Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Research advancements regarding the relationship between FBXO2 and malignant tumors (Review)

  • Authors:
    • Jieya Zhang
    • Jize Yang
    • Xiaomin Zhang
    • Yiran Yuan
    • Shuai Sun
    • Shihua Zhang
    • Jiefeng He
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 325
    |
    Published online on: September 23, 2025
       https://doi.org/10.3892/mmr.2025.13690
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The ubiquitin‑proteasome system (UPS) acts as a central regulator for a range of protein components, including ubiquitin, ubiquitin‑activating enzyme (E1), ubiquitin‑conjugating enzyme (E2), ubiquitin ligase (E3), the 26S proteasome and deubiquitinating enzyme. These components function in a coordinated manner to facilitate the repair and degradation of proteins. Among the ubiquitinating enzymes, in conjunction with E1‑activating enzymes and E2‑binding enzymes, it attaches to substrates and promotes the transfer of ubiquitin molecules to target proteins. The S‑phase kinase‑associated protein 1 (SKP1)‑Cullin‑F‑box (SCF) complex is one of the E3 ligases involved in cancer progression, and consists of four primary components: i) SKP1; ii) Cullin 1/coiled‑coil domain containing 53; iii) ring box protein 1/RING‑box 1/RING‑box protein HRT1; and iv) F‑box protein (FBP). Each FBP can recognize and bind to a different set of substrates, which determines the specificity of the targets of the SCF complex. In addition to being components of the SCF complex, FBPs participate in processes such as DNA replication, transcription, cell differentiation and cell death. F‑box protein 2 (FBXO2), a member of the human FBP family, functions as a subunit of FBP ubiquitin ligases and is highly expressed in the cytoplasm of eukaryotic cells. FBXO2 is highly expressed in various malignant tumors, and is closely associated with tumor cell proliferation, migration and invasion. The present review presents the composition of the UPS and FBP families and their roles in malignant tumors, with a focus on advancements in research into the relationships between FBXO2 and various malignant tumors, aiming to acquire a more profound understanding of their potential mechanisms in the development of malignant tumors and to offer novel ideas for tumor therapy.
View Figures

Figure 1

Schematic diagram of the
ubiquitination process. E1, ubiquitin-activating enzyme; E2,
ubiquitin-conjugating enzyme; E3, ubiquitin ligase; TPP II,
tripeptidyl peptidase II; RBX1, ubiquitin ligase with zinc finger
structure; CUL1, Cullin-1 proteins; SKP1, S-phase kinase-related
protein 1; F-box, F-box protein; Ub, ubiquitin; PPi,
pyrophosphate.

Figure 2

Schematic diagram of FBXO2
generation. FBXO2, F-box protein 2; MHC, major histocompatibility
complex.
View References

1 

Soerjomataram I and Bray F: Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol. 18:663–672. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Gong J, Cao J, Liu G and Huo JR: Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol. 47:43–50. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Çetin G, Klafack S, Studencka-Turski M, Krüger E and Ebstein F: The ubiquitin-proteasome system in immune cells. Biomolecules. 11:602021. View Article : Google Scholar : PubMed/NCBI

4 

Zheng N, Zhou Q, Wang Z and Wei W: Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta. 1866:12–22. 2016.PubMed/NCBI

5 

Kim YJ, Lee Y, Shin H, Hwang S, Park J and Song EJ: Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 46:573–597. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Luo Z, Pan Y, Jeong LS, Liu J and Jia L: Inactivation of the cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells. Autophagy. 8:1677–1679. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Park J, Cho J and Song EJ: Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Lin DI, Barbash O, Kumar KGS, Weber JD, Harper JW, Klein-Szanto AJP, Rustgi A, Fuchs SY and Diehl JA: Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF (FBX4-alphaB crystallin) complex. Mol Cell. 24:355–366. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Liu P, Cong X, Liao S, Jia X, Wang X, Dai W, Zhai L, Zhao L, Ji J, Ni D, et al: Global identification of phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ. 29:1–13. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Shapira M, Kakiashvili E, Rosenberg T and Hershko DD: The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res. 8:R462006. View Article : Google Scholar : PubMed/NCBI

11 

Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, et al: F-box proteins and cancer: An update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics. 10:4150–4167. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Warren WG, Osborn M, Yates A, Wright K and O'Sullivan SE: The emerging role of fatty acid binding protein 5 (FABP5) in cancers. Drug Discov Today. 28:1036282023. View Article : Google Scholar : PubMed/NCBI

13 

Mukherjee A, Chiang CY, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O and Lengyel E: Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 80:1748–1761. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Sun X, Wang T, Guan ZR, Zhang C, Chen Y, Jin J and Hua D: FBXO2, a novel marker for metastasis in human gastric cancer. Biochem Biophys Res Commun. 495:2158–2164. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Wei X, Bu J, Mo X, Lv B, Wang X and Hou B: The prognostic significance of FBXO2 expression in colorectal cancer. Int J Clin Exp Pathol. 11:5054–506. 2018.PubMed/NCBI

16 

Ji J, Shen J, Xu Y, Xie M, Qian Q, Qiu T, Shi W, Ren D, Ma J, Liu W and Liu B: FBXO2 targets glycosylated SUN2 for ubiquitination and degradation to promote ovarian cancer development. Cell Death Dis. 13:4422022. View Article : Google Scholar : PubMed/NCBI

17 

Che X, Jian F, Wang Y, Zhang J, Shen J, Cheng Q, Wang X, Jia N and Feng W: FBXO2 promotes proliferation of endometrial cancer by ubiquitin-mediated degradation of FBN1 in the regulation of the cell cycle and the autophagy pathway. Front Cell Dev Biol. 8:8432020. View Article : Google Scholar : PubMed/NCBI

18 

Zhao X, Guo W, Zou L and Hu B: FBXO2 modulates STAT3 signaling to regulate proliferation and tumorigenicity of osteosarcoma cells. Cancer Cell Int. 20:2452020. View Article : Google Scholar : PubMed/NCBI

19 

Buehler M, Yi X, Ge W, Blattmann P, Rushing E, Reifenberger G, Felsberg J, Yeh C, Corn JE, Regli L, et al: Quantitative proteomic landscapes of primary and recurrent glioblastoma reveal a protumorigeneic role for FBXO2-dependent glioma-microenvironment interactions. Neuro Oncol. 25:290–302. 2023. View Article : Google Scholar : PubMed/NCBI

20 

Guo W, Ren Y and Qiu X: FBXO2 promotes the progression of papillary thyroid carcinoma through the p53 pathway. Sci Rep. 14:225742024. View Article : Google Scholar : PubMed/NCBI

21 

Cheng J, Liu O, Bin X and Tang Z: FBXO2 as a switch guides a special fate of tumor clones evolving into a highly malignant transcriptional subtype in oral squamous cell carcinoma. Apoptosis. 30:167–184. 2025. View Article : Google Scholar : PubMed/NCBI

22 

Hershko A, Heller H, Elias S and Ciechanover A: Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 258:8206–8214. 1983. View Article : Google Scholar : PubMed/NCBI

23 

Lyu L, Chen Z and McCarty N: TRIM44 links the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded proteins. Autophagy. 18:783–798. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Paudel RR, Lu D, Chowdhury SR, Monroy EY and Wang J: Targeted protein degradation via lysosomes. Biochemistry. 62:564–579. 2023. View Article : Google Scholar : PubMed/NCBI

25 

Hershko A, Ciechanover A, Heller H, Haas AL and Rose IA: Proposed role of ATP in protein breakdown: Conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA. 77:1783–1786. 1980. View Article : Google Scholar : PubMed/NCBI

26 

Hochstrasser M: Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol. 4:1024–1031. 1992. View Article : Google Scholar : PubMed/NCBI

27 

Hochstrasser M: Ubiquitin-dependent protein degradation. Annu Rev Genet. 30:405–439. 1996. View Article : Google Scholar : PubMed/NCBI

28 

Jacopo M: Unconventional protein secretion (UPS): Role in important diseases. Mol Biomed. 4:22023. View Article : Google Scholar : PubMed/NCBI

29 

Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H and Webster TJ: Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol. 11:2003902021. View Article : Google Scholar : PubMed/NCBI

30 

Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S and Joazeiro CA: Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One. 3:e14872008. View Article : Google Scholar : PubMed/NCBI

31 

Xu C, Fan CD and Wang X: Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 34:281–289. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Huang X, Gu H, Zhang E, Chen Q, Cao W, Yan H, Chen J, Yang L, Lv N, He J, et al: The NEDD4-1 E3 ubiquitin ligase: A potential molecular target for bortezomib sensitivity in multiple myeloma. Int J Cancer. 146:1963–1978. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Shangary S and Wang S: Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 14:5318–5324. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Fujii Y, Yada M, Nishiyama M, Kamura T, Takahashi H, Tsunematsu R, Susaki E, Nakagawa T, Matsumoto A and Nakayama KI: Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation. Cancer Sci. 97:729–736. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Wan L, Chen M, Cao J, Dai X, Yin Q, Zhang J, Song SJ, Lu Y, Liu J, Inuzuka H, et al: The APC/C E3 ligase complex activator FZR1 restricts BRAF oncogenic function. Cancer Discov. 7:424–441. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Huang HC, Shi J, Orth JD and Mitchison TJ: Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 16:347–358. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Manchado E, Guillamot M, de Cárcer G, Eguren M, Trickey M, García-Higuera I, Moreno S, Yamano H, Cañamero M and Malumbres M: Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase. Cancer Cell. 18:641–654. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y and Matsuda K: CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 27:1562–1571. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Hadjihannas MV, Bernkopf DB, Brückner M and Behrens J: Cell cycle control of Wnt/β-catenin signalling by conductin/axin2 through CDC20. EMBO Rep. 13:347–354. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Liu PY, Xu N, Malyukova A, Scarlett CJ, Sun YT, Zhang XD, Ling D, Su SP, Nelson C, Chang DK, et al: The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20:503–514. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Huang ZJ, Zhu JJ, Yang XY and Biskup E: NEDD4 promotes cell growth and migration via PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Oncol Lett. 14:2649–2656. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Hayashi S, Ozaki T, Yoshida K, Hosoda M, Todo S, Akiyama S and Nakagawara A: p73 and MDM2 confer the resistance of epidermoid carcinoma to cisplatin by blocking p53. Biochem Biophys Res Commun. 347:60–66. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Liu L, Wong CC, Gong B and Yu J: Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene. 37:148–159. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Lipkowitz S and Weissman AM: RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Yang H, Lu X, Liu Z, Chen L, Xu Y, Wang Y, Wei G and Chen Y: FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells. Oncotarget. 6:6310–6325. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, Brown K, Bryson S and Balmain A: Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 432:775–779. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Grim JE, Knoblaugh SE, Guthrie KA, Hagar A, Swanger J, Hespelt J, Delrow JJ, Small T, Grady WM, Nakayama KI and Clurman BE: Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol Cell Biol. 32:2160–2167. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Thompson LL, Rutherford KA, Lepage CC and McManus KJ: The SCF complex is essential to maintain genome and chromosome stability. Int J Mol Sci. 22:85442021. View Article : Google Scholar : PubMed/NCBI

50 

Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M and Mohammad RM: Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol. 36:18–32. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Liu Y, Pan B, Qu W, Cao Y, Li J and Zhao H: Systematic analysis of the expression and prognosis relevance of FBXO family reveals the significance of FBXO1 in human breast cancer. Cancer Cell Int. 21:1302021. View Article : Google Scholar : PubMed/NCBI

52 

Gao D, Inuzuka H, Tseng A, Chin RY, Toker A and Wei W: Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 11:397–408. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Lin YW and Yang JL: Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem. 281:915–926. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Zaytseva YY, Wang X, Southard RC, Wallis NK and Kilgore MW: Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Mol Cancer. 7:902008. View Article : Google Scholar : PubMed/NCBI

55 

Lu Y, Zi X and Pollak M: Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer. 108:334–341. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Asmamaw MD, Liu Y, Zheng YC, Shi XJ and Liu HM: Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 40:1920–1949. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Sistrunk C, Kim SH, Wang X, Lee SH, Kim Y, Macias E and Rodriguez-Puebla ML: Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. Am J Pathol. 182:1854–1864. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Fuchs SY, Spiegelman VS and Kumar KGS: The many faces of beta-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene. 23:2028–2036. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Zhang J, Yang Z, Ou J, Xia X, Zhi F and Cui J: The F-box protein FBXL18 promotes glioma progression by promoting K63-linked ubiquitination of Akt. FEBS Lett. 591:145–154. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, Wang K, Huang X and Liu B: FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer. Cell Death Dis. 12:3172021. View Article : Google Scholar : PubMed/NCBI

61 

Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, Wang K, Huang X, Ji J, Liu W and Liu B: FBXO16-mediated hnRNPL ubiquitination and degradation plays a tumor suppressor role in ovarian cancer. Cell Death Dis. 12:7582021. View Article : Google Scholar : PubMed/NCBI

62 

Wu J, Wen T, Marzio A, Song D, Chen S, Yang C, Zhao F, Zhang B, Zhao G, Ferri A, et al: FBXO32-mediated degradation of PTEN promotes lung adenocarcinoma progression. Cell Death Dis. 15:2822024. View Article : Google Scholar : PubMed/NCBI

63 

Habel N, El-Hachem N, Soysouvanh F, Hadhiri-Bzioueche H, Giuliano S, Nguyen S, Horák P, Gay AS, Debayle D, Nottet N, et al: FBXO32 links ubiquitination to epigenetic reprograming of D cells. Cell Death Differ. 28:1837–1848. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L and Nicot C: Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 21:872022. View Article : Google Scholar : PubMed/NCBI

65 

Liu Z, Ma T, Duan J, Liu X and Liu L: MicroRNA-223-induced inhibition of the FBXW7 gene affects the proliferation and apoptosis of colorectal cancer cells via the notch and akt/mTOR pathways. Mol Med Rep. 23:1542021. View Article : Google Scholar : PubMed/NCBI

66 

Lee EK, Lian Z, D'Andrea K, Letrero R, Sheng W, Liu S, Diehl JN, Pytel D, Barbash O, Schuchter L, et al: The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma. Mol Cell Biol. 33:4422–4433. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Lian Z, Lee EK, Bass AJ, Wong KK, Klein-Szanto AJ, Rustgi AK and Diehl JA: FBXO4 loss facilitates carcinogen induced papilloma development in mice. Cancer Biol Ther. 16:750–755. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H, Lu F, Rustgi AK and Diehl JA: Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell. 14:68–78. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R and Pagano M: FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature. 481:90–93. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Santra MK, Wajapeyee N and Green MR: F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Zou S, Ma C, Yang F, Xu X, Jia J and Liu Z: FBXO31 suppresses gastric cancer EMT by targeting snail1 for proteasomal degradation. Mol Cancer Res. 16:286–295. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Malonia SK, Dutta P, Santra MK and Green MR: F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress. Proc Natl Acad Sci USA. 112:8632–8637. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Liu J, Han L, Li B, Yang J, Huen MSY, Pan X, Tsao SW and Cheung AL: F-box only protein 31 (FBXO31) negatively regulates p38 mitogen-activated protein kinase (MAPK) signaling by mediating lysine 48-linked ubiquitination and degradation of mitogen-activated protein kinase kinase 6 (MKK6). J Biol Chem. 289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Liu D, Xia H, Wang F, Chen C and Long J: MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer. OncoTargets Ther. 9:5245–5255. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Islam S, Dutta P, Sahay O, Gopalakrishnan K, Muhury SR, Parameshwar P, Shetty P and Santra MK: Feedback-regulated transcriptional repression of FBXO31 by c-myc triggers ovarian cancer tumorigenesis. Int J Cancer. 150:1512–1524. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Ma Y, Sun WL, Ma SS, Zhao G, Liu Z, Lu Z and Zhang D: LincRNA ZNF529-AS1 inhibits hepatocellular carcinoma via FBXO31 and predicts the prognosis of hepatocellular carcinoma patients. BMC Bioinformatics. 24:542023. View Article : Google Scholar : PubMed/NCBI

77 

Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA and Pagano M: Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep. 37:1098702021. View Article : Google Scholar : PubMed/NCBI

78 

Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, Chen C, Xie Q, Mack SC, Wang X, et al: Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 214:245–267. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Cui YH, Kim H, Lee M, Yi JM, Kim RK, Uddin N, Yoo KC, Kang JH, Choi MY, Cha HJ, et al: FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation. Oncogene. 37:5794–5809. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K and Tai T: E3 ubiquitin ligase that recognizes sugar chains. Nature. 418:438–442. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Nelson RF, Glenn KA, Zhang Y, Wen H, Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJ and Paulson HL: Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci. 27:5163–5171. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Erhardt JA, Hynicka W, DiBenedetto A, Shen N, Stone N, Paulson H and Pittman RN: A novel F box protein, NFB42, is highly enriched in neurons and induces growth arrest. J Biol Chem. 273:35222–35227. 1998. View Article : Google Scholar : PubMed/NCBI

83 

Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K and Tai T: Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 278:43877–43884. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T and Tanaka K: Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Proc Natl Acad Sci USA. 104:5777–5781. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Nelson RF, Glenn KA, Miller VM, Wen H and Paulson HL: A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control. J Biol Chem. 281:20242–20251. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Zhang HJ, Tian J, Qi XK, Xiang T, He GP, Yu X, Zhang X, Zhao B, Feng QS, Chen MY, et al: Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. PLoS Pathog. 14:e10072082018. View Article : Google Scholar : PubMed/NCBI

87 

Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z and Lu Y: Aberrant expression of FBXO2 disrupts glucose homeostasis through ubiquitin-mediated degradation of insulin receptor in obese mice. Diabetes. 66:689–698. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Liu Z, Chen NY, Zhang Z, Zhou S and Hu SY: F-box only protein 2 exacerbates non-alcoholic fatty liver disease by targeting the hydroxyl CoA dehydrogenase alpha subunit. World J Gastroenterol. 29:4433–4450. 2023. View Article : Google Scholar : PubMed/NCBI

89 

Liu Y, Zhou R, Guo Y, Hu B, Xie L, An Y, Wen J, Liu Z, Zhou M, Kuang W, et al: Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining. Cell Metab. 37:824–841. 2025. View Article : Google Scholar : PubMed/NCBI

90 

Menard R, Morin E, Morse D, Halluin C, Pende M, Baanannou A, Grendler J, Fuqua H, Li J, Lancelot L, et al: Zebrafish genetic model of neuromuscular degeneration associated with atrogin-1 expression. BioRxiv Prepr Serv Biol. 9:2025.03.07.642048. 2025.

91 

Li X, Mank JE and Ban L: The grasshopper genome reveals long-term gene content conservation of the X chromosome and temporal variation in X chromosome evolution. Genome Res. 34:997–1007. 2024. View Article : Google Scholar : PubMed/NCBI

92 

Atkin G, Hunt J, Minakawa E, Sharkey L, Tipper N, Tennant W and Paulson HL: F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing. J Biol Chem. 289:7038–7048. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Stephenson SEM, Costain G, Blok LER, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, et al: Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet. 109:601–617. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Chen N, Cao R, Zhang Z, Zhou S and Hu S: Sleeve gastrectomy improves hepatic glucose metabolism by downregulating FBXO2 and activating the PI3K-AKT pathway. Int J Mol Sci. 24:55442023. View Article : Google Scholar : PubMed/NCBI

95 

Yuan L, Song Z, Deng X, Yang Z, Yang Y, Guo Y, Lu H and Deng H: Genetic analysis of FBXO2, FBXO6, FBXO12, and FBXO41 variants in Han Chinese patients with Sporadic Parkinson's disease. Neurosci Bull. 33:510–514. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Twarowski B and Herbet M: Inflammatory processes in alzheimer's disease-pathomechanism, diagnosis and treatment: A review. Int J Mol Sci. 24:65182023. View Article : Google Scholar : PubMed/NCBI

97 

Williams JB, Cao Q, Wang W, Lee YH, Qin L, Zhong P, Ren Y, Ma K and Yan Z: Inhibition of histone methyltransferase Smyd3 rescuesNMDARand cognitivedeficits in a tauopathy mouse model. Nat Commun. 14:912023. View Article : Google Scholar : PubMed/NCBI

98 

Liu EA, Schultz ML, Mochida C, Chung C, Paulson HL and Lieberman AP: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain. JCI Insight. 5:e1366762020. View Article : Google Scholar : PubMed/NCBI

99 

Tang Z, Li J and Li C: Post-transcriptional regulator RBM47 stabilizes FBXO2 mRNA to advance osteoarthritis development: WGCNA analysis and experimental validation. Biochem Genet. 62:3092–3110. 2024. View Article : Google Scholar : PubMed/NCBI

100 

Cherif H, Mannarino M, Pacis AS, Ragoussis J, Rabau O, Ouellet JA and Haglund L: Single-cell RNA-seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int J Mol Sci. 23:39932022. View Article : Google Scholar : PubMed/NCBI

101 

Hartman BH, Bӧscke R, Ellwanger DC, Keymeulen S, Scheibinger M and Heller S: Fbxo2VHC mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Dev Biol. 443:64–77. 2018. View Article : Google Scholar : PubMed/NCBI

102 

McGovern MM, Hartman B, Thawani A, Maunsell H, Zhang H, Yousaf R, Heller S, Stone J and Groves AK: Fbxo2CreERT2: A new model for targeting cells in the neonatal and mature inner ear. Hear Res. 428:1086862023. View Article : Google Scholar : PubMed/NCBI

103 

Yamada A, Hikichi M, Nozawa T and Nakagawa I: FBXO2/SCF ubiquitin ligase complex directs xenophagy through recognizing bacterial surface glycan. EMBO Rep. 22:e525842021. View Article : Google Scholar : PubMed/NCBI

104 

Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI

105 

Norwood DA, Montalvan-Sanchez E, Dominguez RL and Morgan DR: Gastric cancer: Emerging trends in prevention, diagnosis, and treatment. Gastroenterol Clin North Am. 51:501–518. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Machlowska J, Baj J, Sitarz M, Maciejewski R and Sitarz R: Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 21:40122020. View Article : Google Scholar : PubMed/NCBI

107 

Li J, Ma X, Chakravarti D, Shalapour S and DePinho RA: Genetic and biological hallmarks of colorectal cancer. Genes Dev. 35:787–820. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Zhang R, Siu MKY, Ngan HYS and Chan KKL: Molecular biomarkers for the early detection of ovarian cancer. Int J Mol Sci. 23:120412022. View Article : Google Scholar : PubMed/NCBI

109 

Lai W, Xie R, Chen C, Lou W, Yang H, Deng L, Lu Q and Tang X: Integrated analysis of scRNA-seq and bulk RNA-seq identifies FBXO2 as a candidate biomarker associated with chemoresistance in HGSOC. Heliyon. 10:e284902024. View Article : Google Scholar : PubMed/NCBI

110 

Yen TT, Wang TL, Fader AN, Shih IM and Gaillard S: Molecular classification and emerging targeted therapy in endometrial cancer. Int J Gynecol Pathol. 39:26–35. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Shoaib Z, Fan TM and Irudayaraj JMK: Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 179:201–217. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Zhao X, Guo W, Zou L and Hu B: FBXO2 modulates STAT3 signaling to regulate proliferation and tumorigenicity of osteosarcoma cells. Cancer Cell Int. 20:2452020. View Article : Google Scholar : PubMed/NCBI

113 

Ma R, Taphoorn MJB and Plaha P: Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry. 92:1103–1111. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Atkin G, Moore S, Lu Y, Nelson RF, Tipper N, Rajpal G, Hunt J, Tennant W, Hell JW, Murphy GG and Paulson H: Loss of F-box Only protein 2 (Fbxo2) disrupts levels and localization of Select nmda receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 35:6165–6178. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Boucai L, Zafereo M and Cabanillas ME: Thyroid cancer: A review. JAMA. 331:425–435. 2024. View Article : Google Scholar : PubMed/NCBI

116 

Badwelan M, Muaddi H, Ahmed A, Lee KT and Tran SD: Oral squamous cell carcinoma and concomitant primary tumors, what do we know? A review of the literature. Curr Oncol. 30:3721–3734. 2023. View Article : Google Scholar : PubMed/NCBI

117 

Cheng J, Liu O, Bin X and Tang Z: FBXO2 as a switch guides a special fate of tumor clones evolving into a highly malignant transcriptional subtype in oral squamous cell carcinoma. Apoptosis. 30:167–184. 2025. View Article : Google Scholar : PubMed/NCBI

118 

Zhang DM, He T, Katusic ZS, Lee HC and Lu T: Muscle-specific f-box only proteins facilitate bk channel β(1) subunit downregulation in vascular smooth muscle cells of diabetes mellitus. Circ Res. 107:1454–1459. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang J, Yang J, Zhang X, Yuan Y, Sun S, Zhang S and He J: Research advancements regarding the relationship between FBXO2 and malignant tumors (Review). Mol Med Rep 32: 325, 2025.
APA
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., & He, J. (2025). Research advancements regarding the relationship between FBXO2 and malignant tumors (Review). Molecular Medicine Reports, 32, 325. https://doi.org/10.3892/mmr.2025.13690
MLA
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., He, J."Research advancements regarding the relationship between FBXO2 and malignant tumors (Review)". Molecular Medicine Reports 32.6 (2025): 325.
Chicago
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., He, J."Research advancements regarding the relationship between FBXO2 and malignant tumors (Review)". Molecular Medicine Reports 32, no. 6 (2025): 325. https://doi.org/10.3892/mmr.2025.13690
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang J, Yang J, Zhang X, Yuan Y, Sun S, Zhang S and He J: Research advancements regarding the relationship between FBXO2 and malignant tumors (Review). Mol Med Rep 32: 325, 2025.
APA
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., & He, J. (2025). Research advancements regarding the relationship between FBXO2 and malignant tumors (Review). Molecular Medicine Reports, 32, 325. https://doi.org/10.3892/mmr.2025.13690
MLA
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., He, J."Research advancements regarding the relationship between FBXO2 and malignant tumors (Review)". Molecular Medicine Reports 32.6 (2025): 325.
Chicago
Zhang, J., Yang, J., Zhang, X., Yuan, Y., Sun, S., Zhang, S., He, J."Research advancements regarding the relationship between FBXO2 and malignant tumors (Review)". Molecular Medicine Reports 32, no. 6 (2025): 325. https://doi.org/10.3892/mmr.2025.13690
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team