulinski M and Mohammad RM: Involvement of F-BOX proteins in
progression and development of human malignancies. Semin Cancer
Biol. 36:18–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu Y, Pan B, Qu W, Cao Y, Li J and Zhao
H: Systematic analysis of the expression and prognosis relevance of
FBXO family reveals the significance of FBXO1 in human breast
cancer. Cancer Cell Int. 21:1302021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gao D, Inuzuka H, Tseng A, Chin RY, Toker
A and Wei W: Phosphorylation by Akt1 promotes cytoplasmic
localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction.
Nat Cell Biol. 11:397–408. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin YW and Yang JL: Cooperation of ERK and
SCFSkp2 for MKP-1 destruction provides a positive feedback
regulation of proliferating signaling. J Biol Chem. 281:915–926.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zaytseva YY, Wang X, Southard RC, Wallis
NK and Kilgore MW: Down-regulation of PPARgamma1 suppresses cell
growth and induces apoptosis in MCF-7 breast cancer cells. Mol
Cancer. 7:902008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lu Y, Zi X and Pollak M: Molecular
mechanisms underlying IGF-I-induced attenuation of the
growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3
breast cancer cells. Int J Cancer. 108:334–341. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ and
Liu HM: Skp2 in the ubiquitin-proteasome system: A comprehensive
review. Med Res Rev. 40:1920–1949. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sistrunk C, Kim SH, Wang X, Lee SH, Kim Y,
Macias E and Rodriguez-Puebla ML: Skp2 deficiency inhibits chemical
skin tumorigenesis independent of p27(Kip1) accumulation. Am J
Pathol. 182:1854–1864. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fuchs SY, Spiegelman VS and Kumar KGS: The
many faces of beta-TrCP E3 ubiquitin ligases: Reflections in the
magic mirror of cancer. Oncogene. 23:2028–2036. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang J, Yang Z, Ou J, Xia X, Zhi F and
Cui J: The F-box protein FBXL18 promotes glioma progression by
promoting K63-linked ubiquitination of Akt. FEBS Lett. 591:145–154.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z,
Wang K, Huang X and Liu B: FBXO6-mediated RNASET2 ubiquitination
and degradation governs the development of ovarian cancer. Cell
Death Dis. 12:3172021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z,
Wang K, Huang X, Ji J, Liu W and Liu B: FBXO16-mediated hnRNPL
ubiquitination and degradation plays a tumor suppressor role in
ovarian cancer. Cell Death Dis. 12:7582021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu J, Wen T, Marzio A, Song D, Chen S,
Yang C, Zhao F, Zhang B, Zhao G, Ferri A, et al: FBXO32-mediated
degradation of PTEN promotes lung adenocarcinoma progression. Cell
Death Dis. 15:2822024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Habel N, El-Hachem N, Soysouvanh F,
Hadhiri-Bzioueche H, Giuliano S, Nguyen S, Horák P, Gay AS, Debayle
D, Nottet N, et al: FBXO32 links ubiquitination to epigenetic
reprograming of D cells. Cell Death Differ. 28:1837–1848. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L
and Nicot C: Clinical significance of FBXW7 loss of function in
human cancers. Mol Cancer. 21:872022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu Z, Ma T, Duan J, Liu X and Liu L:
MicroRNA-223-induced inhibition of the FBXW7 gene affects the
proliferation and apoptosis of colorectal cancer cells via the
notch and akt/mTOR pathways. Mol Med Rep. 23:1542021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lee EK, Lian Z, D'Andrea K, Letrero R,
Sheng W, Liu S, Diehl JN, Pytel D, Barbash O, Schuchter L, et al:
The FBXO4 tumor suppressor functions as a barrier to
BRAFV600E-dependent metastatic melanoma. Mol Cell Biol.
33:4422–4433. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lian Z, Lee EK, Bass AJ, Wong KK,
Klein-Szanto AJ, Rustgi AK and Diehl JA: FBXO4 loss facilitates
carcinogen induced papilloma development in mice. Cancer Biol Ther.
16:750–755. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Barbash O, Zamfirova P, Lin DI, Chen X,
Yang K, Nakagawa H, Lu F, Rustgi AK and Diehl JA: Mutations in Fbx4
inhibit dimerization of the SCF(Fbx4) ligase and contribute to
cyclin D1 overexpression in human cancer. Cancer Cell. 14:68–78.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Duan S, Cermak L, Pagan JK, Rossi M,
Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R and Pagano
M: FBXO11 targets BCL6 for degradation and is inactivated in
diffuse large B-cell lymphomas. Nature. 481:90–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Santra MK, Wajapeyee N and Green MR: F-box
protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest
after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zou S, Ma C, Yang F, Xu X, Jia J and Liu
Z: FBXO31 suppresses gastric cancer EMT by targeting snail1 for
proteasomal degradation. Mol Cancer Res. 16:286–295. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Malonia SK, Dutta P, Santra MK and Green
MR: F-box protein FBXO31 directs degradation of MDM2 to facilitate
p53-mediated growth arrest following genotoxic stress. Proc Natl
Acad Sci USA. 112:8632–8637. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu J, Han L, Li B, Yang J, Huen MSY, Pan
X, Tsao SW and Cheung AL: F-box only protein 31 (FBXO31) negatively
regulates p38 mitogen-activated protein kinase (MAPK) signaling by
mediating lysine 48-linked ubiquitination and degradation of
mitogen-activated protein kinase kinase 6 (MKK6). J Biol Chem.
289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu D, Xia H, Wang F, Chen C and Long J:
MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation
cell cycle and migration in human breast cancer. OncoTargets Ther.
9:5245–5255. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Islam S, Dutta P, Sahay O, Gopalakrishnan
K, Muhury SR, Parameshwar P, Shetty P and Santra MK:
Feedback-regulated transcriptional repression of FBXO31 by c-myc
triggers ovarian cancer tumorigenesis. Int J Cancer. 150:1512–1524.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ma Y, Sun WL, Ma SS, Zhao G, Liu Z, Lu Z
and Zhang D: LincRNA ZNF529-AS1 inhibits hepatocellular carcinoma
via FBXO31 and predicts the prognosis of hepatocellular carcinoma
patients. BMC Bioinformatics. 24:542023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H,
Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA and Pagano M:
Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and
PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep.
37:1098702021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang
K, Chen C, Xie Q, Mack SC, Wang X, et al: Deubiquitinase USP13
maintains glioblastoma stem cells by antagonizing FBXL14-mediated
Myc ubiquitination. J Exp Med. 214:245–267. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cui YH, Kim H, Lee M, Yi JM, Kim RK, Uddin
N, Yoo KC, Kang JH, Choi MY, Cha HJ, et al: FBXL14 abolishes breast
cancer progression by targeting CDCP1 for proteasomal degradation.
Oncogene. 37:5794–5809. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yoshida Y, Chiba T, Tokunaga F, Kawasaki
H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K and Tai
T: E3 ubiquitin ligase that recognizes sugar chains. Nature.
418:438–442. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nelson RF, Glenn KA, Zhang Y, Wen H,
Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJ and
Paulson HL: Selective cochlear degeneration in mice lacking the
F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase
subunit. J Neurosci. 27:5163–5171. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Erhardt JA, Hynicka W, DiBenedetto A, Shen
N, Stone N, Paulson H and Pittman RN: A novel F box protein, NFB42,
is highly enriched in neurons and induces growth arrest. J Biol
Chem. 273:35222–35227. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yoshida Y, Tokunaga F, Chiba T, Iwai K,
Tanaka K and Tai T: Fbs2 is a new member of the E3 ubiquitin ligase
family that recognizes sugar chains. J Biol Chem. 278:43877–43884.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mizushima T, Yoshida Y, Kumanomidou T,
Hasegawa Y, Suzuki A, Yamane T and Tanaka K: Structural basis for
the selection of glycosylated substrates by SCF(Fbs1) ubiquitin
ligase. Proc Natl Acad Sci USA. 104:5777–5781. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nelson RF, Glenn KA, Miller VM, Wen H and
Paulson HL: A novel route for F-box protein-mediated ubiquitination
links CHIP to glycoprotein quality control. J Biol Chem.
281:20242–20251. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang HJ, Tian J, Qi XK, Xiang T, He GP,
Yu X, Zhang X, Zhao B, Feng QS, Chen MY, et al: Epstein-Barr virus
activates F-box protein FBXO2 to limit viral infectivity by
targeting glycoprotein B for degradation. PLoS Pathog.
14:e10072082018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z
and Lu Y: Aberrant expression of FBXO2 disrupts glucose homeostasis
through ubiquitin-mediated degradation of insulin receptor in obese
mice. Diabetes. 66:689–698. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu Z, Chen NY, Zhang Z, Zhou S and Hu SY:
F-box only protein 2 exacerbates non-alcoholic fatty liver disease
by targeting the hydroxyl CoA dehydrogenase alpha subunit. World J
Gastroenterol. 29:4433–4450. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu Y, Zhou R, Guo Y, Hu B, Xie L, An Y,
Wen J, Liu Z, Zhou M, Kuang W, et al: Muscle-derived small
extracellular vesicles induce liver fibrosis during overtraining.
Cell Metab. 37:824–841. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Menard R, Morin E, Morse D, Halluin C,
Pende M, Baanannou A, Grendler J, Fuqua H, Li J, Lancelot L, et al:
Zebrafish genetic model of neuromuscular degeneration associated
with atrogin-1 expression. BioRxiv Prepr Serv Biol.
9:2025.03.07.642048. 2025.
|
|
91
|
Li X, Mank JE and Ban L: The grasshopper
genome reveals long-term gene content conservation of the X
chromosome and temporal variation in X chromosome evolution. Genome
Res. 34:997–1007. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Atkin G, Hunt J, Minakawa E, Sharkey L,
Tipper N, Tennant W and Paulson HL: F-box only protein 2 (Fbxo2)
regulates amyloid precursor protein levels and processing. J Biol
Chem. 289:7038–7048. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Stephenson SEM, Costain G, Blok LER, Silk
MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey
K, et al: Germline variants in tumor suppressor FBXW7 lead to
impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum
Genet. 109:601–617. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chen N, Cao R, Zhang Z, Zhou S and Hu S:
Sleeve gastrectomy improves hepatic glucose metabolism by
downregulating FBXO2 and activating the PI3K-AKT pathway. Int J Mol
Sci. 24:55442023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yuan L, Song Z, Deng X, Yang Z, Yang Y,
Guo Y, Lu H and Deng H: Genetic analysis of FBXO2, FBXO6, FBXO12,
and FBXO41 variants in Han Chinese patients with Sporadic
Parkinson's disease. Neurosci Bull. 33:510–514. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Twarowski B and Herbet M: Inflammatory
processes in alzheimer's disease-pathomechanism, diagnosis and
treatment: A review. Int J Mol Sci. 24:65182023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Williams JB, Cao Q, Wang W, Lee YH, Qin L,
Zhong P, Ren Y, Ma K and Yan Z: Inhibition of histone
methyltransferase Smyd3 rescuesNMDARand cognitivedeficits in a
tauopathy mouse model. Nat Commun. 14:912023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu EA, Schultz ML, Mochida C, Chung C,
Paulson HL and Lieberman AP: Fbxo2 mediates clearance of damaged
lysosomes and modifies neurodegeneration in the Niemann-Pick C
brain. JCI Insight. 5:e1366762020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tang Z, Li J and Li C:
Post-transcriptional regulator RBM47 stabilizes FBXO2 mRNA to
advance osteoarthritis development: WGCNA analysis and experimental
validation. Biochem Genet. 62:3092–3110. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cherif H, Mannarino M, Pacis AS, Ragoussis
J, Rabau O, Ouellet JA and Haglund L: Single-cell RNA-seq analysis
of cells from degenerating and non-degenerating intervertebral
discs from the same individual reveals new biomarkers for
intervertebral disc degeneration. Int J Mol Sci. 23:39932022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hartman BH, Bӧscke R, Ellwanger DC,
Keymeulen S, Scheibinger M and Heller S: Fbxo2VHC mouse and
embryonic stem cell reporter lines delineate in vitro-generated
inner ear sensory epithelia cells and enable otic lineage selection
and Cre-recombination. Dev Biol. 443:64–77. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
McGovern MM, Hartman B, Thawani A,
Maunsell H, Zhang H, Yousaf R, Heller S, Stone J and Groves AK:
Fbxo2CreERT2: A new model for targeting cells in the
neonatal and mature inner ear. Hear Res. 428:1086862023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yamada A, Hikichi M, Nozawa T and Nakagawa
I: FBXO2/SCF ubiquitin ligase complex directs xenophagy through
recognizing bacterial surface glycan. EMBO Rep. 22:e525842021.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu
M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic
role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Norwood DA, Montalvan-Sanchez E, Dominguez
RL and Morgan DR: Gastric cancer: Emerging trends in prevention,
diagnosis, and treatment. Gastroenterol Clin North Am. 51:501–518.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Machlowska J, Baj J, Sitarz M, Maciejewski
R and Sitarz R: Gastric cancer: Epidemiology, risk factors,
classification, genomic characteristics and treatment strategies.
Int J Mol Sci. 21:40122020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li J, Ma X, Chakravarti D, Shalapour S and
DePinho RA: Genetic and biological hallmarks of colorectal cancer.
Genes Dev. 35:787–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang R, Siu MKY, Ngan HYS and Chan KKL:
Molecular biomarkers for the early detection of ovarian cancer. Int
J Mol Sci. 23:120412022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lai W, Xie R, Chen C, Lou W, Yang H, Deng
L, Lu Q and Tang X: Integrated analysis of scRNA-seq and bulk
RNA-seq identifies FBXO2 as a candidate biomarker associated with
chemoresistance in HGSOC. Heliyon. 10:e284902024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yen TT, Wang TL, Fader AN, Shih IM and
Gaillard S: Molecular classification and emerging targeted therapy
in endometrial cancer. Int J Gynecol Pathol. 39:26–35. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Shoaib Z, Fan TM and Irudayaraj JMK:
Osteosarcoma mechanobiology and therapeutic targets. Br J
Pharmacol. 179:201–217. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhao X, Guo W, Zou L and Hu B: FBXO2
modulates STAT3 signaling to regulate proliferation and
tumorigenicity of osteosarcoma cells. Cancer Cell Int. 20:2452020.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ma R, Taphoorn MJB and Plaha P: Advances
in the management of glioblastoma. J Neurol Neurosurg Psychiatry.
92:1103–1111. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Atkin G, Moore S, Lu Y, Nelson RF, Tipper
N, Rajpal G, Hunt J, Tennant W, Hell JW, Murphy GG and Paulson H:
Loss of F-box Only protein 2 (Fbxo2) disrupts levels and
localization of Select nmda receptor subunits, and promotes
aberrant synaptic connectivity. J Neurosci. 35:6165–6178. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Boucai L, Zafereo M and Cabanillas ME:
Thyroid cancer: A review. JAMA. 331:425–435. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Badwelan M, Muaddi H, Ahmed A, Lee KT and
Tran SD: Oral squamous cell carcinoma and concomitant primary
tumors, what do we know? A review of the literature. Curr Oncol.
30:3721–3734. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Cheng J, Liu O, Bin X and Tang Z: FBXO2 as
a switch guides a special fate of tumor clones evolving into a
highly malignant transcriptional subtype in oral squamous cell
carcinoma. Apoptosis. 30:167–184. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhang DM, He T, Katusic ZS, Lee HC and Lu
T: Muscle-specific f-box only proteins facilitate bk channel β(1)
subunit downregulation in vascular smooth muscle cells of diabetes
mellitus. Circ Res. 107:1454–1459. 2010. View Article : Google Scholar : PubMed/NCBI
|